TSTP Solution File: SET204-6 by iProverMo---2.5-0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProverMo---2.5-0.1
% Problem  : SET204-6 : TPTP v8.1.0. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : iprover_modulo %s %d

% Computer : n021.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 02:11:39 EDT 2022

% Result   : Unsatisfiable 2.18s 2.44s
% Output   : CNFRefutation 2.18s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named input)

% Comments : 
%------------------------------------------------------------------------------
% Axioms transformation by autotheo
% Orienting (remaining) axiom formulas using strategy Equiv(ClausalAll)
% Orienting axioms whose shape is orientable
cnf(application_function_defn1,axiom,
    subclass(application_function,cross_product(universal_class,cross_product(universal_class,universal_class))),
    input ).

fof(application_function_defn1_0,plain,
    ( subclass(application_function,cross_product(universal_class,cross_product(universal_class,universal_class)))
    | $false ),
    inference(orientation,[status(thm)],[application_function_defn1]) ).

cnf(compose_can_define_singleton,axiom,
    intersection(complement(compose(element_relation,complement(identity_relation))),element_relation) = singleton_relation,
    input ).

fof(compose_can_define_singleton_0,plain,
    ( intersection(complement(compose(element_relation,complement(identity_relation))),element_relation) = singleton_relation
    | $false ),
    inference(orientation,[status(thm)],[compose_can_define_singleton]) ).

cnf(single_valued_term_defn3,axiom,
    domain(X,image(inverse(X),singleton(single_valued1(X))),single_valued2(X)) = single_valued3(X),
    input ).

fof(single_valued_term_defn3_0,plain,
    ! [X] :
      ( domain(X,image(inverse(X),singleton(single_valued1(X))),single_valued2(X)) = single_valued3(X)
      | $false ),
    inference(orientation,[status(thm)],[single_valued_term_defn3]) ).

cnf(single_valued_term_defn2,axiom,
    second(not_subclass_element(compose(X,inverse(X)),identity_relation)) = single_valued2(X),
    input ).

fof(single_valued_term_defn2_0,plain,
    ! [X] :
      ( second(not_subclass_element(compose(X,inverse(X)),identity_relation)) = single_valued2(X)
      | $false ),
    inference(orientation,[status(thm)],[single_valued_term_defn2]) ).

cnf(single_valued_term_defn1,axiom,
    first(not_subclass_element(compose(X,inverse(X)),identity_relation)) = single_valued1(X),
    input ).

fof(single_valued_term_defn1_0,plain,
    ! [X] :
      ( first(not_subclass_element(compose(X,inverse(X)),identity_relation)) = single_valued1(X)
      | $false ),
    inference(orientation,[status(thm)],[single_valued_term_defn1]) ).

cnf(definition_of_domain_relation1,axiom,
    subclass(domain_relation,cross_product(universal_class,universal_class)),
    input ).

fof(definition_of_domain_relation1_0,plain,
    ( subclass(domain_relation,cross_product(universal_class,universal_class))
    | $false ),
    inference(orientation,[status(thm)],[definition_of_domain_relation1]) ).

cnf(definition_of_composition_function1,axiom,
    subclass(composition_function,cross_product(universal_class,cross_product(universal_class,universal_class))),
    input ).

fof(definition_of_composition_function1_0,plain,
    ( subclass(composition_function,cross_product(universal_class,cross_product(universal_class,universal_class)))
    | $false ),
    inference(orientation,[status(thm)],[definition_of_composition_function1]) ).

cnf(compose_class_definition1,axiom,
    subclass(compose_class(X),cross_product(universal_class,universal_class)),
    input ).

fof(compose_class_definition1_0,plain,
    ! [X] :
      ( subclass(compose_class(X),cross_product(universal_class,universal_class))
      | $false ),
    inference(orientation,[status(thm)],[compose_class_definition1]) ).

cnf(cantor_class,axiom,
    intersection(domain_of(X),diagonalise(compose(inverse(element_relation),X))) = cantor(X),
    input ).

fof(cantor_class_0,plain,
    ! [X] :
      ( intersection(domain_of(X),diagonalise(compose(inverse(element_relation),X))) = cantor(X)
      | $false ),
    inference(orientation,[status(thm)],[cantor_class]) ).

cnf(diagonalisation,axiom,
    complement(domain_of(intersection(Xr,identity_relation))) = diagonalise(Xr),
    input ).

fof(diagonalisation_0,plain,
    ! [Xr] :
      ( complement(domain_of(intersection(Xr,identity_relation))) = diagonalise(Xr)
      | $false ),
    inference(orientation,[status(thm)],[diagonalisation]) ).

cnf(identity_relation,axiom,
    intersection(inverse(subset_relation),subset_relation) = identity_relation,
    input ).

fof(identity_relation_0,plain,
    ( intersection(inverse(subset_relation),subset_relation) = identity_relation
    | $false ),
    inference(orientation,[status(thm)],[identity_relation]) ).

cnf(subset_relation,axiom,
    intersection(cross_product(universal_class,universal_class),intersection(cross_product(universal_class,universal_class),complement(compose(complement(element_relation),inverse(element_relation))))) = subset_relation,
    input ).

fof(subset_relation_0,plain,
    ( intersection(cross_product(universal_class,universal_class),intersection(cross_product(universal_class,universal_class),complement(compose(complement(element_relation),inverse(element_relation))))) = subset_relation
    | $false ),
    inference(orientation,[status(thm)],[subset_relation]) ).

cnf(choice1,axiom,
    function(choice),
    input ).

fof(choice1_0,plain,
    ( function(choice)
    | $false ),
    inference(orientation,[status(thm)],[choice1]) ).

cnf(apply,axiom,
    sum_class(image(Xf,singleton(Y))) = apply(Xf,Y),
    input ).

fof(apply_0,plain,
    ! [Xf,Y] :
      ( sum_class(image(Xf,singleton(Y))) = apply(Xf,Y)
      | $false ),
    inference(orientation,[status(thm)],[apply]) ).

cnf(compose1,axiom,
    subclass(compose(Yr,Xr),cross_product(universal_class,universal_class)),
    input ).

fof(compose1_0,plain,
    ! [Xr,Yr] :
      ( subclass(compose(Yr,Xr),cross_product(universal_class,universal_class))
      | $false ),
    inference(orientation,[status(thm)],[compose1]) ).

cnf(power_class_definition,axiom,
    complement(image(element_relation,complement(X))) = power_class(X),
    input ).

fof(power_class_definition_0,plain,
    ! [X] :
      ( complement(image(element_relation,complement(X))) = power_class(X)
      | $false ),
    inference(orientation,[status(thm)],[power_class_definition]) ).

cnf(sum_class_definition,axiom,
    domain_of(restrict(element_relation,universal_class,X)) = sum_class(X),
    input ).

fof(sum_class_definition_0,plain,
    ! [X] :
      ( domain_of(restrict(element_relation,universal_class,X)) = sum_class(X)
      | $false ),
    inference(orientation,[status(thm)],[sum_class_definition]) ).

cnf(omega_in_universal,axiom,
    member(omega,universal_class),
    input ).

fof(omega_in_universal_0,plain,
    ( member(omega,universal_class)
    | $false ),
    inference(orientation,[status(thm)],[omega_in_universal]) ).

cnf(omega_is_inductive1,axiom,
    inductive(omega),
    input ).

fof(omega_is_inductive1_0,plain,
    ( inductive(omega)
    | $false ),
    inference(orientation,[status(thm)],[omega_is_inductive1]) ).

cnf(successor_relation1,axiom,
    subclass(successor_relation,cross_product(universal_class,universal_class)),
    input ).

fof(successor_relation1_0,plain,
    ( subclass(successor_relation,cross_product(universal_class,universal_class))
    | $false ),
    inference(orientation,[status(thm)],[successor_relation1]) ).

cnf(successor,axiom,
    union(X,singleton(X)) = successor(X),
    input ).

fof(successor_0,plain,
    ! [X] :
      ( union(X,singleton(X)) = successor(X)
      | $false ),
    inference(orientation,[status(thm)],[successor]) ).

cnf(image,axiom,
    range_of(restrict(Xr,X,universal_class)) = image(Xr,X),
    input ).

fof(image_0,plain,
    ! [X,Xr] :
      ( range_of(restrict(Xr,X,universal_class)) = image(Xr,X)
      | $false ),
    inference(orientation,[status(thm)],[image]) ).

cnf(range,axiom,
    second(not_subclass_element(restrict(Z,singleton(X),Y),null_class)) = range(Z,X,Y),
    input ).

fof(range_0,plain,
    ! [X,Y,Z] :
      ( second(not_subclass_element(restrict(Z,singleton(X),Y),null_class)) = range(Z,X,Y)
      | $false ),
    inference(orientation,[status(thm)],[range]) ).

cnf(domain,axiom,
    first(not_subclass_element(restrict(Z,X,singleton(Y)),null_class)) = domain(Z,X,Y),
    input ).

fof(domain_0,plain,
    ! [X,Y,Z] :
      ( first(not_subclass_element(restrict(Z,X,singleton(Y)),null_class)) = domain(Z,X,Y)
      | $false ),
    inference(orientation,[status(thm)],[domain]) ).

cnf(range_of,axiom,
    domain_of(inverse(Z)) = range_of(Z),
    input ).

fof(range_of_0,plain,
    ! [Z] :
      ( domain_of(inverse(Z)) = range_of(Z)
      | $false ),
    inference(orientation,[status(thm)],[range_of]) ).

cnf(inverse,axiom,
    domain_of(flip(cross_product(Y,universal_class))) = inverse(Y),
    input ).

fof(inverse_0,plain,
    ! [Y] :
      ( domain_of(flip(cross_product(Y,universal_class))) = inverse(Y)
      | $false ),
    inference(orientation,[status(thm)],[inverse]) ).

cnf(flip1,axiom,
    subclass(flip(X),cross_product(cross_product(universal_class,universal_class),universal_class)),
    input ).

fof(flip1_0,plain,
    ! [X] :
      ( subclass(flip(X),cross_product(cross_product(universal_class,universal_class),universal_class))
      | $false ),
    inference(orientation,[status(thm)],[flip1]) ).

cnf(rotate1,axiom,
    subclass(rotate(X),cross_product(cross_product(universal_class,universal_class),universal_class)),
    input ).

fof(rotate1_0,plain,
    ! [X] :
      ( subclass(rotate(X),cross_product(cross_product(universal_class,universal_class),universal_class))
      | $false ),
    inference(orientation,[status(thm)],[rotate1]) ).

cnf(restriction2,axiom,
    intersection(cross_product(X,Y),Xr) = restrict(Xr,X,Y),
    input ).

fof(restriction2_0,plain,
    ! [X,Xr,Y] :
      ( intersection(cross_product(X,Y),Xr) = restrict(Xr,X,Y)
      | $false ),
    inference(orientation,[status(thm)],[restriction2]) ).

