TSTP Solution File: SET235-6 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET235-6 : TPTP v8.1.0. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n004.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:48:19 EDT 2022

% Result   : Unsatisfiable 2.96s 3.35s
% Output   : Refutation 2.96s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SET235-6 : TPTP v8.1.0. Bugfixed v2.1.0.
% 0.03/0.13  % Command  : bliksem %s
% 0.12/0.34  % Computer : n004.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % DateTime : Mon Jul 11 02:59:07 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.73/1.13  *** allocated 10000 integers for termspace/termends
% 0.73/1.13  *** allocated 10000 integers for clauses
% 0.73/1.13  *** allocated 10000 integers for justifications
% 0.73/1.13  Bliksem 1.12
% 0.73/1.13  
% 0.73/1.13  
% 0.73/1.13  Automatic Strategy Selection
% 0.73/1.13  
% 0.73/1.13  Clauses:
% 0.73/1.13  [
% 0.73/1.13     [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y ) ],
% 0.73/1.13     [ member( 'not_subclass_element'( X, Y ), X ), subclass( X, Y ) ],
% 0.73/1.13     [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), subclass( X, Y ) ]
% 0.73/1.13    ,
% 0.73/1.13     [ subclass( X, 'universal_class' ) ],
% 0.73/1.13     [ ~( =( X, Y ) ), subclass( X, Y ) ],
% 0.73/1.13     [ ~( =( X, Y ) ), subclass( Y, X ) ],
% 0.73/1.13     [ ~( subclass( X, Y ) ), ~( subclass( Y, X ) ), =( X, Y ) ],
% 0.73/1.13     [ ~( member( X, 'unordered_pair'( Y, Z ) ) ), =( X, Y ), =( X, Z ) ]
% 0.73/1.13    ,
% 0.73/1.13     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( X, Y
% 0.73/1.13     ) ) ],
% 0.73/1.13     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( Y, X
% 0.73/1.13     ) ) ],
% 0.73/1.13     [ member( 'unordered_pair'( X, Y ), 'universal_class' ) ],
% 0.73/1.13     [ =( 'unordered_pair'( X, X ), singleton( X ) ) ],
% 0.73/1.13     [ =( 'unordered_pair'( singleton( X ), 'unordered_pair'( X, singleton( Y
% 0.73/1.13     ) ) ), 'ordered_pair'( X, Y ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.73/1.13    X, Z ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.73/1.13    Y, T ) ],
% 0.73/1.13     [ ~( member( X, Y ) ), ~( member( Z, T ) ), member( 'ordered_pair'( X, Z
% 0.73/1.13     ), 'cross_product'( Y, T ) ) ],
% 0.73/1.13     [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 'ordered_pair'( first( X
% 0.73/1.13     ), second( X ) ), X ) ],
% 0.73/1.13     [ subclass( 'element_relation', 'cross_product'( 'universal_class', 
% 0.73/1.13    'universal_class' ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), 'element_relation' ) ), member( X, 
% 0.73/1.13    Y ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.73/1.13    , 'universal_class' ) ) ), ~( member( X, Y ) ), member( 'ordered_pair'( X
% 0.73/1.13    , Y ), 'element_relation' ) ],
% 0.73/1.13     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Y ) ],
% 0.73/1.13     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Z ) ],
% 0.73/1.13     [ ~( member( X, Y ) ), ~( member( X, Z ) ), member( X, intersection( Y, 
% 0.73/1.13    Z ) ) ],
% 0.73/1.13     [ ~( member( X, complement( Y ) ) ), ~( member( X, Y ) ) ],
% 0.73/1.13     [ ~( member( X, 'universal_class' ) ), member( X, complement( Y ) ), 
% 0.73/1.13    member( X, Y ) ],
% 0.73/1.13     [ =( complement( intersection( complement( X ), complement( Y ) ) ), 
% 0.73/1.13    union( X, Y ) ) ],
% 0.73/1.13     [ =( intersection( complement( intersection( X, Y ) ), complement( 
% 0.73/1.13    intersection( complement( X ), complement( Y ) ) ) ), 
% 0.73/1.13    'symmetric_difference'( X, Y ) ) ],
% 0.73/1.13     [ =( intersection( X, 'cross_product'( Y, Z ) ), restrict( X, Y, Z ) ) ]
% 0.73/1.13    ,
% 0.73/1.13     [ =( intersection( 'cross_product'( X, Y ), Z ), restrict( Z, X, Y ) ) ]
% 0.73/1.13    ,
% 0.73/1.13     [ ~( =( restrict( X, singleton( Y ), 'universal_class' ), 'null_class' )
% 0.73/1.13     ), ~( member( Y, 'domain_of'( X ) ) ) ],
% 0.73/1.13     [ ~( member( X, 'universal_class' ) ), =( restrict( Y, singleton( X ), 
% 0.73/1.13    'universal_class' ), 'null_class' ), member( X, 'domain_of'( Y ) ) ],
% 0.73/1.13     [ subclass( rotate( X ), 'cross_product'( 'cross_product'( 
% 0.73/1.13    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), rotate( T ) )
% 0.73/1.13     ), member( 'ordered_pair'( 'ordered_pair'( Y, Z ), X ), T ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.73/1.13    member( 'ordered_pair'( 'ordered_pair'( Z, X ), Y ), 'cross_product'( 
% 0.73/1.13    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.73/1.13    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Z, X ), 
% 0.73/1.13    Y ), rotate( T ) ) ],
% 0.73/1.13     [ subclass( flip( X ), 'cross_product'( 'cross_product'( 
% 0.73/1.13    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), flip( T ) ) )
% 0.73/1.13    , member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), T ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.73/1.13    member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), 'cross_product'( 
% 0.73/1.13    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.73/1.13    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, X ), 
% 0.73/1.13    Z ), flip( T ) ) ],
% 0.73/1.13     [ =( 'domain_of'( flip( 'cross_product'( X, 'universal_class' ) ) ), 
% 0.73/1.13    inverse( X ) ) ],
% 0.73/1.13     [ =( 'domain_of'( inverse( X ) ), 'range_of'( X ) ) ],
% 0.73/1.13     [ =( first( 'not_subclass_element'( restrict( X, Y, singleton( Z ) ), 
% 0.73/1.13    'null_class' ) ), domain( X, Y, Z ) ) ],
% 0.73/1.13     [ =( second( 'not_subclass_element'( restrict( X, singleton( Y ), Z ), 
% 0.73/1.13    'null_class' ) ), range( X, Y, Z ) ) ],
% 0.73/1.13     [ =( 'range_of'( restrict( X, Y, 'universal_class' ) ), image( X, Y ) )
% 0.73/1.13     ],
% 0.73/1.13     [ =( union( X, singleton( X ) ), successor( X ) ) ],
% 0.73/1.13     [ subclass( 'successor_relation', 'cross_product'( 'universal_class', 
% 0.73/1.13    'universal_class' ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), 'successor_relation' ) ), =( 
% 0.73/1.13    successor( X ), Y ) ],
% 0.73/1.13     [ ~( =( successor( X ), Y ) ), ~( member( 'ordered_pair'( X, Y ), 
% 0.73/1.13    'cross_product'( 'universal_class', 'universal_class' ) ) ), member( 
% 0.73/1.13    'ordered_pair'( X, Y ), 'successor_relation' ) ],
% 0.73/1.13     [ ~( inductive( X ) ), member( 'null_class', X ) ],
% 0.73/1.13     [ ~( inductive( X ) ), subclass( image( 'successor_relation', X ), X ) ]
% 0.73/1.13    ,
% 0.73/1.13     [ ~( member( 'null_class', X ) ), ~( subclass( image( 
% 0.73/1.13    'successor_relation', X ), X ) ), inductive( X ) ],
% 0.73/1.13     [ inductive( omega ) ],
% 0.73/1.13     [ ~( inductive( X ) ), subclass( omega, X ) ],
% 0.73/1.13     [ member( omega, 'universal_class' ) ],
% 0.73/1.13     [ =( 'domain_of'( restrict( 'element_relation', 'universal_class', X ) )
% 0.73/1.13    , 'sum_class'( X ) ) ],
% 0.73/1.13     [ ~( member( X, 'universal_class' ) ), member( 'sum_class'( X ), 
% 0.73/1.13    'universal_class' ) ],
% 0.73/1.13     [ =( complement( image( 'element_relation', complement( X ) ) ), 
% 0.73/1.13    'power_class'( X ) ) ],
% 0.73/1.13     [ ~( member( X, 'universal_class' ) ), member( 'power_class'( X ), 
% 0.73/1.13    'universal_class' ) ],
% 0.73/1.13     [ subclass( compose( X, Y ), 'cross_product'( 'universal_class', 
% 0.73/1.13    'universal_class' ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), compose( Z, T ) ) ), member( Y, 
% 0.73/1.13    image( Z, image( T, singleton( X ) ) ) ) ],
% 0.73/1.13     [ ~( member( X, image( Y, image( Z, singleton( T ) ) ) ) ), ~( member( 
% 0.73/1.13    'ordered_pair'( T, X ), 'cross_product'( 'universal_class', 
% 0.73/1.13    'universal_class' ) ) ), member( 'ordered_pair'( T, X ), compose( Y, Z )
% 0.73/1.13     ) ],
% 0.73/1.13     [ ~( 'single_valued_class'( X ) ), subclass( compose( X, inverse( X ) )
% 0.73/1.13    , 'identity_relation' ) ],
% 0.73/1.13     [ ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) ), 
% 0.73/1.13    'single_valued_class'( X ) ],
% 0.73/1.13     [ ~( function( X ) ), subclass( X, 'cross_product'( 'universal_class', 
% 0.73/1.13    'universal_class' ) ) ],
% 0.73/1.13     [ ~( function( X ) ), subclass( compose( X, inverse( X ) ), 
% 0.73/1.13    'identity_relation' ) ],
% 0.73/1.13     [ ~( subclass( X, 'cross_product'( 'universal_class', 'universal_class'
% 0.73/1.13     ) ) ), ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) )
% 0.73/1.13    , function( X ) ],
% 0.73/1.13     [ ~( function( X ) ), ~( member( Y, 'universal_class' ) ), member( image( 
% 0.73/1.13    X, Y ), 'universal_class' ) ],
% 0.73/1.13     [ =( X, 'null_class' ), member( regular( X ), X ) ],
% 0.73/1.13     [ =( X, 'null_class' ), =( intersection( X, regular( X ) ), 'null_class'
% 0.73/1.13     ) ],
% 0.73/1.13     [ =( 'sum_class'( image( X, singleton( Y ) ) ), apply( X, Y ) ) ],
% 0.73/1.13     [ function( choice ) ],
% 0.73/1.13     [ ~( member( X, 'universal_class' ) ), =( X, 'null_class' ), member( 
% 0.73/1.13    apply( choice, X ), X ) ],
% 0.73/1.13     [ ~( 'one_to_one'( X ) ), function( X ) ],
% 0.73/1.13     [ ~( 'one_to_one'( X ) ), function( inverse( X ) ) ],
% 0.73/1.13     [ ~( function( inverse( X ) ) ), ~( function( X ) ), 'one_to_one'( X ) ]
% 0.73/1.13    ,
% 0.73/1.13     [ =( intersection( 'cross_product'( 'universal_class', 'universal_class'
% 0.73/1.13     ), intersection( 'cross_product'( 'universal_class', 'universal_class' )
% 0.73/1.13    , complement( compose( complement( 'element_relation' ), inverse( 
% 0.73/1.13    'element_relation' ) ) ) ) ), 'subset_relation' ) ],
% 0.73/1.13     [ =( intersection( inverse( 'subset_relation' ), 'subset_relation' ), 
% 0.73/1.13    'identity_relation' ) ],
% 0.73/1.13     [ =( complement( 'domain_of'( intersection( X, 'identity_relation' ) ) )
% 0.73/1.13    , diagonalise( X ) ) ],
% 0.73/1.13     [ =( intersection( 'domain_of'( X ), diagonalise( compose( inverse( 
% 0.73/1.13    'element_relation' ), X ) ) ), cantor( X ) ) ],
% 0.73/1.13     [ ~( operation( X ) ), function( X ) ],
% 0.73/1.13     [ ~( operation( X ) ), =( 'cross_product'( 'domain_of'( 'domain_of'( X )
% 0.73/1.13     ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ],
% 0.73/1.13     [ ~( operation( X ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.73/1.13    'domain_of'( X ) ) ) ],
% 0.73/1.13     [ ~( function( X ) ), ~( =( 'cross_product'( 'domain_of'( 'domain_of'( X
% 0.73/1.13     ) ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ), ~( 
% 0.73/1.13    subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( X ) ) ) ), operation( 
% 0.73/1.13    X ) ],
% 0.73/1.13     [ ~( compatible( X, Y, Z ) ), function( X ) ],
% 0.73/1.13     [ ~( compatible( X, Y, Z ) ), =( 'domain_of'( 'domain_of'( Y ) ), 
% 0.73/1.13    'domain_of'( X ) ) ],
% 0.73/1.13     [ ~( compatible( X, Y, Z ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.73/1.13    'domain_of'( Z ) ) ) ],
% 0.73/1.13     [ ~( function( X ) ), ~( =( 'domain_of'( 'domain_of'( Y ) ), 'domain_of'( 
% 0.73/1.13    X ) ) ), ~( subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( Z ) ) )
% 0.73/1.13     ), compatible( X, Y, Z ) ],
% 0.73/1.13     [ ~( homomorphism( X, Y, Z ) ), operation( Y ) ],
% 0.73/1.13     [ ~( homomorphism( X, Y, Z ) ), operation( Z ) ],
% 0.73/1.13     [ ~( homomorphism( X, Y, Z ) ), compatible( X, Y, Z ) ],
% 0.73/1.13     [ ~( homomorphism( X, Y, Z ) ), ~( member( 'ordered_pair'( T, U ), 
% 0.73/1.13    'domain_of'( Y ) ) ), =( apply( Z, 'ordered_pair'( apply( X, T ), apply( 
% 0.73/1.13    X, U ) ) ), apply( X, apply( Y, 'ordered_pair'( T, U ) ) ) ) ],
% 0.73/1.13     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.73/1.13    member( 'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 
% 0.73/1.13    'not_homomorphism2'( Z, X, Y ) ), 'domain_of'( X ) ), homomorphism( Z, X
% 0.73/1.13    , Y ) ],
% 0.73/1.13     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.73/1.13    ~( =( apply( Y, 'ordered_pair'( apply( Z, 'not_homomorphism1'( Z, X, Y )
% 0.73/1.13     ), apply( Z, 'not_homomorphism2'( Z, X, Y ) ) ) ), apply( Z, apply( X, 