cnf(restriction1,axiom,
    intersection(Xr,cross_product(X,Y)) = restrict(Xr,X,Y),
    input ).

fof(restriction1_0,plain,
    ! [X,Xr,Y] :
      ( intersection(Xr,cross_product(X,Y)) = restrict(Xr,X,Y)
      | $false ),
    inference(orientation,[status(thm)],[restriction1]) ).

cnf(symmetric_difference,axiom,
    intersection(complement(intersection(X,Y)),complement(intersection(complement(X),complement(Y)))) = symmetric_difference(X,Y),
    input ).

fof(symmetric_difference_0,plain,
    ! [X,Y] :
      ( intersection(complement(intersection(X,Y)),complement(intersection(complement(X),complement(Y)))) = symmetric_difference(X,Y)
      | $false ),
    inference(orientation,[status(thm)],[symmetric_difference]) ).

cnf(union,axiom,
    complement(intersection(complement(X),complement(Y))) = union(X,Y),
    input ).

fof(union_0,plain,
    ! [X,Y] :
      ( complement(intersection(complement(X),complement(Y))) = union(X,Y)
      | $false ),
    inference(orientation,[status(thm)],[union]) ).

cnf(element_relation1,axiom,
    subclass(element_relation,cross_product(universal_class,universal_class)),
    input ).

fof(element_relation1_0,plain,
    ( subclass(element_relation,cross_product(universal_class,universal_class))
    | $false ),
    inference(orientation,[status(thm)],[element_relation1]) ).

cnf(ordered_pair,axiom,
    unordered_pair(singleton(X),unordered_pair(X,singleton(Y))) = ordered_pair(X,Y),
    input ).

fof(ordered_pair_0,plain,
    ! [X,Y] :
      ( unordered_pair(singleton(X),unordered_pair(X,singleton(Y))) = ordered_pair(X,Y)
      | $false ),
    inference(orientation,[status(thm)],[ordered_pair]) ).

cnf(singleton_set,axiom,
    unordered_pair(X,X) = singleton(X),
    input ).

fof(singleton_set_0,plain,
    ! [X] :
      ( unordered_pair(X,X) = singleton(X)
      | $false ),
    inference(orientation,[status(thm)],[singleton_set]) ).

cnf(unordered_pairs_in_universal,axiom,
    member(unordered_pair(X,Y),universal_class),
    input ).

fof(unordered_pairs_in_universal_0,plain,
    ! [X,Y] :
      ( member(unordered_pair(X,Y),universal_class)
      | $false ),
    inference(orientation,[status(thm)],[unordered_pairs_in_universal]) ).

cnf(class_elements_are_sets,axiom,
    subclass(X,universal_class),
    input ).

fof(class_elements_are_sets_0,plain,
    ! [X] :
      ( subclass(X,universal_class)
      | $false ),
    inference(orientation,[status(thm)],[class_elements_are_sets]) ).

fof(def_lhs_atom1,axiom,
    ! [X] :
      ( lhs_atom1(X)
    <=> subclass(X,universal_class) ),
    inference(definition,[],]) ).

fof(to_be_clausified_0,plain,
    ! [X] :
      ( lhs_atom1(X)
      | $false ),
    inference(fold_definition,[status(thm)],[class_elements_are_sets_0,def_lhs_atom1]) ).

fof(def_lhs_atom2,axiom,
    ! [Y,X] :
      ( lhs_atom2(Y,X)
    <=> member(unordered_pair(X,Y),universal_class) ),
    inference(definition,[],]) ).

fof(to_be_clausified_1,plain,
    ! [X,Y] :
      ( lhs_atom2(Y,X)
      | $false ),
    inference(fold_definition,[status(thm)],[unordered_pairs_in_universal_0,def_lhs_atom2]) ).

fof(def_lhs_atom3,axiom,
    ! [X] :
      ( lhs_atom3(X)
    <=> unordered_pair(X,X) = singleton(X) ),
    inference(definition,[],]) ).

fof(to_be_clausified_2,plain,
    ! [X] :
      ( lhs_atom3(X)
      | $false ),
    inference(fold_definition,[status(thm)],[singleton_set_0,def_lhs_atom3]) ).

fof(def_lhs_atom4,axiom,
    ! [Y,X] :
      ( lhs_atom4(Y,X)
    <=> unordered_pair(singleton(X),unordered_pair(X,singleton(Y))) = ordered_pair(X,Y) ),
    inference(definition,[],]) ).

fof(to_be_clausified_3,plain,
    ! [X,Y] :
      ( lhs_atom4(Y,X)
      | $false ),
    inference(fold_definition,[status(thm)],[ordered_pair_0,def_lhs_atom4]) ).

fof(def_lhs_atom5,axiom,
    ( lhs_atom5
  <=> subclass(element_relation,cross_product(universal_class,universal_class)) ),
    inference(definition,[],]) ).

fof(to_be_clausified_4,plain,
    ( lhs_atom5
    | $false ),
    inference(fold_definition,[status(thm)],[element_relation1_0,def_lhs_atom5]) ).

fof(def_lhs_atom6,axiom,
    ! [Y,X] :
      ( lhs_atom6(Y,X)
    <=> complement(intersection(complement(X),complement(Y))) = union(X,Y) ),
    inference(definition,[],]) ).

fof(to_be_clausified_5,plain,
    ! [X,Y] :
      ( lhs_atom6(Y,X)
      | $false ),
    inference(fold_definition,[status(thm)],[union_0,def_lhs_atom6]) ).

fof(def_lhs_atom7,axiom,
    ! [Y,X] :
      ( lhs_atom7(Y,X)
    <=> intersection(complement(intersection(X,Y)),complement(intersection(complement(X),complement(Y)))) = symmetric_difference(X,Y) ),
    inference(definition,[],]) ).

fof(to_be_clausified_6,plain,
    ! [X,Y] :
      ( lhs_atom7(Y,X)
      | $false ),
    inference(fold_definition,[status(thm)],[symmetric_difference_0,def_lhs_atom7]) ).

fof(def_lhs_atom8,axiom,
    ! [Y,Xr,X] :
      ( lhs_atom8(Y,Xr,X)
    <=> intersection(Xr,cross_product(X,Y)) = restrict(Xr,X,Y) ),
    inference(definition,[],]) ).

fof(to_be_clausified_7,plain,
    ! [X,Xr,Y] :
      ( lhs_atom8(Y,Xr,X)
      | $false ),
    inference(fold_definition,[status(thm)],[restriction1_0,def_lhs_atom8]) ).

fof(def_lhs_atom9,axiom,
    ! [Y,Xr,X] :
      ( lhs_atom9(Y,Xr,X)
    <=> intersection(cross_product(X,Y),Xr) = restrict(Xr,X,Y) ),
    inference(definition,[],]) ).

fof(to_be_clausified_8,plain,
    ! [X,Xr,Y] :
      ( lhs_atom9(Y,Xr,X)
      | $false ),
    inference(fold_definition,[status(thm)],[restriction2_0,def_lhs_atom9]) ).

fof(def_lhs_atom10,axiom,
    ! [X] :
      ( lhs_atom10(X)
    <=> subclass(rotate(X),cross_product(cross_product(universal_class,universal_class),universal_class)) ),
    inference(definition,[],]) ).

fof(to_be_clausified_9,plain,
    ! [X] :
      ( lhs_atom10(X)
      | $false ),
    inference(fold_definition,[status(thm)],[rotate1_0,def_lhs_atom10]) ).

fof(def_lhs_atom11,axiom,
    ! [X] :
      ( lhs_atom11(X)
    <=> subclass(flip(X),cross_product(cross_product(universal_class,universal_class),universal_class)) ),
    inference(definition,[],]) ).

fof(to_be_clausified_10,plain,
    ! [X] :
      ( lhs_atom11(X)
      | $false ),
    inference(fold_definition,[status(thm)],[flip1_0,def_lhs_atom11]) ).

fof(def_lhs_atom12,axiom,
    ! [Y] :
      ( lhs_atom12(Y)
    <=> domain_of(flip(cross_product(Y,universal_class))) = inverse(Y) ),
    inference(definition,[],]) ).

fof(to_be_clausified_11,plain,
    ! [Y] :
      ( lhs_atom12(Y)
      | $false ),
    inference(fold_definition,[status(thm)],[inverse_0,def_lhs_atom12]) ).

fof(def_lhs_atom13,axiom,
    ! [Z] :
      ( lhs_atom13(Z)
    <=> domain_of(inverse(Z)) = range_of(Z) ),
    inference(definition,[],]) ).

fof(to_be_clausified_12,plain,
    ! [Z] :
      ( lhs_atom13(Z)
      | $false ),
    inference(fold_definition,[status(thm)],[range_of_0,def_lhs_atom13]) ).

fof(def_lhs_atom14,axiom,
    ! [Z,Y,X] :
      ( lhs_atom14(Z,Y,X)
    <=> first(not_subclass_element(restrict(Z,X,singleton(Y)),null_class)) = domain(Z,X,Y) ),
    inference(definition,[],]) ).

fof(to_be_clausified_13,plain,
    ! [X,Y,Z] :
      ( lhs_atom14(Z,Y,X)
      | $false ),
    inference(fold_definition,[status(thm)],[domain_0,def_lhs_atom14]) ).

fof(def_lhs_atom15,axiom,
    ! [Z,Y,X] :
      ( lhs_atom15(Z,Y,X)
    <=> second(not_subclass_element(restrict(Z,singleton(X),Y),null_class)) = range(Z,X,Y) ),
    inference(definition,[],]) ).

fof(to_be_clausified_14,plain,
    ! [X,Y,Z] :
      ( lhs_atom15(Z,Y,X)
      | $false ),
    inference(fold_definition,[status(thm)],[range_0,def_lhs_atom15]) ).

fof(def_lhs_atom16,axiom,
    ! [Xr,X] :
      ( lhs_atom16(Xr,X)
    <=> range_of(restrict(Xr,X,universal_class)) = image(Xr,X) ),
    inference(definition,[],]) ).

fof(to_be_clausified_15,plain,
    ! [X,Xr] :
      ( lhs_atom16(Xr,X)
      | $false ),
    inference(fold_definition,[status(thm)],[image_0,def_lhs_atom16]) ).

fof(def_lhs_atom17,axiom,
    ! [X] :
      ( lhs_atom17(X)
    <=> union(X,singleton(X)) = successor(X) ),
    inference(definition,[],]) ).

fof(to_be_clausified_16,plain,
    ! [X] :
      ( lhs_atom17(X)
      | $false ),
    inference(fold_definition,[status(thm)],[successor_0,def_lhs_atom17]) ).

fof(def_lhs_atom18,axiom,
    ( lhs_atom18
  <=> subclass(successor_relation,cross_product(universal_class,universal_class)) ),
    inference(definition,[],]) ).

fof(to_be_clausified_17,plain,
    ( lhs_atom18
    | $false ),
    inference(fold_definition,[status(thm)],[successor_relation1_0,def_lhs_atom18]) ).