% 0.73/1.13    'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 'not_homomorphism2'( Z, X
% 0.73/1.13    , Y ) ) ) ) ) ), homomorphism( Z, X, Y ) ],
% 0.73/1.13     [ subclass( 'compose_class'( X ), 'cross_product'( 'universal_class', 
% 0.73/1.13    'universal_class' ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), 'compose_class'( Z ) ) ), =( 
% 0.73/1.13    compose( Z, X ), Y ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.73/1.13    , 'universal_class' ) ) ), ~( =( compose( Z, X ), Y ) ), member( 
% 0.73/1.13    'ordered_pair'( X, Y ), 'compose_class'( Z ) ) ],
% 0.73/1.13     [ subclass( 'composition_function', 'cross_product'( 'universal_class', 
% 0.73/1.13    'cross_product'( 'universal_class', 'universal_class' ) ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.73/1.13    'composition_function' ) ), =( compose( X, Y ), Z ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.73/1.13    , 'universal_class' ) ) ), member( 'ordered_pair'( X, 'ordered_pair'( Y, 
% 0.73/1.13    compose( X, Y ) ) ), 'composition_function' ) ],
% 0.73/1.13     [ subclass( 'domain_relation', 'cross_product'( 'universal_class', 
% 0.73/1.13    'universal_class' ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, Y ), 'domain_relation' ) ), =( 
% 0.73/1.13    'domain_of'( X ), Y ) ],
% 0.73/1.13     [ ~( member( X, 'universal_class' ) ), member( 'ordered_pair'( X, 
% 0.73/1.13    'domain_of'( X ) ), 'domain_relation' ) ],
% 0.73/1.13     [ =( first( 'not_subclass_element'( compose( X, inverse( X ) ), 
% 0.73/1.13    'identity_relation' ) ), 'single_valued1'( X ) ) ],
% 0.73/1.13     [ =( second( 'not_subclass_element'( compose( X, inverse( X ) ), 
% 0.73/1.13    'identity_relation' ) ), 'single_valued2'( X ) ) ],
% 0.73/1.13     [ =( domain( X, image( inverse( X ), singleton( 'single_valued1'( X ) )
% 0.73/1.13     ), 'single_valued2'( X ) ), 'single_valued3'( X ) ) ],
% 0.73/1.13     [ =( intersection( complement( compose( 'element_relation', complement( 
% 0.73/1.13    'identity_relation' ) ) ), 'element_relation' ), 'singleton_relation' ) ]
% 0.73/1.13    ,
% 0.73/1.13     [ subclass( 'application_function', 'cross_product'( 'universal_class', 
% 0.73/1.13    'cross_product'( 'universal_class', 'universal_class' ) ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.73/1.13    'application_function' ) ), member( Y, 'domain_of'( X ) ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.73/1.13    'application_function' ) ), =( apply( X, Y ), Z ) ],
% 0.73/1.13     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.73/1.13    'cross_product'( 'universal_class', 'cross_product'( 'universal_class', 
% 0.73/1.13    'universal_class' ) ) ) ), ~( member( Y, 'domain_of'( X ) ) ), member( 
% 0.73/1.13    'ordered_pair'( X, 'ordered_pair'( Y, apply( X, Y ) ) ), 
% 0.73/1.13    'application_function' ) ],
% 0.73/1.13     [ ~( maps( X, Y, Z ) ), function( X ) ],
% 0.73/1.13     [ ~( maps( X, Y, Z ) ), =( 'domain_of'( X ), Y ) ],
% 2.96/3.35     [ ~( maps( X, Y, Z ) ), subclass( 'range_of'( X ), Z ) ],
% 2.96/3.35     [ ~( function( X ) ), ~( subclass( 'range_of'( X ), Y ) ), maps( X, 
% 2.96/3.35    'domain_of'( X ), Y ) ],
% 2.96/3.35     [ subclass( x, 'cross_product'( 'universal_class', 'universal_class' ) )
% 2.96/3.35     ],
% 2.96/3.35     [ ~( member( 'ordered_pair'( first( 'not_subclass_element'( x, y ) ), 
% 2.96/3.35    second( 'not_subclass_element'( x, y ) ) ), x ) ) ],
% 2.96/3.35     [ ~( subclass( x, y ) ) ]
% 2.96/3.35  ] .
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  percentage equality = 0.221719, percentage horn = 0.930435
% 2.96/3.35  This is a problem with some equality
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Options Used:
% 2.96/3.35  
% 2.96/3.35  useres =            1
% 2.96/3.35  useparamod =        1
% 2.96/3.35  useeqrefl =         1
% 2.96/3.35  useeqfact =         1
% 2.96/3.35  usefactor =         1
% 2.96/3.35  usesimpsplitting =  0
% 2.96/3.35  usesimpdemod =      5
% 2.96/3.35  usesimpres =        3
% 2.96/3.35  
% 2.96/3.35  resimpinuse      =  1000
% 2.96/3.35  resimpclauses =     20000
% 2.96/3.35  substype =          eqrewr
% 2.96/3.35  backwardsubs =      1
% 2.96/3.35  selectoldest =      5
% 2.96/3.35  
% 2.96/3.35  litorderings [0] =  split
% 2.96/3.35  litorderings [1] =  extend the termordering, first sorting on arguments
% 2.96/3.35  
% 2.96/3.35  termordering =      kbo
% 2.96/3.35  
% 2.96/3.35  litapriori =        0
% 2.96/3.35  termapriori =       1
% 2.96/3.35  litaposteriori =    0
% 2.96/3.35  termaposteriori =   0
% 2.96/3.35  demodaposteriori =  0
% 2.96/3.35  ordereqreflfact =   0
% 2.96/3.35  
% 2.96/3.35  litselect =         negord
% 2.96/3.35  
% 2.96/3.35  maxweight =         15
% 2.96/3.35  maxdepth =          30000
% 2.96/3.35  maxlength =         115
% 2.96/3.35  maxnrvars =         195
% 2.96/3.35  excuselevel =       1
% 2.96/3.35  increasemaxweight = 1
% 2.96/3.35  
% 2.96/3.35  maxselected =       10000000
% 2.96/3.35  maxnrclauses =      10000000
% 2.96/3.35  
% 2.96/3.35  showgenerated =    0
% 2.96/3.35  showkept =         0
% 2.96/3.35  showselected =     0
% 2.96/3.35  showdeleted =      0
% 2.96/3.35  showresimp =       1
% 2.96/3.35  showstatus =       2000
% 2.96/3.35  
% 2.96/3.35  prologoutput =     1
% 2.96/3.35  nrgoals =          5000000
% 2.96/3.35  totalproof =       1
% 2.96/3.35  
% 2.96/3.35  Symbols occurring in the translation:
% 2.96/3.35  
% 2.96/3.35  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 2.96/3.35  .  [1, 2]      (w:1, o:64, a:1, s:1, b:0), 
% 2.96/3.35  !  [4, 1]      (w:0, o:35, a:1, s:1, b:0), 
% 2.96/3.35  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 2.96/3.35  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 2.96/3.35  subclass  [41, 2]      (w:1, o:89, a:1, s:1, b:0), 
% 2.96/3.35  member  [43, 2]      (w:1, o:90, a:1, s:1, b:0), 
% 2.96/3.35  'not_subclass_element'  [44, 2]      (w:1, o:91, a:1, s:1, b:0), 
% 2.96/3.35  'universal_class'  [45, 0]      (w:1, o:22, a:1, s:1, b:0), 
% 2.96/3.35  'unordered_pair'  [46, 2]      (w:1, o:92, a:1, s:1, b:0), 
% 2.96/3.35  singleton  [47, 1]      (w:1, o:43, a:1, s:1, b:0), 
% 2.96/3.35  'ordered_pair'  [48, 2]      (w:1, o:93, a:1, s:1, b:0), 
% 2.96/3.35  'cross_product'  [50, 2]      (w:1, o:94, a:1, s:1, b:0), 
% 2.96/3.35  first  [52, 1]      (w:1, o:44, a:1, s:1, b:0), 
% 2.96/3.35  second  [53, 1]      (w:1, o:45, a:1, s:1, b:0), 
% 2.96/3.35  'element_relation'  [54, 0]      (w:1, o:27, a:1, s:1, b:0), 
% 2.96/3.35  intersection  [55, 2]      (w:1, o:96, a:1, s:1, b:0), 
% 2.96/3.35  complement  [56, 1]      (w:1, o:46, a:1, s:1, b:0), 
% 2.96/3.35  union  [57, 2]      (w:1, o:97, a:1, s:1, b:0), 
% 2.96/3.35  'symmetric_difference'  [58, 2]      (w:1, o:98, a:1, s:1, b:0), 
% 2.96/3.35  restrict  [60, 3]      (w:1, o:101, a:1, s:1, b:0), 
% 2.96/3.35  'null_class'  [61, 0]      (w:1, o:28, a:1, s:1, b:0), 
% 2.96/3.35  'domain_of'  [62, 1]      (w:1, o:49, a:1, s:1, b:0), 
% 2.96/3.35  rotate  [63, 1]      (w:1, o:40, a:1, s:1, b:0), 
% 2.96/3.35  flip  [65, 1]      (w:1, o:50, a:1, s:1, b:0), 
% 2.96/3.35  inverse  [66, 1]      (w:1, o:51, a:1, s:1, b:0), 
% 2.96/3.35  'range_of'  [67, 1]      (w:1, o:41, a:1, s:1, b:0), 
% 2.96/3.35  domain  [68, 3]      (w:1, o:103, a:1, s:1, b:0), 
% 2.96/3.35  range  [69, 3]      (w:1, o:104, a:1, s:1, b:0), 
% 2.96/3.35  image  [70, 2]      (w:1, o:95, a:1, s:1, b:0), 
% 2.96/3.35  successor  [71, 1]      (w:1, o:52, a:1, s:1, b:0), 
% 2.96/3.35  'successor_relation'  [72, 0]      (w:1, o:6, a:1, s:1, b:0), 
% 2.96/3.35  inductive  [73, 1]      (w:1, o:53, a:1, s:1, b:0), 
% 2.96/3.35  omega  [74, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 2.96/3.35  'sum_class'  [75, 1]      (w:1, o:54, a:1, s:1, b:0), 
% 2.96/3.35  'power_class'  [76, 1]      (w:1, o:57, a:1, s:1, b:0), 
% 2.96/3.35  compose  [78, 2]      (w:1, o:99, a:1, s:1, b:0), 
% 2.96/3.35  'single_valued_class'  [79, 1]      (w:1, o:58, a:1, s:1, b:0), 
% 2.96/3.35  'identity_relation'  [80, 0]      (w:1, o:29, a:1, s:1, b:0), 
% 2.96/3.35  function  [82, 1]      (w:1, o:59, a:1, s:1, b:0), 
% 2.96/3.35  regular  [83, 1]      (w:1, o:42, a:1, s:1, b:0), 
% 2.96/3.35  apply  [84, 2]      (w:1, o:100, a:1, s:1, b:0), 
% 2.96/3.35  choice  [85, 0]      (w:1, o:30, a:1, s:1, b:0), 
% 2.96/3.35  'one_to_one'  [86, 1]      (w:1, o:55, a:1, s:1, b:0), 
% 2.96/3.35  'subset_relation'  [87, 0]      (w:1, o:5, a:1, s:1, b:0), 
% 2.96/3.35  diagonalise  [88, 1]      (w:1, o:60, a:1, s:1, b:0), 
% 2.96/3.35  cantor  [89, 1]      (w:1, o:47, a:1, s:1, b:0), 
% 2.96/3.35  operation  [90, 1]      (w:1, o:56, a:1, s:1, b:0), 
% 2.96/3.35  compatible  [94, 3]      (w:1, o:102, a:1, s:1, b:0), 
% 2.96/3.35  homomorphism  [95, 3]      (w:1, o:105, a:1, s:1, b:0), 
% 2.96/3.35  'not_homomorphism1'  [96, 3]      (w:1, o:107, a:1, s:1, b:0), 
% 2.96/3.35  'not_homomorphism2'  [97, 3]      (w:1, o:108, a:1, s:1, b:0), 
% 2.96/3.35  'compose_class'  [98, 1]      (w:1, o:48, a:1, s:1, b:0), 
% 2.96/3.35  'composition_function'  [99, 0]      (w:1, o:31, a:1, s:1, b:0), 
% 2.96/3.35  'domain_relation'  [100, 0]      (w:1, o:26, a:1, s:1, b:0), 
% 2.96/3.35  'single_valued1'  [101, 1]      (w:1, o:61, a:1, s:1, b:0), 
% 2.96/3.35  'single_valued2'  [102, 1]      (w:1, o:62, a:1, s:1, b:0), 
% 2.96/3.35  'single_valued3'  [103, 1]      (w:1, o:63, a:1, s:1, b:0), 
% 2.96/3.35  'singleton_relation'  [104, 0]      (w:1, o:7, a:1, s:1, b:0), 
% 2.96/3.35  'application_function'  [105, 0]      (w:1, o:32, a:1, s:1, b:0), 
% 2.96/3.35  maps  [106, 3]      (w:1, o:106, a:1, s:1, b:0), 
% 2.96/3.35  x  [107, 0]      (w:1, o:33, a:1, s:1, b:0), 
% 2.96/3.35  y  [108, 0]      (w:1, o:34, a:1, s:1, b:0).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Starting Search:
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    4571
% 2.96/3.35  Kept:         2009
% 2.96/3.35  Inuse:        112
% 2.96/3.35  Deleted:      4
% 2.96/3.35  Deletedinuse: 2
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    9234
% 2.96/3.35  Kept:         4010
% 2.96/3.35  Inuse:        187
% 2.96/3.35  Deleted:      14
% 2.96/3.35  Deletedinuse: 5
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    13067
% 2.96/3.35  Kept:         6030
% 2.96/3.35  Inuse:        235
% 2.96/3.35  Deleted:      16
% 2.96/3.35  Deletedinuse: 5
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    18148
% 2.96/3.35  Kept:         8172
% 2.96/3.35  Inuse:        288
% 2.96/3.35  Deleted:      50
% 2.96/3.35  Deletedinuse: 37
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    24174
% 2.96/3.35  Kept:         10799
% 2.96/3.35  Inuse:        366
% 2.96/3.35  Deleted:      80
% 2.96/3.35  Deletedinuse: 65
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    27908
% 2.96/3.35  Kept:         12893
% 2.96/3.35  Inuse:        396
% 2.96/3.35  Deleted:      85
% 2.96/3.35  Deletedinuse: 70
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    31721
% 2.96/3.35  Kept:         14988
% 2.96/3.35  Inuse:        431
% 2.96/3.35  Deleted:      86
% 2.96/3.35  Deletedinuse: 71
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    37739
% 2.96/3.35  Kept:         18507
% 2.96/3.35  Inuse:        461
% 2.96/3.35  Deleted:      86
% 2.96/3.35  Deletedinuse: 71
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying clauses:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    46552
% 2.96/3.35  Kept:         21624
% 2.96/3.35  Inuse:        471
% 2.96/3.35  Deleted:      3165
% 2.96/3.35  Deletedinuse: 72
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Intermediate Status:
% 2.96/3.35  Generated:    51722
% 2.96/3.35  Kept:         23673
% 2.96/3.35  Inuse:        518
% 2.96/3.35  Deleted:      3165
% 2.96/3.35  Deletedinuse: 72
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  Resimplifying inuse:
% 2.96/3.35  Done
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Bliksems!, er is een bewijs:
% 2.96/3.35  % SZS status Unsatisfiable
% 2.96/3.35  % SZS output start Refutation
% 2.96/3.35  
% 2.96/3.35  clause( 0, [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y ) ]
% 2.96/3.35     )
% 2.96/3.35  .
% 2.96/3.35  clause( 1, [ member( 'not_subclass_element'( X, Y ), X ), subclass( X, Y )
% 2.96/3.35     ] )
% 2.96/3.35  .