fof(def_lhs_atom19,axiom,
    ( lhs_atom19
  <=> inductive(omega) ),
    inference(definition,[],]) ).

fof(to_be_clausified_18,plain,
    ( lhs_atom19
    | $false ),
    inference(fold_definition,[status(thm)],[omega_is_inductive1_0,def_lhs_atom19]) ).

fof(def_lhs_atom20,axiom,
    ( lhs_atom20
  <=> member(omega,universal_class) ),
    inference(definition,[],]) ).

fof(to_be_clausified_19,plain,
    ( lhs_atom20
    | $false ),
    inference(fold_definition,[status(thm)],[omega_in_universal_0,def_lhs_atom20]) ).

fof(def_lhs_atom21,axiom,
    ! [X] :
      ( lhs_atom21(X)
    <=> domain_of(restrict(element_relation,universal_class,X)) = sum_class(X) ),
    inference(definition,[],]) ).

fof(to_be_clausified_20,plain,
    ! [X] :
      ( lhs_atom21(X)
      | $false ),
    inference(fold_definition,[status(thm)],[sum_class_definition_0,def_lhs_atom21]) ).

fof(def_lhs_atom22,axiom,
    ! [X] :
      ( lhs_atom22(X)
    <=> complement(image(element_relation,complement(X))) = power_class(X) ),
    inference(definition,[],]) ).

fof(to_be_clausified_21,plain,
    ! [X] :
      ( lhs_atom22(X)
      | $false ),
    inference(fold_definition,[status(thm)],[power_class_definition_0,def_lhs_atom22]) ).

fof(def_lhs_atom23,axiom,
    ! [Yr,Xr] :
      ( lhs_atom23(Yr,Xr)
    <=> subclass(compose(Yr,Xr),cross_product(universal_class,universal_class)) ),
    inference(definition,[],]) ).

fof(to_be_clausified_22,plain,
    ! [Xr,Yr] :
      ( lhs_atom23(Yr,Xr)
      | $false ),
    inference(fold_definition,[status(thm)],[compose1_0,def_lhs_atom23]) ).

fof(def_lhs_atom24,axiom,
    ! [Y,Xf] :
      ( lhs_atom24(Y,Xf)
    <=> sum_class(image(Xf,singleton(Y))) = apply(Xf,Y) ),
    inference(definition,[],]) ).

fof(to_be_clausified_23,plain,
    ! [Xf,Y] :
      ( lhs_atom24(Y,Xf)
      | $false ),
    inference(fold_definition,[status(thm)],[apply_0,def_lhs_atom24]) ).

fof(def_lhs_atom25,axiom,
    ( lhs_atom25
  <=> function(choice) ),
    inference(definition,[],]) ).

fof(to_be_clausified_24,plain,
    ( lhs_atom25
    | $false ),
    inference(fold_definition,[status(thm)],[choice1_0,def_lhs_atom25]) ).

fof(def_lhs_atom26,axiom,
    ( lhs_atom26
  <=> intersection(cross_product(universal_class,universal_class),intersection(cross_product(universal_class,universal_class),complement(compose(complement(element_relation),inverse(element_relation))))) = subset_relation ),
    inference(definition,[],]) ).

fof(to_be_clausified_25,plain,
    ( lhs_atom26
    | $false ),
    inference(fold_definition,[status(thm)],[subset_relation_0,def_lhs_atom26]) ).

fof(def_lhs_atom27,axiom,
    ( lhs_atom27
  <=> intersection(inverse(subset_relation),subset_relation) = identity_relation ),
    inference(definition,[],]) ).

fof(to_be_clausified_26,plain,
    ( lhs_atom27
    | $false ),
    inference(fold_definition,[status(thm)],[identity_relation_0,def_lhs_atom27]) ).

fof(def_lhs_atom28,axiom,
    ! [Xr] :
      ( lhs_atom28(Xr)
    <=> complement(domain_of(intersection(Xr,identity_relation))) = diagonalise(Xr) ),
    inference(definition,[],]) ).

fof(to_be_clausified_27,plain,
    ! [Xr] :
      ( lhs_atom28(Xr)
      | $false ),
    inference(fold_definition,[status(thm)],[diagonalisation_0,def_lhs_atom28]) ).

fof(def_lhs_atom29,axiom,
    ! [X] :
      ( lhs_atom29(X)
    <=> intersection(domain_of(X),diagonalise(compose(inverse(element_relation),X))) = cantor(X) ),
    inference(definition,[],]) ).

fof(to_be_clausified_28,plain,
    ! [X] :
      ( lhs_atom29(X)
      | $false ),
    inference(fold_definition,[status(thm)],[cantor_class_0,def_lhs_atom29]) ).

fof(def_lhs_atom30,axiom,
    ! [X] :
      ( lhs_atom30(X)
    <=> subclass(compose_class(X),cross_product(universal_class,universal_class)) ),
    inference(definition,[],]) ).

fof(to_be_clausified_29,plain,
    ! [X] :
      ( lhs_atom30(X)
      | $false ),
    inference(fold_definition,[status(thm)],[compose_class_definition1_0,def_lhs_atom30]) ).

fof(def_lhs_atom31,axiom,
    ( lhs_atom31
  <=> subclass(composition_function,cross_product(universal_class,cross_product(universal_class,universal_class))) ),
    inference(definition,[],]) ).

fof(to_be_clausified_30,plain,
    ( lhs_atom31
    | $false ),
    inference(fold_definition,[status(thm)],[definition_of_composition_function1_0,def_lhs_atom31]) ).

fof(def_lhs_atom32,axiom,
    ( lhs_atom32
  <=> subclass(domain_relation,cross_product(universal_class,universal_class)) ),
    inference(definition,[],]) ).

fof(to_be_clausified_31,plain,
    ( lhs_atom32
    | $false ),
    inference(fold_definition,[status(thm)],[definition_of_domain_relation1_0,def_lhs_atom32]) ).

fof(def_lhs_atom33,axiom,
    ! [X] :
      ( lhs_atom33(X)
    <=> first(not_subclass_element(compose(X,inverse(X)),identity_relation)) = single_valued1(X) ),
    inference(definition,[],]) ).

fof(to_be_clausified_32,plain,
    ! [X] :
      ( lhs_atom33(X)
      | $false ),
    inference(fold_definition,[status(thm)],[single_valued_term_defn1_0,def_lhs_atom33]) ).

fof(def_lhs_atom34,axiom,
    ! [X] :
      ( lhs_atom34(X)
    <=> second(not_subclass_element(compose(X,inverse(X)),identity_relation)) = single_valued2(X) ),
    inference(definition,[],]) ).

fof(to_be_clausified_33,plain,
    ! [X] :
      ( lhs_atom34(X)
      | $false ),
    inference(fold_definition,[status(thm)],[single_valued_term_defn2_0,def_lhs_atom34]) ).

fof(def_lhs_atom35,axiom,
    ! [X] :
      ( lhs_atom35(X)
    <=> domain(X,image(inverse(X),singleton(single_valued1(X))),single_valued2(X)) = single_valued3(X) ),
    inference(definition,[],]) ).

fof(to_be_clausified_34,plain,
    ! [X] :
      ( lhs_atom35(X)
      | $false ),
    inference(fold_definition,[status(thm)],[single_valued_term_defn3_0,def_lhs_atom35]) ).

fof(def_lhs_atom36,axiom,
    ( lhs_atom36
  <=> intersection(complement(compose(element_relation,complement(identity_relation))),element_relation) = singleton_relation ),
    inference(definition,[],]) ).

fof(to_be_clausified_35,plain,
    ( lhs_atom36
    | $false ),
    inference(fold_definition,[status(thm)],[compose_can_define_singleton_0,def_lhs_atom36]) ).

fof(def_lhs_atom37,axiom,
    ( lhs_atom37
  <=> subclass(application_function,cross_product(universal_class,cross_product(universal_class,universal_class))) ),
    inference(definition,[],]) ).

fof(to_be_clausified_36,plain,
    ( lhs_atom37
    | $false ),
    inference(fold_definition,[status(thm)],[application_function_defn1_0,def_lhs_atom37]) ).

% Start CNF derivation
fof(c_0_0,axiom,
    ! [X4,X2,X1] :
      ( lhs_atom15(X4,X2,X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_14) ).

fof(c_0_1,axiom,
    ! [X4,X2,X1] :
      ( lhs_atom14(X4,X2,X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_13) ).

fof(c_0_2,axiom,
    ! [X2,X3,X1] :
      ( lhs_atom9(X2,X3,X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_8) ).

fof(c_0_3,axiom,
    ! [X2,X3,X1] :
      ( lhs_atom8(X2,X3,X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_7) ).

fof(c_0_4,axiom,
    ! [X2,X6] :
      ( lhs_atom24(X2,X6)
      | ~ $true ),
    file('<stdin>',to_be_clausified_23) ).

fof(c_0_5,axiom,
    ! [X5,X3] :
      ( lhs_atom23(X5,X3)
      | ~ $true ),
    file('<stdin>',to_be_clausified_22) ).

fof(c_0_6,axiom,
    ! [X3,X1] :
      ( lhs_atom16(X3,X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_15) ).

fof(c_0_7,axiom,
    ! [X2,X1] :
      ( lhs_atom7(X2,X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_6) ).

fof(c_0_8,axiom,
    ! [X2,X1] :
      ( lhs_atom6(X2,X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_5) ).

fof(c_0_9,axiom,
    ! [X2,X1] :
      ( lhs_atom4(X2,X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_3) ).

fof(c_0_10,axiom,
    ! [X2,X1] :
      ( lhs_atom2(X2,X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_1) ).

fof(c_0_11,axiom,
    ! [X1] :
      ( lhs_atom35(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_34) ).

fof(c_0_12,axiom,
    ! [X1] :
      ( lhs_atom34(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_33) ).

fof(c_0_13,axiom,
    ! [X1] :
      ( lhs_atom33(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_32) ).

fof(c_0_14,axiom,
    ! [X1] :
      ( lhs_atom30(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_29) ).

fof(c_0_15,axiom,
    ! [X1] :
      ( lhs_atom29(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_28) ).

fof(c_0_16,axiom,
    ! [X3] :
      ( lhs_atom28(X3)
      | ~ $true ),
    file('<stdin>',to_be_clausified_27) ).

fof(c_0_17,axiom,
    ! [X1] :
      ( lhs_atom22(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_21) ).

fof(c_0_18,axiom,
    ! [X1] :
      ( lhs_atom21(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_20) ).

fof(c_0_19,axiom,
    ! [X1] :
      ( lhs_atom17(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_16) ).

fof(c_0_20,axiom,
    ! [X4] :
      ( lhs_atom13(X4)
      | ~ $true ),
    file('<stdin>',to_be_clausified_12) ).