% 2.96/3.35  clause( 15, [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 'ordered_pair'( 
% 2.96/3.35    first( X ), second( X ) ), X ) ] )
% 2.96/3.35  .
% 2.96/3.35  clause( 111, [ subclass( x, 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ) ) ] )
% 2.96/3.35  .
% 2.96/3.35  clause( 112, [ ~( member( 'ordered_pair'( first( 'not_subclass_element'( x
% 2.96/3.35    , y ) ), second( 'not_subclass_element'( x, y ) ) ), x ) ) ] )
% 2.96/3.35  .
% 2.96/3.35  clause( 113, [ ~( subclass( x, y ) ) ] )
% 2.96/3.35  .
% 2.96/3.35  clause( 133, [ member( 'not_subclass_element'( x, y ), x ) ] )
% 2.96/3.35  .
% 2.96/3.35  clause( 138, [ ~( subclass( x, X ) ), member( 'not_subclass_element'( x, y
% 2.96/3.35     ), X ) ] )
% 2.96/3.35  .
% 2.96/3.35  clause( 16780, [ ~( member( 'not_subclass_element'( x, y ), 'cross_product'( 
% 2.96/3.35    X, Y ) ) ) ] )
% 2.96/3.35  .
% 2.96/3.35  clause( 25354, [] )
% 2.96/3.35  .
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  % SZS output end Refutation
% 2.96/3.35  found a proof!
% 2.96/3.35  
% 2.96/3.35  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 2.96/3.35  
% 2.96/3.35  initialclauses(
% 2.96/3.35  [ clause( 25356, [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y
% 2.96/3.35     ) ] )
% 2.96/3.35  , clause( 25357, [ member( 'not_subclass_element'( X, Y ), X ), subclass( X
% 2.96/3.35    , Y ) ] )
% 2.96/3.35  , clause( 25358, [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), 
% 2.96/3.35    subclass( X, Y ) ] )
% 2.96/3.35  , clause( 25359, [ subclass( X, 'universal_class' ) ] )
% 2.96/3.35  , clause( 25360, [ ~( =( X, Y ) ), subclass( X, Y ) ] )
% 2.96/3.35  , clause( 25361, [ ~( =( X, Y ) ), subclass( Y, X ) ] )
% 2.96/3.35  , clause( 25362, [ ~( subclass( X, Y ) ), ~( subclass( Y, X ) ), =( X, Y )
% 2.96/3.35     ] )
% 2.96/3.35  , clause( 25363, [ ~( member( X, 'unordered_pair'( Y, Z ) ) ), =( X, Y ), 
% 2.96/3.35    =( X, Z ) ] )
% 2.96/3.35  , clause( 25364, [ ~( member( X, 'universal_class' ) ), member( X, 
% 2.96/3.35    'unordered_pair'( X, Y ) ) ] )
% 2.96/3.35  , clause( 25365, [ ~( member( X, 'universal_class' ) ), member( X, 
% 2.96/3.35    'unordered_pair'( Y, X ) ) ] )
% 2.96/3.35  , clause( 25366, [ member( 'unordered_pair'( X, Y ), 'universal_class' ) ]
% 2.96/3.35     )
% 2.96/3.35  , clause( 25367, [ =( 'unordered_pair'( X, X ), singleton( X ) ) ] )
% 2.96/3.35  , clause( 25368, [ =( 'unordered_pair'( singleton( X ), 'unordered_pair'( X
% 2.96/3.35    , singleton( Y ) ) ), 'ordered_pair'( X, Y ) ) ] )
% 2.96/3.35  , clause( 25369, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T
% 2.96/3.35     ) ) ), member( X, Z ) ] )
% 2.96/3.35  , clause( 25370, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T
% 2.96/3.35     ) ) ), member( Y, T ) ] )
% 2.96/3.35  , clause( 25371, [ ~( member( X, Y ) ), ~( member( Z, T ) ), member( 
% 2.96/3.35    'ordered_pair'( X, Z ), 'cross_product'( Y, T ) ) ] )
% 2.96/3.35  , clause( 25372, [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 
% 2.96/3.35    'ordered_pair'( first( X ), second( X ) ), X ) ] )
% 2.96/3.35  , clause( 25373, [ subclass( 'element_relation', 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25374, [ ~( member( 'ordered_pair'( X, Y ), 'element_relation' )
% 2.96/3.35     ), member( X, Y ) ] )
% 2.96/3.35  , clause( 25375, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ), ~( member( X, Y ) ), member( 
% 2.96/3.35    'ordered_pair'( X, Y ), 'element_relation' ) ] )
% 2.96/3.35  , clause( 25376, [ ~( member( X, intersection( Y, Z ) ) ), member( X, Y ) ]
% 2.96/3.35     )
% 2.96/3.35  , clause( 25377, [ ~( member( X, intersection( Y, Z ) ) ), member( X, Z ) ]
% 2.96/3.35     )
% 2.96/3.35  , clause( 25378, [ ~( member( X, Y ) ), ~( member( X, Z ) ), member( X, 
% 2.96/3.35    intersection( Y, Z ) ) ] )
% 2.96/3.35  , clause( 25379, [ ~( member( X, complement( Y ) ) ), ~( member( X, Y ) ) ]
% 2.96/3.35     )
% 2.96/3.35  , clause( 25380, [ ~( member( X, 'universal_class' ) ), member( X, 
% 2.96/3.35    complement( Y ) ), member( X, Y ) ] )
% 2.96/3.35  , clause( 25381, [ =( complement( intersection( complement( X ), complement( 
% 2.96/3.35    Y ) ) ), union( X, Y ) ) ] )
% 2.96/3.35  , clause( 25382, [ =( intersection( complement( intersection( X, Y ) ), 
% 2.96/3.35    complement( intersection( complement( X ), complement( Y ) ) ) ), 
% 2.96/3.35    'symmetric_difference'( X, Y ) ) ] )
% 2.96/3.35  , clause( 25383, [ =( intersection( X, 'cross_product'( Y, Z ) ), restrict( 
% 2.96/3.35    X, Y, Z ) ) ] )
% 2.96/3.35  , clause( 25384, [ =( intersection( 'cross_product'( X, Y ), Z ), restrict( 
% 2.96/3.35    Z, X, Y ) ) ] )
% 2.96/3.35  , clause( 25385, [ ~( =( restrict( X, singleton( Y ), 'universal_class' ), 
% 2.96/3.35    'null_class' ) ), ~( member( Y, 'domain_of'( X ) ) ) ] )
% 2.96/3.35  , clause( 25386, [ ~( member( X, 'universal_class' ) ), =( restrict( Y, 
% 2.96/3.35    singleton( X ), 'universal_class' ), 'null_class' ), member( X, 
% 2.96/3.35    'domain_of'( Y ) ) ] )
% 2.96/3.35  , clause( 25387, [ subclass( rotate( X ), 'cross_product'( 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ), 'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25388, [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), 
% 2.96/3.35    rotate( T ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, Z ), X ), T )
% 2.96/3.35     ] )
% 2.96/3.35  , clause( 25389, [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), 
% 2.96/3.35    T ) ), ~( member( 'ordered_pair'( 'ordered_pair'( Z, X ), Y ), 
% 2.96/3.35    'cross_product'( 'cross_product'( 'universal_class', 'universal_class' )
% 2.96/3.35    , 'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Z, X )
% 2.96/3.35    , Y ), rotate( T ) ) ] )
% 2.96/3.35  , clause( 25390, [ subclass( flip( X ), 'cross_product'( 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ), 'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25391, [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), 
% 2.96/3.35    flip( T ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), T ) ]
% 2.96/3.35     )
% 2.96/3.35  , clause( 25392, [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), 
% 2.96/3.35    T ) ), ~( member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), 
% 2.96/3.35    'cross_product'( 'cross_product'( 'universal_class', 'universal_class' )
% 2.96/3.35    , 'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, X )
% 2.96/3.35    , Z ), flip( T ) ) ] )
% 2.96/3.35  , clause( 25393, [ =( 'domain_of'( flip( 'cross_product'( X, 
% 2.96/3.35    'universal_class' ) ) ), inverse( X ) ) ] )
% 2.96/3.35  , clause( 25394, [ =( 'domain_of'( inverse( X ) ), 'range_of'( X ) ) ] )
% 2.96/3.35  , clause( 25395, [ =( first( 'not_subclass_element'( restrict( X, Y, 
% 2.96/3.35    singleton( Z ) ), 'null_class' ) ), domain( X, Y, Z ) ) ] )
% 2.96/3.35  , clause( 25396, [ =( second( 'not_subclass_element'( restrict( X, 
% 2.96/3.35    singleton( Y ), Z ), 'null_class' ) ), range( X, Y, Z ) ) ] )
% 2.96/3.35  , clause( 25397, [ =( 'range_of'( restrict( X, Y, 'universal_class' ) ), 
% 2.96/3.35    image( X, Y ) ) ] )
% 2.96/3.35  , clause( 25398, [ =( union( X, singleton( X ) ), successor( X ) ) ] )
% 2.96/3.35  , clause( 25399, [ subclass( 'successor_relation', 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25400, [ ~( member( 'ordered_pair'( X, Y ), 'successor_relation'
% 2.96/3.35     ) ), =( successor( X ), Y ) ] )
% 2.96/3.35  , clause( 25401, [ ~( =( successor( X ), Y ) ), ~( member( 'ordered_pair'( 
% 2.96/3.35    X, Y ), 'cross_product'( 'universal_class', 'universal_class' ) ) ), 
% 2.96/3.35    member( 'ordered_pair'( X, Y ), 'successor_relation' ) ] )
% 2.96/3.35  , clause( 25402, [ ~( inductive( X ) ), member( 'null_class', X ) ] )
% 2.96/3.35  , clause( 25403, [ ~( inductive( X ) ), subclass( image( 
% 2.96/3.35    'successor_relation', X ), X ) ] )
% 2.96/3.35  , clause( 25404, [ ~( member( 'null_class', X ) ), ~( subclass( image( 
% 2.96/3.35    'successor_relation', X ), X ) ), inductive( X ) ] )
% 2.96/3.35  , clause( 25405, [ inductive( omega ) ] )
% 2.96/3.35  , clause( 25406, [ ~( inductive( X ) ), subclass( omega, X ) ] )
% 2.96/3.35  , clause( 25407, [ member( omega, 'universal_class' ) ] )
% 2.96/3.35  , clause( 25408, [ =( 'domain_of'( restrict( 'element_relation', 
% 2.96/3.35    'universal_class', X ) ), 'sum_class'( X ) ) ] )
% 2.96/3.35  , clause( 25409, [ ~( member( X, 'universal_class' ) ), member( 'sum_class'( 
% 2.96/3.35    X ), 'universal_class' ) ] )
% 2.96/3.35  , clause( 25410, [ =( complement( image( 'element_relation', complement( X
% 2.96/3.35     ) ) ), 'power_class'( X ) ) ] )
% 2.96/3.35  , clause( 25411, [ ~( member( X, 'universal_class' ) ), member( 
% 2.96/3.35    'power_class'( X ), 'universal_class' ) ] )
% 2.96/3.35  , clause( 25412, [ subclass( compose( X, Y ), 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25413, [ ~( member( 'ordered_pair'( X, Y ), compose( Z, T ) ) ), 
% 2.96/3.35    member( Y, image( Z, image( T, singleton( X ) ) ) ) ] )
% 2.96/3.35  , clause( 25414, [ ~( member( X, image( Y, image( Z, singleton( T ) ) ) ) )
% 2.96/3.35    , ~( member( 'ordered_pair'( T, X ), 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ) ) ), member( 'ordered_pair'( T, X ), compose( Y, Z )
% 2.96/3.35     ) ] )
% 2.96/3.35  , clause( 25415, [ ~( 'single_valued_class'( X ) ), subclass( compose( X, 
% 2.96/3.35    inverse( X ) ), 'identity_relation' ) ] )
% 2.96/3.35  , clause( 25416, [ ~( subclass( compose( X, inverse( X ) ), 
% 2.96/3.35    'identity_relation' ) ), 'single_valued_class'( X ) ] )
% 2.96/3.35  , clause( 25417, [ ~( function( X ) ), subclass( X, 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25418, [ ~( function( X ) ), subclass( compose( X, inverse( X ) )
% 2.96/3.35    , 'identity_relation' ) ] )
% 2.96/3.35  , clause( 25419, [ ~( subclass( X, 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ) ) ), ~( subclass( compose( X, inverse( X ) ), 
% 2.96/3.35    'identity_relation' ) ), function( X ) ] )
% 2.96/3.35  , clause( 25420, [ ~( function( X ) ), ~( member( Y, 'universal_class' ) )
% 2.96/3.35    , member( image( X, Y ), 'universal_class' ) ] )
% 2.96/3.35  , clause( 25421, [ =( X, 'null_class' ), member( regular( X ), X ) ] )
% 2.96/3.35  , clause( 25422, [ =( X, 'null_class' ), =( intersection( X, regular( X ) )
% 2.96/3.35    , 'null_class' ) ] )
% 2.96/3.35  , clause( 25423, [ =( 'sum_class'( image( X, singleton( Y ) ) ), apply( X, 
% 2.96/3.35    Y ) ) ] )
% 2.96/3.35  , clause( 25424, [ function( choice ) ] )
% 2.96/3.35  , clause( 25425, [ ~( member( X, 'universal_class' ) ), =( X, 'null_class'
% 2.96/3.35     ), member( apply( choice, X ), X ) ] )
% 2.96/3.35  , clause( 25426, [ ~( 'one_to_one'( X ) ), function( X ) ] )
% 2.96/3.35  , clause( 25427, [ ~( 'one_to_one'( X ) ), function( inverse( X ) ) ] )
% 2.96/3.35  , clause( 25428, [ ~( function( inverse( X ) ) ), ~( function( X ) ), 
% 2.96/3.35    'one_to_one'( X ) ] )
% 2.96/3.35  , clause( 25429, [ =( intersection( 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ), intersection( 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ), complement( compose( complement( 'element_relation'
% 2.96/3.35     ), inverse( 'element_relation' ) ) ) ) ), 'subset_relation' ) ] )
% 2.96/3.35  , clause( 25430, [ =( intersection( inverse( 'subset_relation' ), 
% 2.96/3.35    'subset_relation' ), 'identity_relation' ) ] )
% 2.96/3.35  , clause( 25431, [ =( complement( 'domain_of'( intersection( X, 
% 2.96/3.35    'identity_relation' ) ) ), diagonalise( X ) ) ] )
% 2.96/3.35  , clause( 25432, [ =( intersection( 'domain_of'( X ), diagonalise( compose( 
% 2.96/3.35    inverse( 'element_relation' ), X ) ) ), cantor( X ) ) ] )
% 2.96/3.35  , clause( 25433, [ ~( operation( X ) ), function( X ) ] )
% 2.96/3.35  , clause( 25434, [ ~( operation( X ) ), =( 'cross_product'( 'domain_of'( 
% 2.96/3.35    'domain_of'( X ) ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) )
% 2.96/3.35     ] )
% 2.96/3.35  , clause( 25435, [ ~( operation( X ) ), subclass( 'range_of'( X ), 
% 2.96/3.35    'domain_of'( 'domain_of'( X ) ) ) ] )
% 2.96/3.35  , clause( 25436, [ ~( function( X ) ), ~( =( 'cross_product'( 'domain_of'( 
% 2.96/3.35    'domain_of'( X ) ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) )
% 2.96/3.35     ), ~( subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( X ) ) ) ), 
% 2.96/3.35    operation( X ) ] )
% 2.96/3.35  , clause( 25437, [ ~( compatible( X, Y, Z ) ), function( X ) ] )
% 2.96/3.35  , clause( 25438, [ ~( compatible( X, Y, Z ) ), =( 'domain_of'( 'domain_of'( 