fof(c_0_21,axiom,
    ! [X2] :
      ( lhs_atom12(X2)
      | ~ $true ),
    file('<stdin>',to_be_clausified_11) ).

fof(c_0_22,axiom,
    ! [X1] :
      ( lhs_atom11(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_10) ).

fof(c_0_23,axiom,
    ! [X1] :
      ( lhs_atom10(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_9) ).

fof(c_0_24,axiom,
    ! [X1] :
      ( lhs_atom3(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_2) ).

fof(c_0_25,axiom,
    ! [X1] :
      ( lhs_atom1(X1)
      | ~ $true ),
    file('<stdin>',to_be_clausified_0) ).

fof(c_0_26,axiom,
    ( lhs_atom37
    | ~ $true ),
    file('<stdin>',to_be_clausified_36) ).

fof(c_0_27,axiom,
    ( lhs_atom36
    | ~ $true ),
    file('<stdin>',to_be_clausified_35) ).

fof(c_0_28,axiom,
    ( lhs_atom32
    | ~ $true ),
    file('<stdin>',to_be_clausified_31) ).

fof(c_0_29,axiom,
    ( lhs_atom31
    | ~ $true ),
    file('<stdin>',to_be_clausified_30) ).

fof(c_0_30,axiom,
    ( lhs_atom27
    | ~ $true ),
    file('<stdin>',to_be_clausified_26) ).

fof(c_0_31,axiom,
    ( lhs_atom26
    | ~ $true ),
    file('<stdin>',to_be_clausified_25) ).

fof(c_0_32,axiom,
    ( lhs_atom25
    | ~ $true ),
    file('<stdin>',to_be_clausified_24) ).

fof(c_0_33,axiom,
    ( lhs_atom20
    | ~ $true ),
    file('<stdin>',to_be_clausified_19) ).

fof(c_0_34,axiom,
    ( lhs_atom19
    | ~ $true ),
    file('<stdin>',to_be_clausified_18) ).

fof(c_0_35,axiom,
    ( lhs_atom18
    | ~ $true ),
    file('<stdin>',to_be_clausified_17) ).

fof(c_0_36,axiom,
    ( lhs_atom5
    | ~ $true ),
    file('<stdin>',to_be_clausified_4) ).

fof(c_0_37,plain,
    ! [X4,X2,X1] : lhs_atom15(X4,X2,X1),
    inference(fof_simplification,[status(thm)],[c_0_0]) ).

fof(c_0_38,plain,
    ! [X4,X2,X1] : lhs_atom14(X4,X2,X1),
    inference(fof_simplification,[status(thm)],[c_0_1]) ).

fof(c_0_39,plain,
    ! [X2,X3,X1] : lhs_atom9(X2,X3,X1),
    inference(fof_simplification,[status(thm)],[c_0_2]) ).

fof(c_0_40,plain,
    ! [X2,X3,X1] : lhs_atom8(X2,X3,X1),
    inference(fof_simplification,[status(thm)],[c_0_3]) ).

fof(c_0_41,plain,
    ! [X2,X6] : lhs_atom24(X2,X6),
    inference(fof_simplification,[status(thm)],[c_0_4]) ).

fof(c_0_42,plain,
    ! [X5,X3] : lhs_atom23(X5,X3),
    inference(fof_simplification,[status(thm)],[c_0_5]) ).

fof(c_0_43,plain,
    ! [X3,X1] : lhs_atom16(X3,X1),
    inference(fof_simplification,[status(thm)],[c_0_6]) ).

fof(c_0_44,plain,
    ! [X2,X1] : lhs_atom7(X2,X1),
    inference(fof_simplification,[status(thm)],[c_0_7]) ).

fof(c_0_45,plain,
    ! [X2,X1] : lhs_atom6(X2,X1),
    inference(fof_simplification,[status(thm)],[c_0_8]) ).

fof(c_0_46,plain,
    ! [X2,X1] : lhs_atom4(X2,X1),
    inference(fof_simplification,[status(thm)],[c_0_9]) ).

fof(c_0_47,plain,
    ! [X2,X1] : lhs_atom2(X2,X1),
    inference(fof_simplification,[status(thm)],[c_0_10]) ).

fof(c_0_48,plain,
    ! [X1] : lhs_atom35(X1),
    inference(fof_simplification,[status(thm)],[c_0_11]) ).

fof(c_0_49,plain,
    ! [X1] : lhs_atom34(X1),
    inference(fof_simplification,[status(thm)],[c_0_12]) ).

fof(c_0_50,plain,
    ! [X1] : lhs_atom33(X1),
    inference(fof_simplification,[status(thm)],[c_0_13]) ).

fof(c_0_51,plain,
    ! [X1] : lhs_atom30(X1),
    inference(fof_simplification,[status(thm)],[c_0_14]) ).

fof(c_0_52,plain,
    ! [X1] : lhs_atom29(X1),
    inference(fof_simplification,[status(thm)],[c_0_15]) ).

fof(c_0_53,plain,
    ! [X3] : lhs_atom28(X3),
    inference(fof_simplification,[status(thm)],[c_0_16]) ).

fof(c_0_54,plain,
    ! [X1] : lhs_atom22(X1),
    inference(fof_simplification,[status(thm)],[c_0_17]) ).

fof(c_0_55,plain,
    ! [X1] : lhs_atom21(X1),
    inference(fof_simplification,[status(thm)],[c_0_18]) ).

fof(c_0_56,plain,
    ! [X1] : lhs_atom17(X1),
    inference(fof_simplification,[status(thm)],[c_0_19]) ).

fof(c_0_57,plain,
    ! [X4] : lhs_atom13(X4),
    inference(fof_simplification,[status(thm)],[c_0_20]) ).

fof(c_0_58,plain,
    ! [X2] : lhs_atom12(X2),
    inference(fof_simplification,[status(thm)],[c_0_21]) ).

fof(c_0_59,plain,
    ! [X1] : lhs_atom11(X1),
    inference(fof_simplification,[status(thm)],[c_0_22]) ).

fof(c_0_60,plain,
    ! [X1] : lhs_atom10(X1),
    inference(fof_simplification,[status(thm)],[c_0_23]) ).

fof(c_0_61,plain,
    ! [X1] : lhs_atom3(X1),
    inference(fof_simplification,[status(thm)],[c_0_24]) ).

fof(c_0_62,plain,
    ! [X1] : lhs_atom1(X1),
    inference(fof_simplification,[status(thm)],[c_0_25]) ).

fof(c_0_63,plain,
    lhs_atom37,
    inference(fof_simplification,[status(thm)],[c_0_26]) ).

fof(c_0_64,plain,
    lhs_atom36,
    inference(fof_simplification,[status(thm)],[c_0_27]) ).

fof(c_0_65,plain,
    lhs_atom32,
    inference(fof_simplification,[status(thm)],[c_0_28]) ).

fof(c_0_66,plain,
    lhs_atom31,
    inference(fof_simplification,[status(thm)],[c_0_29]) ).

fof(c_0_67,plain,
    lhs_atom27,
    inference(fof_simplification,[status(thm)],[c_0_30]) ).

fof(c_0_68,plain,
    lhs_atom26,
    inference(fof_simplification,[status(thm)],[c_0_31]) ).

fof(c_0_69,plain,
    lhs_atom25,
    inference(fof_simplification,[status(thm)],[c_0_32]) ).

fof(c_0_70,plain,
    lhs_atom20,
    inference(fof_simplification,[status(thm)],[c_0_33]) ).

fof(c_0_71,plain,
    lhs_atom19,
    inference(fof_simplification,[status(thm)],[c_0_34]) ).

fof(c_0_72,plain,
    lhs_atom18,
    inference(fof_simplification,[status(thm)],[c_0_35]) ).

fof(c_0_73,plain,
    lhs_atom5,
    inference(fof_simplification,[status(thm)],[c_0_36]) ).

fof(c_0_74,plain,
    ! [X5,X6,X7] : lhs_atom15(X5,X6,X7),
    inference(variable_rename,[status(thm)],[c_0_37]) ).

fof(c_0_75,plain,
    ! [X5,X6,X7] : lhs_atom14(X5,X6,X7),
    inference(variable_rename,[status(thm)],[c_0_38]) ).

fof(c_0_76,plain,
    ! [X4,X5,X6] : lhs_atom9(X4,X5,X6),
    inference(variable_rename,[status(thm)],[c_0_39]) ).

fof(c_0_77,plain,
    ! [X4,X5,X6] : lhs_atom8(X4,X5,X6),
    inference(variable_rename,[status(thm)],[c_0_40]) ).

fof(c_0_78,plain,
    ! [X7,X8] : lhs_atom24(X7,X8),
    inference(variable_rename,[status(thm)],[c_0_41]) ).

fof(c_0_79,plain,
    ! [X6,X7] : lhs_atom23(X6,X7),
    inference(variable_rename,[status(thm)],[c_0_42]) ).

fof(c_0_80,plain,
    ! [X4,X5] : lhs_atom16(X4,X5),
    inference(variable_rename,[status(thm)],[c_0_43]) ).

fof(c_0_81,plain,
    ! [X3,X4] : lhs_atom7(X3,X4),
    inference(variable_rename,[status(thm)],[c_0_44]) ).

fof(c_0_82,plain,
    ! [X3,X4] : lhs_atom6(X3,X4),
    inference(variable_rename,[status(thm)],[c_0_45]) ).

fof(c_0_83,plain,
    ! [X3,X4] : lhs_atom4(X3,X4),
    inference(variable_rename,[status(thm)],[c_0_46]) ).

fof(c_0_84,plain,
    ! [X3,X4] : lhs_atom2(X3,X4),
    inference(variable_rename,[status(thm)],[c_0_47]) ).

fof(c_0_85,plain,
    ! [X2] : lhs_atom35(X2),
    inference(variable_rename,[status(thm)],[c_0_48]) ).

fof(c_0_86,plain,
    ! [X2] : lhs_atom34(X2),
    inference(variable_rename,[status(thm)],[c_0_49]) ).

fof(c_0_87,plain,
    ! [X2] : lhs_atom33(X2),
    inference(variable_rename,[status(thm)],[c_0_50]) ).

fof(c_0_88,plain,
    ! [X2] : lhs_atom30(X2),
    inference(variable_rename,[status(thm)],[c_0_51]) ).

fof(c_0_89,plain,
    ! [X2] : lhs_atom29(X2),
    inference(variable_rename,[status(thm)],[c_0_52]) ).

fof(c_0_90,plain,
    ! [X4] : lhs_atom28(X4),
    inference(variable_rename,[status(thm)],[c_0_53]) ).

fof(c_0_91,plain,
    ! [X2] : lhs_atom22(X2),
    inference(variable_rename,[status(thm)],[c_0_54]) ).

fof(c_0_92,plain,
    ! [X2] : lhs_atom21(X2),
    inference(variable_rename,[status(thm)],[c_0_55]) ).

fof(c_0_93,plain,
    ! [X2] : lhs_atom17(X2),
    inference(variable_rename,[status(thm)],[c_0_56]) ).