% 2.96/3.35    Y ) ), 'domain_of'( X ) ) ] )
% 2.96/3.35  , clause( 25439, [ ~( compatible( X, Y, Z ) ), subclass( 'range_of'( X ), 
% 2.96/3.35    'domain_of'( 'domain_of'( Z ) ) ) ] )
% 2.96/3.35  , clause( 25440, [ ~( function( X ) ), ~( =( 'domain_of'( 'domain_of'( Y )
% 2.96/3.35     ), 'domain_of'( X ) ) ), ~( subclass( 'range_of'( X ), 'domain_of'( 
% 2.96/3.35    'domain_of'( Z ) ) ) ), compatible( X, Y, Z ) ] )
% 2.96/3.35  , clause( 25441, [ ~( homomorphism( X, Y, Z ) ), operation( Y ) ] )
% 2.96/3.35  , clause( 25442, [ ~( homomorphism( X, Y, Z ) ), operation( Z ) ] )
% 2.96/3.35  , clause( 25443, [ ~( homomorphism( X, Y, Z ) ), compatible( X, Y, Z ) ] )
% 2.96/3.35  , clause( 25444, [ ~( homomorphism( X, Y, Z ) ), ~( member( 'ordered_pair'( 
% 2.96/3.35    T, U ), 'domain_of'( Y ) ) ), =( apply( Z, 'ordered_pair'( apply( X, T )
% 2.96/3.35    , apply( X, U ) ) ), apply( X, apply( Y, 'ordered_pair'( T, U ) ) ) ) ]
% 2.96/3.35     )
% 2.96/3.35  , clause( 25445, [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( 
% 2.96/3.35    Z, X, Y ) ), member( 'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 
% 2.96/3.35    'not_homomorphism2'( Z, X, Y ) ), 'domain_of'( X ) ), homomorphism( Z, X
% 2.96/3.35    , Y ) ] )
% 2.96/3.35  , clause( 25446, [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( 
% 2.96/3.35    Z, X, Y ) ), ~( =( apply( Y, 'ordered_pair'( apply( Z, 
% 2.96/3.35    'not_homomorphism1'( Z, X, Y ) ), apply( Z, 'not_homomorphism2'( Z, X, Y
% 2.96/3.35     ) ) ) ), apply( Z, apply( X, 'ordered_pair'( 'not_homomorphism1'( Z, X, 
% 2.96/3.35    Y ), 'not_homomorphism2'( Z, X, Y ) ) ) ) ) ), homomorphism( Z, X, Y ) ]
% 2.96/3.35     )
% 2.96/3.35  , clause( 25447, [ subclass( 'compose_class'( X ), 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25448, [ ~( member( 'ordered_pair'( X, Y ), 'compose_class'( Z )
% 2.96/3.35     ) ), =( compose( Z, X ), Y ) ] )
% 2.96/3.35  , clause( 25449, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ), ~( =( compose( Z, X ), Y ) )
% 2.96/3.35    , member( 'ordered_pair'( X, Y ), 'compose_class'( Z ) ) ] )
% 2.96/3.35  , clause( 25450, [ subclass( 'composition_function', 'cross_product'( 
% 2.96/3.35    'universal_class', 'cross_product'( 'universal_class', 'universal_class'
% 2.96/3.35     ) ) ) ] )
% 2.96/3.35  , clause( 25451, [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 2.96/3.35    'composition_function' ) ), =( compose( X, Y ), Z ) ] )
% 2.96/3.35  , clause( 25452, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ), member( 'ordered_pair'( X, 
% 2.96/3.35    'ordered_pair'( Y, compose( X, Y ) ) ), 'composition_function' ) ] )
% 2.96/3.35  , clause( 25453, [ subclass( 'domain_relation', 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25454, [ ~( member( 'ordered_pair'( X, Y ), 'domain_relation' ) )
% 2.96/3.35    , =( 'domain_of'( X ), Y ) ] )
% 2.96/3.35  , clause( 25455, [ ~( member( X, 'universal_class' ) ), member( 
% 2.96/3.35    'ordered_pair'( X, 'domain_of'( X ) ), 'domain_relation' ) ] )
% 2.96/3.35  , clause( 25456, [ =( first( 'not_subclass_element'( compose( X, inverse( X
% 2.96/3.35     ) ), 'identity_relation' ) ), 'single_valued1'( X ) ) ] )
% 2.96/3.35  , clause( 25457, [ =( second( 'not_subclass_element'( compose( X, inverse( 
% 2.96/3.35    X ) ), 'identity_relation' ) ), 'single_valued2'( X ) ) ] )
% 2.96/3.35  , clause( 25458, [ =( domain( X, image( inverse( X ), singleton( 
% 2.96/3.35    'single_valued1'( X ) ) ), 'single_valued2'( X ) ), 'single_valued3'( X )
% 2.96/3.35     ) ] )
% 2.96/3.35  , clause( 25459, [ =( intersection( complement( compose( 'element_relation'
% 2.96/3.35    , complement( 'identity_relation' ) ) ), 'element_relation' ), 
% 2.96/3.35    'singleton_relation' ) ] )
% 2.96/3.35  , clause( 25460, [ subclass( 'application_function', 'cross_product'( 
% 2.96/3.35    'universal_class', 'cross_product'( 'universal_class', 'universal_class'
% 2.96/3.35     ) ) ) ] )
% 2.96/3.35  , clause( 25461, [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 2.96/3.35    'application_function' ) ), member( Y, 'domain_of'( X ) ) ] )
% 2.96/3.35  , clause( 25462, [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 2.96/3.35    'application_function' ) ), =( apply( X, Y ), Z ) ] )
% 2.96/3.35  , clause( 25463, [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 2.96/3.35    'cross_product'( 'universal_class', 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ) ) ) ), ~( member( Y, 'domain_of'( X ) ) ), member( 
% 2.96/3.35    'ordered_pair'( X, 'ordered_pair'( Y, apply( X, Y ) ) ), 
% 2.96/3.35    'application_function' ) ] )
% 2.96/3.35  , clause( 25464, [ ~( maps( X, Y, Z ) ), function( X ) ] )
% 2.96/3.35  , clause( 25465, [ ~( maps( X, Y, Z ) ), =( 'domain_of'( X ), Y ) ] )
% 2.96/3.35  , clause( 25466, [ ~( maps( X, Y, Z ) ), subclass( 'range_of'( X ), Z ) ]
% 2.96/3.35     )
% 2.96/3.35  , clause( 25467, [ ~( function( X ) ), ~( subclass( 'range_of'( X ), Y ) )
% 2.96/3.35    , maps( X, 'domain_of'( X ), Y ) ] )
% 2.96/3.35  , clause( 25468, [ subclass( x, 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25469, [ ~( member( 'ordered_pair'( first( 'not_subclass_element'( 
% 2.96/3.35    x, y ) ), second( 'not_subclass_element'( x, y ) ) ), x ) ) ] )
% 2.96/3.35  , clause( 25470, [ ~( subclass( x, y ) ) ] )
% 2.96/3.35  ] ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 0, [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y ) ]
% 2.96/3.35     )
% 2.96/3.35  , clause( 25356, [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y
% 2.96/3.35     ) ] )
% 2.96/3.35  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 2.96/3.35    permutation( 0, [ ==>( 0, 0 ), ==>( 1, 1 ), ==>( 2, 2 )] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 1, [ member( 'not_subclass_element'( X, Y ), X ), subclass( X, Y )
% 2.96/3.35     ] )
% 2.96/3.35  , clause( 25357, [ member( 'not_subclass_element'( X, Y ), X ), subclass( X
% 2.96/3.35    , Y ) ] )
% 2.96/3.35  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 2.96/3.35     ), ==>( 1, 1 )] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 15, [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 'ordered_pair'( 
% 2.96/3.35    first( X ), second( X ) ), X ) ] )
% 2.96/3.35  , clause( 25372, [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 
% 2.96/3.35    'ordered_pair'( first( X ), second( X ) ), X ) ] )
% 2.96/3.35  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 2.96/3.35    permutation( 0, [ ==>( 0, 0 ), ==>( 1, 1 )] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 111, [ subclass( x, 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ) ) ] )
% 2.96/3.35  , clause( 25468, [ subclass( x, 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ) ) ] )
% 2.96/3.35  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 112, [ ~( member( 'ordered_pair'( first( 'not_subclass_element'( x
% 2.96/3.35    , y ) ), second( 'not_subclass_element'( x, y ) ) ), x ) ) ] )
% 2.96/3.35  , clause( 25469, [ ~( member( 'ordered_pair'( first( 'not_subclass_element'( 
% 2.96/3.35    x, y ) ), second( 'not_subclass_element'( x, y ) ) ), x ) ) ] )
% 2.96/3.35  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 113, [ ~( subclass( x, y ) ) ] )
% 2.96/3.35  , clause( 25470, [ ~( subclass( x, y ) ) ] )
% 2.96/3.35  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  resolution(
% 2.96/3.35  clause( 25663, [ member( 'not_subclass_element'( x, y ), x ) ] )
% 2.96/3.35  , clause( 113, [ ~( subclass( x, y ) ) ] )
% 2.96/3.35  , 0, clause( 1, [ member( 'not_subclass_element'( X, Y ), X ), subclass( X
% 2.96/3.35    , Y ) ] )
% 2.96/3.35  , 1, substitution( 0, [] ), substitution( 1, [ :=( X, x ), :=( Y, y )] )
% 2.96/3.35    ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 133, [ member( 'not_subclass_element'( x, y ), x ) ] )
% 2.96/3.35  , clause( 25663, [ member( 'not_subclass_element'( x, y ), x ) ] )
% 2.96/3.35  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  resolution(
% 2.96/3.35  clause( 25664, [ ~( subclass( x, X ) ), member( 'not_subclass_element'( x, 
% 2.96/3.35    y ), X ) ] )
% 2.96/3.35  , clause( 0, [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y ) ]
% 2.96/3.35     )
% 2.96/3.35  , 1, clause( 133, [ member( 'not_subclass_element'( x, y ), x ) ] )
% 2.96/3.35  , 0, substitution( 0, [ :=( X, x ), :=( Y, X ), :=( Z, 
% 2.96/3.35    'not_subclass_element'( x, y ) )] ), substitution( 1, [] )).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 138, [ ~( subclass( x, X ) ), member( 'not_subclass_element'( x, y
% 2.96/3.35     ), X ) ] )
% 2.96/3.35  , clause( 25664, [ ~( subclass( x, X ) ), member( 'not_subclass_element'( x
% 2.96/3.35    , y ), X ) ] )
% 2.96/3.35  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 ), ==>( 1, 
% 2.96/3.35    1 )] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  paramod(
% 2.96/3.35  clause( 25666, [ ~( member( 'not_subclass_element'( x, y ), x ) ), ~( 
% 2.96/3.35    member( 'not_subclass_element'( x, y ), 'cross_product'( X, Y ) ) ) ] )
% 2.96/3.35  , clause( 15, [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 
% 2.96/3.35    'ordered_pair'( first( X ), second( X ) ), X ) ] )
% 2.96/3.35  , 1, clause( 112, [ ~( member( 'ordered_pair'( first( 
% 2.96/3.35    'not_subclass_element'( x, y ) ), second( 'not_subclass_element'( x, y )
% 2.96/3.35     ) ), x ) ) ] )
% 2.96/3.35  , 0, 2, substitution( 0, [ :=( X, 'not_subclass_element'( x, y ) ), :=( Y, 
% 2.96/3.35    X ), :=( Z, Y )] ), substitution( 1, [] )).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  resolution(
% 2.96/3.35  clause( 25667, [ ~( member( 'not_subclass_element'( x, y ), 'cross_product'( 
% 2.96/3.35    X, Y ) ) ) ] )
% 2.96/3.35  , clause( 25666, [ ~( member( 'not_subclass_element'( x, y ), x ) ), ~( 
% 2.96/3.35    member( 'not_subclass_element'( x, y ), 'cross_product'( X, Y ) ) ) ] )
% 2.96/3.35  , 0, clause( 133, [ member( 'not_subclass_element'( x, y ), x ) ] )
% 2.96/3.35  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y )] ), substitution( 1, [] )
% 2.96/3.35    ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 16780, [ ~( member( 'not_subclass_element'( x, y ), 'cross_product'( 
% 2.96/3.35    X, Y ) ) ) ] )
% 2.96/3.35  , clause( 25667, [ ~( member( 'not_subclass_element'( x, y ), 
% 2.96/3.35    'cross_product'( X, Y ) ) ) ] )
% 2.96/3.35  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0
% 2.96/3.35     )] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  resolution(
% 2.96/3.35  clause( 25668, [ member( 'not_subclass_element'( x, y ), 'cross_product'( 
% 2.96/3.35    'universal_class', 'universal_class' ) ) ] )
% 2.96/3.35  , clause( 138, [ ~( subclass( x, X ) ), member( 'not_subclass_element'( x, 
% 2.96/3.35    y ), X ) ] )
% 2.96/3.35  , 0, clause( 111, [ subclass( x, 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ) ) ] )
% 2.96/3.35  , 0, substitution( 0, [ :=( X, 'cross_product'( 'universal_class', 
% 2.96/3.35    'universal_class' ) )] ), substitution( 1, [] )).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  resolution(
% 2.96/3.35  clause( 25669, [] )
% 2.96/3.35  , clause( 16780, [ ~( member( 'not_subclass_element'( x, y ), 
% 2.96/3.35    'cross_product'( X, Y ) ) ) ] )
% 2.96/3.35  , 0, clause( 25668, [ member( 'not_subclass_element'( x, y ), 
% 2.96/3.35    'cross_product'( 'universal_class', 'universal_class' ) ) ] )
% 2.96/3.35  , 0, substitution( 0, [ :=( X, 'universal_class' ), :=( Y, 
% 2.96/3.35    'universal_class' )] ), substitution( 1, [] )).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  subsumption(
% 2.96/3.35  clause( 25354, [] )
% 2.96/3.35  , clause( 25669, [] )
% 2.96/3.35  , substitution( 0, [] ), permutation( 0, [] ) ).
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  end.
% 2.96/3.35  
% 2.96/3.35  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 2.96/3.35  
% 2.96/3.35  Memory use:
% 2.96/3.35  
% 2.96/3.35  space for terms:        380544
% 2.96/3.35  space for clauses:      1180303
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  clauses generated:      55156
% 2.96/3.35  clauses kept:           25355
% 2.96/3.35  clauses selected:       551
% 2.96/3.35  clauses deleted:        3165
% 2.96/3.35  clauses inuse deleted:  72
% 2.96/3.35  
% 2.96/3.35  subsentry:          176620
% 2.96/3.35  literals s-matched: 130073
% 2.96/3.35  literals matched:   127883
% 2.96/3.35  full subsumption:   55837
% 2.96/3.35  
% 2.96/3.35  checksum:           -1469016966
% 2.96/3.35  
% 2.96/3.35  
% 2.96/3.35  Bliksem ended
%------------------------------------------------------------------------------