fof(c_0_94,plain,
    ! [X5] : lhs_atom13(X5),
    inference(variable_rename,[status(thm)],[c_0_57]) ).

fof(c_0_95,plain,
    ! [X3] : lhs_atom12(X3),
    inference(variable_rename,[status(thm)],[c_0_58]) ).

fof(c_0_96,plain,
    ! [X2] : lhs_atom11(X2),
    inference(variable_rename,[status(thm)],[c_0_59]) ).

fof(c_0_97,plain,
    ! [X2] : lhs_atom10(X2),
    inference(variable_rename,[status(thm)],[c_0_60]) ).

fof(c_0_98,plain,
    ! [X2] : lhs_atom3(X2),
    inference(variable_rename,[status(thm)],[c_0_61]) ).

fof(c_0_99,plain,
    ! [X2] : lhs_atom1(X2),
    inference(variable_rename,[status(thm)],[c_0_62]) ).

fof(c_0_100,plain,
    lhs_atom37,
    c_0_63 ).

fof(c_0_101,plain,
    lhs_atom36,
    c_0_64 ).

fof(c_0_102,plain,
    lhs_atom32,
    c_0_65 ).

fof(c_0_103,plain,
    lhs_atom31,
    c_0_66 ).

fof(c_0_104,plain,
    lhs_atom27,
    c_0_67 ).

fof(c_0_105,plain,
    lhs_atom26,
    c_0_68 ).

fof(c_0_106,plain,
    lhs_atom25,
    c_0_69 ).

fof(c_0_107,plain,
    lhs_atom20,
    c_0_70 ).

fof(c_0_108,plain,
    lhs_atom19,
    c_0_71 ).

fof(c_0_109,plain,
    lhs_atom18,
    c_0_72 ).

fof(c_0_110,plain,
    lhs_atom5,
    c_0_73 ).

cnf(c_0_111,plain,
    lhs_atom15(X1,X2,X3),
    inference(split_conjunct,[status(thm)],[c_0_74]) ).

cnf(c_0_112,plain,
    lhs_atom14(X1,X2,X3),
    inference(split_conjunct,[status(thm)],[c_0_75]) ).

cnf(c_0_113,plain,
    lhs_atom9(X1,X2,X3),
    inference(split_conjunct,[status(thm)],[c_0_76]) ).

cnf(c_0_114,plain,
    lhs_atom8(X1,X2,X3),
    inference(split_conjunct,[status(thm)],[c_0_77]) ).

cnf(c_0_115,plain,
    lhs_atom24(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_78]) ).

cnf(c_0_116,plain,
    lhs_atom23(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_79]) ).

cnf(c_0_117,plain,
    lhs_atom16(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_80]) ).

cnf(c_0_118,plain,
    lhs_atom7(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_81]) ).

cnf(c_0_119,plain,
    lhs_atom6(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_82]) ).

cnf(c_0_120,plain,
    lhs_atom4(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_83]) ).

cnf(c_0_121,plain,
    lhs_atom2(X1,X2),
    inference(split_conjunct,[status(thm)],[c_0_84]) ).

cnf(c_0_122,plain,
    lhs_atom35(X1),
    inference(split_conjunct,[status(thm)],[c_0_85]) ).

cnf(c_0_123,plain,
    lhs_atom34(X1),
    inference(split_conjunct,[status(thm)],[c_0_86]) ).

cnf(c_0_124,plain,
    lhs_atom33(X1),
    inference(split_conjunct,[status(thm)],[c_0_87]) ).

cnf(c_0_125,plain,
    lhs_atom30(X1),
    inference(split_conjunct,[status(thm)],[c_0_88]) ).

cnf(c_0_126,plain,
    lhs_atom29(X1),
    inference(split_conjunct,[status(thm)],[c_0_89]) ).

cnf(c_0_127,plain,
    lhs_atom28(X1),
    inference(split_conjunct,[status(thm)],[c_0_90]) ).

cnf(c_0_128,plain,
    lhs_atom22(X1),
    inference(split_conjunct,[status(thm)],[c_0_91]) ).

cnf(c_0_129,plain,
    lhs_atom21(X1),
    inference(split_conjunct,[status(thm)],[c_0_92]) ).

cnf(c_0_130,plain,
    lhs_atom17(X1),
    inference(split_conjunct,[status(thm)],[c_0_93]) ).

cnf(c_0_131,plain,
    lhs_atom13(X1),
    inference(split_conjunct,[status(thm)],[c_0_94]) ).

cnf(c_0_132,plain,
    lhs_atom12(X1),
    inference(split_conjunct,[status(thm)],[c_0_95]) ).

cnf(c_0_133,plain,
    lhs_atom11(X1),
    inference(split_conjunct,[status(thm)],[c_0_96]) ).

cnf(c_0_134,plain,
    lhs_atom10(X1),
    inference(split_conjunct,[status(thm)],[c_0_97]) ).

cnf(c_0_135,plain,
    lhs_atom3(X1),
    inference(split_conjunct,[status(thm)],[c_0_98]) ).

cnf(c_0_136,plain,
    lhs_atom1(X1),
    inference(split_conjunct,[status(thm)],[c_0_99]) ).

cnf(c_0_137,plain,
    lhs_atom37,
    inference(split_conjunct,[status(thm)],[c_0_100]) ).

cnf(c_0_138,plain,
    lhs_atom36,
    inference(split_conjunct,[status(thm)],[c_0_101]) ).

cnf(c_0_139,plain,
    lhs_atom32,
    inference(split_conjunct,[status(thm)],[c_0_102]) ).

cnf(c_0_140,plain,
    lhs_atom31,
    inference(split_conjunct,[status(thm)],[c_0_103]) ).

cnf(c_0_141,plain,
    lhs_atom27,
    inference(split_conjunct,[status(thm)],[c_0_104]) ).

cnf(c_0_142,plain,
    lhs_atom26,
    inference(split_conjunct,[status(thm)],[c_0_105]) ).

cnf(c_0_143,plain,
    lhs_atom25,
    inference(split_conjunct,[status(thm)],[c_0_106]) ).

cnf(c_0_144,plain,
    lhs_atom20,
    inference(split_conjunct,[status(thm)],[c_0_107]) ).

cnf(c_0_145,plain,
    lhs_atom19,
    inference(split_conjunct,[status(thm)],[c_0_108]) ).

cnf(c_0_146,plain,
    lhs_atom18,
    inference(split_conjunct,[status(thm)],[c_0_109]) ).

cnf(c_0_147,plain,
    lhs_atom5,
    inference(split_conjunct,[status(thm)],[c_0_110]) ).

cnf(c_0_148,plain,
    lhs_atom15(X1,X2,X3),
    c_0_111,
    [final] ).

cnf(c_0_149,plain,
    lhs_atom14(X1,X2,X3),
    c_0_112,
    [final] ).

cnf(c_0_150,plain,
    lhs_atom9(X1,X2,X3),
    c_0_113,
    [final] ).

cnf(c_0_151,plain,
    lhs_atom8(X1,X2,X3),
    c_0_114,
    [final] ).

cnf(c_0_152,plain,
    lhs_atom24(X1,X2),
    c_0_115,
    [final] ).

cnf(c_0_153,plain,
    lhs_atom23(X1,X2),
    c_0_116,
    [final] ).

cnf(c_0_154,plain,
    lhs_atom16(X1,X2),
    c_0_117,
    [final] ).

cnf(c_0_155,plain,
    lhs_atom7(X1,X2),
    c_0_118,
    [final] ).

cnf(c_0_156,plain,
    lhs_atom6(X1,X2),
    c_0_119,
    [final] ).

cnf(c_0_157,plain,
    lhs_atom4(X1,X2),
    c_0_120,
    [final] ).

cnf(c_0_158,plain,
    lhs_atom2(X1,X2),
    c_0_121,
    [final] ).

cnf(c_0_159,plain,
    lhs_atom35(X1),
    c_0_122,
    [final] ).

cnf(c_0_160,plain,
    lhs_atom34(X1),
    c_0_123,
    [final] ).

cnf(c_0_161,plain,
    lhs_atom33(X1),
    c_0_124,
    [final] ).

cnf(c_0_162,plain,
    lhs_atom30(X1),
    c_0_125,
    [final] ).

cnf(c_0_163,plain,
    lhs_atom29(X1),
    c_0_126,
    [final] ).

cnf(c_0_164,plain,
    lhs_atom28(X1),
    c_0_127,
    [final] ).

cnf(c_0_165,plain,
    lhs_atom22(X1),
    c_0_128,
    [final] ).

cnf(c_0_166,plain,
    lhs_atom21(X1),
    c_0_129,
    [final] ).

cnf(c_0_167,plain,
    lhs_atom17(X1),
    c_0_130,
    [final] ).

cnf(c_0_168,plain,
    lhs_atom13(X1),
    c_0_131,
    [final] ).

cnf(c_0_169,plain,
    lhs_atom12(X1),
    c_0_132,
    [final] ).

cnf(c_0_170,plain,
    lhs_atom11(X1),
    c_0_133,
    [final] ).

cnf(c_0_171,plain,
    lhs_atom10(X1),
    c_0_134,
    [final] ).

cnf(c_0_172,plain,
    lhs_atom3(X1),
    c_0_135,
    [final] ).

cnf(c_0_173,plain,
    lhs_atom1(X1),
    c_0_136,
    [final] ).

cnf(c_0_174,plain,
    lhs_atom37,
    c_0_137,
    [final] ).

cnf(c_0_175,plain,
    lhs_atom36,
    c_0_138,
    [final] ).

cnf(c_0_176,plain,
    lhs_atom32,
    c_0_139,
    [final] ).

cnf(c_0_177,plain,
    lhs_atom31,
    c_0_140,
    [final] ).

cnf(c_0_178,plain,
    lhs_atom27,
    c_0_141,
    [final] ).

cnf(c_0_179,plain,
    lhs_atom26,
    c_0_142,
    [final] ).

cnf(c_0_180,plain,
    lhs_atom25,
    c_0_143,
    [final] ).

cnf(c_0_181,plain,
    lhs_atom20,
    c_0_144,
    [final] ).

cnf(c_0_182,plain,
    lhs_atom19,
    c_0_145,
    [final] ).

cnf(c_0_183,plain,
    lhs_atom18,
    c_0_146,
    [final] ).

cnf(c_0_184,plain,
    lhs_atom5,
    c_0_147,
    [final] ).

% End CNF derivation
cnf(c_0_148_0,axiom,
    second(not_subclass_element(restrict(X1,singleton(X3),X2),null_class)) = range(X1,X3,X2),
    inference(unfold_definition,[status(thm)],[c_0_148,def_lhs_atom15]) ).

cnf(c_0_149_0,axiom,
    first(not_subclass_element(restrict(X1,X3,singleton(X2)),null_class)) = domain(X1,X3,X2),
    inference(unfold_definition,[status(thm)],[c_0_149,def_lhs_atom14]) ).

cnf(c_0_150_0,axiom,
    intersection(cross_product(X3,X1),X2) = restrict(X2,X3,X1),
    inference(unfold_definition,[status(thm)],[c_0_150,def_lhs_atom9]) ).

cnf(c_0_151_0,axiom,
    intersection(X2,cross_product(X3,X1)) = restrict(X2,X3,X1),
    inference(unfold_definition,[status(thm)],[c_0_151,def_lhs_atom8]) ).

cnf(c_0_152_0,axiom,
    sum_class(image(X2,singleton(X1))) = apply(X2,X1),
    inference(unfold_definition,[status(thm)],[c_0_152,def_lhs_atom24]) ).

cnf(c_0_153_0,axiom,
    subclass(compose(X1,X2),cross_product(universal_class,universal_class)),
    inference(unfold_definition,[status(thm)],[c_0_153,def_lhs_atom23]) ).

cnf(c_0_154_0,axiom,
    range_of(restrict(X1,X2,universal_class)) = image(X1,X2),
    inference(unfold_definition,[status(thm)],[c_0_154,def_lhs_atom16]) ).

cnf(c_0_155_0,axiom,
    intersection(complement(intersection(X2,X1)),complement(intersection(complement(X2),complement(X1)))) = symmetric_difference(X2,X1),
    inference(unfold_definition,[status(thm)],[c_0_155,def_lhs_atom7]) ).

cnf(c_0_156_0,axiom,
    complement(intersection(complement(X2),complement(X1))) = union(X2,X1),
    inference(unfold_definition,[status(thm)],[c_0_156,def_lhs_atom6]) ).

cnf(c_0_157_0,axiom,
    unordered_pair(singleton(X2),unordered_pair(X2,singleton(X1))) = ordered_pair(X2,X1),
    inference(unfold_definition,[status(thm)],[c_0_157,def_lhs_atom4]) ).

cnf(c_0_158_0,axiom,
    member(unordered_pair(X2,X1),universal_class),
    inference(unfold_definition,[status(thm)],[c_0_158,def_lhs_atom2]) ).

cnf(c_0_159_0,axiom,
    domain(X1,image(inverse(X1),singleton(single_valued1(X1))),single_valued2(X1)) = single_valued3(X1),
    inference(unfold_definition,[status(thm)],[c_0_159,def_lhs_atom35]) ).

cnf(c_0_160_0,axiom,
    second(not_subclass_element(compose(X1,inverse(X1)),identity_relation)) = single_valued2(X1),
    inference(unfold_definition,[status(thm)],[c_0_160,def_lhs_atom34]) ).

cnf(c_0_161_0,axiom,
    first(not_subclass_element(compose(X1,inverse(X1)),identity_relation)) = single_valued1(X1),
    inference(unfold_definition,[status(thm)],[c_0_161,def_lhs_atom33]) ).

cnf(c_0_162_0,axiom,
    subclass(compose_class(X1),cross_product(universal_class,universal_class)),
    inference(unfold_definition,[status(thm)],[c_0_162,def_lhs_atom30]) ).

cnf(c_0_163_0,axiom,
    intersection(domain_of(X1),diagonalise(compose(inverse(element_relation),X1))) = cantor(X1),
    inference(unfold_definition,[status(thm)],[c_0_163,def_lhs_atom29]) ).

cnf(c_0_164_0,axiom,
    complement(domain_of(intersection(X1,identity_relation))) = diagonalise(X1),
    inference(unfold_definition,[status(thm)],[c_0_164,def_lhs_atom28]) ).

cnf(c_0_165_0,axiom,
    complement(image(element_relation,complement(X1))) = power_class(X1),
    inference(unfold_definition,[status(thm)],[c_0_165,def_lhs_atom22]) ).

cnf(c_0_166_0,axiom,
    domain_of(restrict(element_relation,universal_class,X1)) = sum_class(X1),
    inference(unfold_definition,[status(thm)],[c_0_166,def_lhs_atom21]) ).

cnf(c_0_167_0,axiom,
    union(X1,singleton(X1)) = successor(X1),
    inference(unfold_definition,[status(thm)],[c_0_167,def_lhs_atom17]) ).

cnf(c_0_168_0,axiom,
    domain_of(inverse(X1)) = range_of(X1),
    inference(unfold_definition,[status(thm)],[c_0_168,def_lhs_atom13]) ).

cnf(c_0_169_0,axiom,
    domain_of(flip(cross_product(X1,universal_class))) = inverse(X1),
    inference(unfold_definition,[status(thm)],[c_0_169,def_lhs_atom12]) ).

cnf(c_0_170_0,axiom,
    subclass(flip(X1),cross_product(cross_product(universal_class,universal_class),universal_class)),
    inference(unfold_definition,[status(thm)],[c_0_170,def_lhs_atom11]) ).

cnf(c_0_171_0,axiom,
    subclass(rotate(X1),cross_product(cross_product(universal_class,universal_class),universal_class)),
    inference(unfold_definition,[status(thm)],[c_0_171,def_lhs_atom10]) ).

cnf(c_0_172_0,axiom,
    unordered_pair(X1,X1) = singleton(X1),
    inference(unfold_definition,[status(thm)],[c_0_172,def_lhs_atom3]) ).

cnf(c_0_173_0,axiom,
    subclass(X1,universal_class),
    inference(unfold_definition,[status(thm)],[c_0_173,def_lhs_atom1]) ).

cnf(c_0_174_0,axiom,
    subclass(application_function,cross_product(universal_class,cross_product(universal_class,universal_class))),
    inference(unfold_definition,[status(thm)],[c_0_174,def_lhs_atom37]) ).

cnf(c_0_175_0,axiom,
    intersection(complement(compose(element_relation,complement(identity_relation))),element_relation) = singleton_relation,
    inference(unfold_definition,[status(thm)],[c_0_175,def_lhs_atom36]) ).

cnf(c_0_176_0,axiom,
    subclass(domain_relation,cross_product(universal_class,universal_class)),
    inference(unfold_definition,[status(thm)],[c_0_176,def_lhs_atom32]) ).

cnf(c_0_177_0,axiom,
    subclass(composition_function,cross_product(universal_class,cross_product(universal_class,universal_class))),
    inference(unfold_definition,[status(thm)],[c_0_177,def_lhs_atom31]) ).

cnf(c_0_178_0,axiom,
    intersection(inverse(subset_relation),subset_relation) = identity_relation,
    inference(unfold_definition,[status(thm)],[c_0_178,def_lhs_atom27]) ).

cnf(c_0_179_0,axiom,
    intersection(cross_product(universal_class,universal_class),intersection(cross_product(universal_class,universal_class),complement(compose(complement(element_relation),inverse(element_relation))))) = subset_relation,
    inference(unfold_definition,[status(thm)],[c_0_179,def_lhs_atom26]) ).

cnf(c_0_180_0,axiom,
    function(choice),
    inference(unfold_definition,[status(thm)],[c_0_180,def_lhs_atom25]) ).

cnf(c_0_181_0,axiom,
    member(omega,universal_class),
    inference(unfold_definition,[status(thm)],[c_0_181,def_lhs_atom20]) ).

cnf(c_0_182_0,axiom,
    inductive(omega),
    inference(unfold_definition,[status(thm)],[c_0_182,def_lhs_atom19]) ).

cnf(c_0_183_0,axiom,
    subclass(successor_relation,cross_product(universal_class,universal_class)),
    inference(unfold_definition,[status(thm)],[c_0_183,def_lhs_atom18]) ).

cnf(c_0_184_0,axiom,
    subclass(element_relation,cross_product(universal_class,universal_class)),
    inference(unfold_definition,[status(thm)],[c_0_184,def_lhs_atom5]) ).

% Orienting (remaining) axiom formulas using strategy ClausalAll
% CNF of (remaining) axioms:
% Start CNF derivation
fof(c_0_0_001,axiom,
    ! [X5,X6,X7] :
      ( ~ operation(X7)
      | ~ operation(X6)
      | ~ compatible(X5,X7,X6)
      | apply(X6,ordered_pair(apply(X5,not_homomorphism1(X5,X7,X6)),apply(X5,not_homomorphism2(X5,X7,X6)))) != apply(X5,apply(X7,ordered_pair(not_homomorphism1(X5,X7,X6),not_homomorphism2(X5,X7,X6))))
      | homomorphism(X5,X7,X6) ),
    file('<stdin>',homomorphism6) ).

fof(c_0_1_002,axiom,
    ! [X5,X6,X7] :
      ( ~ operation(X7)
      | ~ operation(X6)
      | ~ compatible(X5,X7,X6)
      | member(ordered_pair(not_homomorphism1(X5,X7,X6),not_homomorphism2(X5,X7,X6)),domain_of(X7))
      | homomorphism(X5,X7,X6) ),
    file('<stdin>',homomorphism5) ).

fof(c_0_2_003,axiom,
    ! [X3,X11,X12,X10] :
      ( ~ member(ordered_pair(ordered_pair(X12,X11),X10),X3)
      | ~ member(ordered_pair(ordered_pair(X10,X12),X11),cross_product(cross_product(universal_class,universal_class),universal_class))
      | member(ordered_pair(ordered_pair(X10,X12),X11),rotate(X3)) ),
    file('<stdin>',rotate3) ).

fof(c_0_3_004,axiom,
    ! [X3,X11,X12,X10] :
      ( ~ member(ordered_pair(ordered_pair(X12,X10),X11),X3)
      | ~ member(ordered_pair(ordered_pair(X10,X12),X11),cross_product(cross_product(universal_class,universal_class),universal_class))
      | member(ordered_pair(ordered_pair(X10,X12),X11),flip(X3)) ),
    file('<stdin>',flip3) ).

fof(c_0_4_005,axiom,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X3,ordered_pair(X1,X4)),cross_product(universal_class,cross_product(universal_class,universal_class)))
      | ~ member(X1,domain_of(X3))
      | member(ordered_pair(X3,ordered_pair(X1,apply(X3,X1))),application_function) ),
    file('<stdin>',application_function_defn4) ).

fof(c_0_5_006,axiom,
    ! [X1,X5,X6,X7,X3] :
      ( ~ homomorphism(X5,X7,X6)
      | ~ member(ordered_pair(X3,X1),domain_of(X7))
      | apply(X6,ordered_pair(apply(X5,X3),apply(X5,X1))) = apply(X5,apply(X7,ordered_pair(X3,X1))) ),
    file('<stdin>',homomorphism4) ).

fof(c_0_6_007,axiom,
    ! [X4,X8,X1,X9] :
      ( ~ member(X4,image(X8,image(X9,singleton(X1))))
      | ~ member(ordered_pair(X1,X4),cross_product(universal_class,universal_class))
      | member(ordered_pair(X1,X4),compose(X8,X9)) ),
    file('<stdin>',compose3) ).

fof(c_0_7_008,axiom,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),cross_product(universal_class,universal_class))
      | member(ordered_pair(X3,ordered_pair(X1,compose(X3,X1))),composition_function) ),
    file('<stdin>',definition_of_composition_function3) ).

fof(c_0_8_009,axiom,
    ! [X3,X11,X12,X10] :
      ( ~ member(ordered_pair(ordered_pair(X10,X12),X11),rotate(X3))
      | member(ordered_pair(ordered_pair(X12,X11),X10),X3) ),
    file('<stdin>',rotate2) ).

fof(c_0_9_010,axiom,
    ! [X3,X11,X12,X10] :
      ( ~ member(ordered_pair(ordered_pair(X10,X12),X11),flip(X3))
      | member(ordered_pair(ordered_pair(X12,X10),X11),X3) ),
    file('<stdin>',flip2) ).

fof(c_0_10_011,axiom,
    ! [X4,X8,X1,X9] :
      ( ~ member(ordered_pair(X1,X4),compose(X8,X9))
      | member(X4,image(X8,image(X9,singleton(X1)))) ),
    file('<stdin>',compose2) ).

fof(c_0_11_012,axiom,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X1,X4),cross_product(universal_class,universal_class))
      | compose(X3,X1) != X4
      | member(ordered_pair(X1,X4),compose_class(X3)) ),
    file('<stdin>',compose_class_definition3) ).

fof(c_0_12_013,axiom,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X3,ordered_pair(X1,X4)),application_function)
      | member(X1,domain_of(X3)) ),
    file('<stdin>',application_function_defn2) ).

fof(c_0_13_014,axiom,
    ! [X2] :
      ( ~ function(X2)
      | cross_product(domain_of(domain_of(X2)),domain_of(domain_of(X2))) != domain_of(X2)
      | ~ subclass(range_of(X2),domain_of(domain_of(X2)))
      | operation(X2) ),
    file('<stdin>',operation4) ).

fof(c_0_14_015,axiom,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X3,ordered_pair(X1,X4)),composition_function)
      | compose(X3,X1) = X4 ),
    file('<stdin>',definition_of_composition_function2) ).

fof(c_0_15_016,axiom,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X3,ordered_pair(X1,X4)),application_function)
      | apply(X3,X1) = X4 ),
    file('<stdin>',application_function_defn3) ).

fof(c_0_16_017,axiom,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),cross_product(universal_class,universal_class))
      | ~ member(X3,X1)
      | member(ordered_pair(X3,X1),element_relation) ),
    file('<stdin>',element_relation3) ).

fof(c_0_17_018,axiom,
    ! [X5,X6,X7] :
      ( ~ function(X5)
      | domain_of(domain_of(X7)) != domain_of(X5)
      | ~ subclass(range_of(X5),domain_of(domain_of(X6)))
      | compatible(X5,X7,X6) ),
    file('<stdin>',compatible4) ).

fof(c_0_18_019,axiom,
    ! [X1,X3] :
      ( successor(X3) != X1
      | ~ member(ordered_pair(X3,X1),cross_product(universal_class,universal_class))
      | member(ordered_pair(X3,X1),successor_relation) ),
    file('<stdin>',successor_relation3) ).

fof(c_0_19_020,axiom,
    ! [X5,X6,X7] :
      ( ~ homomorphism(X5,X7,X6)
      | compatible(X5,X7,X6) ),
    file('<stdin>',homomorphism3) ).

fof(c_0_20_021,axiom,
    ! [X2] :
      ( ~ subclass(X2,cross_product(universal_class,universal_class))
      | ~ subclass(compose(X2,inverse(X2)),identity_relation)
      | function(X2) ),
    file('<stdin>',function3) ).

fof(c_0_21_022,axiom,
    ! [X4,X3] :
      ( restrict(X3,singleton(X4),universal_class) != null_class
      | ~ member(X4,domain_of(X3)) ),
    file('<stdin>',domain1) ).

fof(c_0_22_023,axiom,
    ! [X5,X6,X7] :
      ( ~ compatible(X5,X7,X6)
      | subclass(range_of(X5),domain_of(domain_of(X6))) ),
    file('<stdin>',compatible3) ).

fof(c_0_23_024,axiom,
    ! [X1,X3,X12,X10] :
      ( ~ member(ordered_pair(X10,X12),cross_product(X3,X1))
      | member(X10,X3) ),
    file('<stdin>',cartesian_product1) ).

fof(c_0_24_025,axiom,
    ! [X1,X3,X12,X10] :
      ( ~ member(ordered_pair(X10,X12),cross_product(X3,X1))
      | member(X12,X1) ),
    file('<stdin>',cartesian_product2) ).

fof(c_0_25_026,axiom,
    ! [X1,X3,X12,X10] :
      ( ~ member(X10,X3)
      | ~ member(X12,X1)
      | member(ordered_pair(X10,X12),cross_product(X3,X1)) ),
    file('<stdin>',cartesian_product3) ).

fof(c_0_26_027,axiom,
    ! [X1,X2,X3] :
      ( ~ maps(X2,X3,X1)
      | subclass(range_of(X2),X1) ),
    file('<stdin>',maps3) ).

fof(c_0_27_028,axiom,
    ! [X5,X6,X7] :
      ( ~ compatible(X5,X7,X6)
      | domain_of(domain_of(X7)) = domain_of(X5) ),
    file('<stdin>',compatible2) ).

fof(c_0_28_029,axiom,
    ! [X1,X2] :
      ( ~ function(X2)
      | ~ subclass(range_of(X2),X1)
      | maps(X2,domain_of(X2),X1) ),
    file('<stdin>',maps4) ).

fof(c_0_29_030,axiom,
    ! [X4,X3] :
      ( ~ member(X4,universal_class)
      | restrict(X3,singleton(X4),universal_class) = null_class
      | member(X4,domain_of(X3)) ),
    file('<stdin>',domain2) ).

fof(c_0_30_031,axiom,
    ! [X1,X2,X3] :
      ( ~ maps(X2,X3,X1)
      | domain_of(X2) = X3 ),
    file('<stdin>',maps2) ).

fof(c_0_31_032,axiom,
    ! [X4,X1,X3] :
      ( ~ member(X4,cross_product(X3,X1))
      | ordered_pair(first(X4),second(X4)) = X4 ),
    file('<stdin>',cartesian_product4) ).

fof(c_0_32_033,axiom,
    ! [X5,X6,X7] :
      ( ~ compatible(X5,X7,X6)
      | function(X5) ),
    file('<stdin>',compatible1) ).

fof(c_0_33_034,axiom,
    ! [X5,X6,X7] :
      ( ~ homomorphism(X5,X7,X6)
      | operation(X7) ),
    file('<stdin>',homomorphism1) ).

fof(c_0_34_035,axiom,
    ! [X5,X6,X7] :
      ( ~ homomorphism(X5,X7,X6)
      | operation(X6) ),
    file('<stdin>',homomorphism2) ).

fof(c_0_35_036,axiom,
    ! [X1,X2,X3] :
      ( ~ maps(X2,X3,X1)
      | function(X2) ),
    file('<stdin>',maps1) ).

fof(c_0_36_037,axiom,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X1,X4),compose_class(X3))
      | compose(X3,X1) = X4 ),
    file('<stdin>',compose_class_definition2) ).

fof(c_0_37_038,axiom,
    ! [X4,X1,X3] :
      ( ~ member(X4,X3)
      | ~ member(X4,X1)
      | member(X4,intersection(X3,X1)) ),
    file('<stdin>',intersection3) ).

fof(c_0_38_039,axiom,
    ! [X3] :
      ( ~ subclass(compose(X3,inverse(X3)),identity_relation)
      | single_valued_class(X3) ),
    file('<stdin>',single_valued_class2) ).

fof(c_0_39_040,axiom,
    ! [X3] :
      ( ~ member(null_class,X3)
      | ~ subclass(image(successor_relation,X3),X3)
      | inductive(X3) ),
    file('<stdin>',inductive3) ).

fof(c_0_40_041,axiom,
    ! [X1,X3] :
      ( ~ member(not_subclass_element(X3,X1),X1)
      | subclass(X3,X1) ),
    file('<stdin>',not_subclass_members2) ).

fof(c_0_41_042,axiom,
    ! [X4,X1,X3] :
      ( ~ member(X4,intersection(X3,X1))
      | member(X4,X3) ),
    file('<stdin>',intersection1) ).

fof(c_0_42_043,axiom,
    ! [X4,X1,X3] :
      ( ~ member(X4,intersection(X3,X1))
      | member(X4,X1) ),
    file('<stdin>',intersection2) ).

fof(c_0_43_044,axiom,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),element_relation)
      | member(X3,X1) ),
    file('<stdin>',element_relation2) ).

fof(c_0_44_045,axiom,
    ! [X3] :
      ( ~ member(X3,universal_class)
      | member(ordered_pair(X3,domain_of(X3)),domain_relation) ),
    file('<stdin>',definition_of_domain_relation3) ).

fof(c_0_45_046,axiom,
    ! [X1,X3,X10] :
      ( ~ member(X10,unordered_pair(X3,X1))
      | X10 = X3
      | X10 = X1 ),
    file('<stdin>',unordered_pair_member) ).

fof(c_0_46_047,axiom,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),successor_relation)
      | successor(X3) = X1 ),
    file('<stdin>',successor_relation2) ).

fof(c_0_47_048,axiom,
    ! [X2,X3] :
      ( ~ function(X2)
      | ~ member(X3,universal_class)
      | member(image(X2,X3),universal_class) ),
    file('<stdin>',replacement) ).

fof(c_0_48_049,axiom,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),domain_relation)
      | domain_of(X3) = X1 ),
    file('<stdin>',definition_of_domain_relation2) ).

fof(c_0_49_050,axiom,
    ! [X2] :
      ( ~ operation(X2)
      | cross_product(domain_of(domain_of(X2)),domain_of(domain_of(X2))) = domain_of(X2) ),
    file('<stdin>',operation2) ).

fof(c_0_50_051,axiom,
    ! [X1,X3] :
      ( ~ member(X3,universal_class)
      | member(X3,unordered_pair(X3,X1)) ),
    file('<stdin>',unordered_pair2) ).

fof(c_0_51_052,axiom,
    ! [X1,X3] :
      ( ~ member(X1,universal_class)
      | member(X1,unordered_pair(X3,X1)) ),
    file('<stdin>',unordered_pair3) ).

fof(c_0_52_053,axiom,
    ! [X1,X3,X10] :
      ( ~ subclass(X3,X1)
      | ~ member(X10,X3)
      | member(X10,X1) ),
    file('<stdin>',subclass_members) ).

fof(c_0_53_054,axiom,
    ! [X1] :
      ( ~ member(X1,universal_class)
      | X1 = null_class
      | member(apply(choice,X1),X1) ),
    file('<stdin>',choice2) ).

fof(c_0_54_055,axiom,
    ! [X3] :
      ( ~ single_valued_class(X3)
      | subclass(compose(X3,inverse(X3)),identity_relation) ),
    file('<stdin>',single_valued_class1) ).

fof(c_0_55_056,axiom,
    ! [X2] :
      ( ~ function(X2)
      | subclass(compose(X2,inverse(X2)),identity_relation) ),
    file('<stdin>',function2) ).

fof(c_0_56_057,axiom,
    ! [X4,X3] :
      ( ~ member(X4,universal_class)
      | member(X4,complement(X3))
      | member(X4,X3) ),
    file('<stdin>',complement2) ).

fof(c_0_57_058,axiom,
    ! [X4,X3] :
      ( ~ member(X4,complement(X3))
      | ~ member(X4,X3) ),
    file('<stdin>',complement1) ).

fof(c_0_58_059,axiom,
    ! [X1,X3] :
      ( member(not_subclass_element(X3,X1),X3)
      | subclass(X3,X1) ),
    file('<stdin>',not_subclass_members1) ).

fof(c_0_59_060,axiom,
    ! [X1,X3] :
      ( ~ subclass(X3,X1)
      | ~ subclass(X1,X3)
      | X3 = X1 ),
    file('<stdin>',subclass_implies_equal) ).

fof(c_0_60_061,axiom,
    ! [X2] :
      ( ~ operation(X2)
      | subclass(range_of(X2),domain_of(domain_of(X2))) ),
    file('<stdin>',operation3) ).

fof(c_0_61_062,axiom,
    ! [X3] :
      ( ~ inductive(X3)
      | subclass(image(successor_relation,X3),X3) ),
    file('<stdin>',inductive2) ).

fof(c_0_62_063,axiom,
    ! [X2] :
      ( ~ function(X2)
      | subclass(X2,cross_product(universal_class,universal_class)) ),
    file('<stdin>',function1) ).

fof(c_0_63_064,axiom,
    ! [X3] :
      ( ~ member(X3,universal_class)
      | member(sum_class(X3),universal_class) ),
    file('<stdin>',sum_class2) ).

fof(c_0_64_065,axiom,
    ! [X10] :
      ( ~ member(X10,universal_class)
      | member(power_class(X10),universal_class) ),
    file('<stdin>',power_class2) ).

fof(c_0_65_066,axiom,
    ! [X2] :
      ( ~ function(inverse(X2))
      | ~ function(X2)
      | one_to_one(X2) ),
    file('<stdin>',one_to_one3) ).

fof(c_0_66_067,axiom,
    ! [X3] :
      ( X3 = null_class
      | member(regular(X3),X3) ),
    file('<stdin>',regularity1) ).

fof(c_0_67_068,axiom,
    ! [X3] :
      ( X3 = null_class
      | intersection(X3,regular(X3)) = null_class ),
    file('<stdin>',regularity2) ).

fof(c_0_68_069,axiom,
    ! [X3] :
      ( ~ inductive(X3)
      | member(null_class,X3) ),
    file('<stdin>',inductive1) ).

fof(c_0_69_070,axiom,
    ! [X1] :
      ( ~ inductive(X1)
      | subclass(omega,X1) ),
    file('<stdin>',omega_is_inductive2) ).

fof(c_0_70_071,axiom,
    ! [X1,X3] :
      ( X3 != X1
      | subclass(X3,X1) ),
    file('<stdin>',equal_implies_subclass1) ).

fof(c_0_71_072,axiom,
    ! [X1,X3] :
      ( X3 != X1
      | subclass(X1,X3) ),
    file('<stdin>',equal_implies_subclass2) ).

fof(c_0_72_073,axiom,
    ! [X2] :
      ( ~ one_to_one(X2)
      | function(inverse(X2)) ),
    file('<stdin>',one_to_one2) ).

fof(c_0_73_074,axiom,
    ! [X2] :
      ( ~ one_to_one(X2)
      | function(X2) ),
    file('<stdin>',one_to_one1) ).

fof(c_0_74_075,axiom,
    ! [X2] :
      ( ~ operation(X2)
      | function(X2) ),
    file('<stdin>',operation1) ).

fof(c_0_75_076,plain,
    ! [X5,X6,X7] :
      ( ~ operation(X7)
      | ~ operation(X6)
      | ~ compatible(X5,X7,X6)
      | apply(X6,ordered_pair(apply(X5,not_homomorphism1(X5,X7,X6)),apply(X5,not_homomorphism2(X5,X7,X6)))) != apply(X5,apply(X7,ordered_pair(not_homomorphism1(X5,X7,X6),not_homomorphism2(X5,X7,X6))))
      | homomorphism(X5,X7,X6) ),
    inference(fof_simplification,[status(thm)],[c_0_0]) ).

fof(c_0_76_077,plain,
    ! [X5,X6,X7] :
      ( ~ operation(X7)
      | ~ operation(X6)
      | ~ compatible(X5,X7,X6)
      | member(ordered_pair(not_homomorphism1(X5,X7,X6),not_homomorphism2(X5,X7,X6)),domain_of(X7))
      | homomorphism(X5,X7,X6) ),
    inference(fof_simplification,[status(thm)],[c_0_1]) ).

fof(c_0_77_078,plain,
    ! [X3,X11,X12,X10] :
      ( ~ member(ordered_pair(ordered_pair(X12,X11),X10),X3)
      | ~ member(ordered_pair(ordered_pair(X10,X12),X11),cross_product(cross_product(universal_class,universal_class),universal_class))
      | member(ordered_pair(ordered_pair(X10,X12),X11),rotate(X3)) ),
    inference(fof_simplification,[status(thm)],[c_0_2]) ).

fof(c_0_78_079,plain,
    ! [X3,X11,X12,X10] :
      ( ~ member(ordered_pair(ordered_pair(X12,X10),X11),X3)
      | ~ member(ordered_pair(ordered_pair(X10,X12),X11),cross_product(cross_product(universal_class,universal_class),universal_class))
      | member(ordered_pair(ordered_pair(X10,X12),X11),flip(X3)) ),
    inference(fof_simplification,[status(thm)],[c_0_3]) ).

fof(c_0_79_080,plain,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X3,ordered_pair(X1,X4)),cross_product(universal_class,cross_product(universal_class,universal_class)))
      | ~ member(X1,domain_of(X3))
      | member(ordered_pair(X3,ordered_pair(X1,apply(X3,X1))),application_function) ),
    inference(fof_simplification,[status(thm)],[c_0_4]) ).

fof(c_0_80_081,plain,
    ! [X1,X5,X6,X7,X3] :
      ( ~ homomorphism(X5,X7,X6)
      | ~ member(ordered_pair(X3,X1),domain_of(X7))
      | apply(X6,ordered_pair(apply(X5,X3),apply(X5,X1))) = apply(X5,apply(X7,ordered_pair(X3,X1))) ),
    inference(fof_simplification,[status(thm)],[c_0_5]) ).

fof(c_0_81_082,plain,
    ! [X4,X8,X1,X9] :
      ( ~ member(X4,image(X8,image(X9,singleton(X1))))
      | ~ member(ordered_pair(X1,X4),cross_product(universal_class,universal_class))
      | member(ordered_pair(X1,X4),compose(X8,X9)) ),
    inference(fof_simplification,[status(thm)],[c_0_6]) ).

fof(c_0_82_083,plain,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),cross_product(universal_class,universal_class))
      | member(ordered_pair(X3,ordered_pair(X1,compose(X3,X1))),composition_function) ),
    inference(fof_simplification,[status(thm)],[c_0_7]) ).

fof(c_0_83_084,plain,
    ! [X3,X11,X12,X10] :
      ( ~ member(ordered_pair(ordered_pair(X10,X12),X11),rotate(X3))
      | member(ordered_pair(ordered_pair(X12,X11),X10),X3) ),
    inference(fof_simplification,[status(thm)],[c_0_8]) ).

fof(c_0_84_085,plain,
    ! [X3,X11,X12,X10] :
      ( ~ member(ordered_pair(ordered_pair(X10,X12),X11),flip(X3))
      | member(ordered_pair(ordered_pair(X12,X10),X11),X3) ),
    inference(fof_simplification,[status(thm)],[c_0_9]) ).

fof(c_0_85_086,plain,
    ! [X4,X8,X1,X9] :
      ( ~ member(ordered_pair(X1,X4),compose(X8,X9))
      | member(X4,image(X8,image(X9,singleton(X1)))) ),
    inference(fof_simplification,[status(thm)],[c_0_10]) ).

fof(c_0_86_087,plain,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X1,X4),cross_product(universal_class,universal_class))
      | compose(X3,X1) != X4
      | member(ordered_pair(X1,X4),compose_class(X3)) ),
    inference(fof_simplification,[status(thm)],[c_0_11]) ).

fof(c_0_87_088,plain,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X3,ordered_pair(X1,X4)),application_function)
      | member(X1,domain_of(X3)) ),
    inference(fof_simplification,[status(thm)],[c_0_12]) ).

fof(c_0_88_089,plain,
    ! [X2] :
      ( ~ function(X2)
      | cross_product(domain_of(domain_of(X2)),domain_of(domain_of(X2))) != domain_of(X2)
      | ~ subclass(range_of(X2),domain_of(domain_of(X2)))
      | operation(X2) ),
    inference(fof_simplification,[status(thm)],[c_0_13]) ).

fof(c_0_89_090,plain,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X3,ordered_pair(X1,X4)),composition_function)
      | compose(X3,X1) = X4 ),
    inference(fof_simplification,[status(thm)],[c_0_14]) ).

fof(c_0_90_091,plain,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X3,ordered_pair(X1,X4)),application_function)
      | apply(X3,X1) = X4 ),
    inference(fof_simplification,[status(thm)],[c_0_15]) ).

fof(c_0_91_092,plain,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),cross_product(universal_class,universal_class))
      | ~ member(X3,X1)
      | member(ordered_pair(X3,X1),element_relation) ),
    inference(fof_simplification,[status(thm)],[c_0_16]) ).

fof(c_0_92_093,plain,
    ! [X5,X6,X7] :
      ( ~ function(X5)
      | domain_of(domain_of(X7)) != domain_of(X5)
      | ~ subclass(range_of(X5),domain_of(domain_of(X6)))
      | compatible(X5,X7,X6) ),
    inference(fof_simplification,[status(thm)],[c_0_17]) ).

fof(c_0_93_094,plain,
    ! [X1,X3] :
      ( successor(X3) != X1
      | ~ member(ordered_pair(X3,X1),cross_product(universal_class,universal_class))
      | member(ordered_pair(X3,X1),successor_relation) ),
    inference(fof_simplification,[status(thm)],[c_0_18]) ).

fof(c_0_94_095,plain,
    ! [X5,X6,X7] :
      ( ~ homomorphism(X5,X7,X6)
      | compatible(X5,X7,X6) ),
    inference(fof_simplification,[status(thm)],[c_0_19]) ).

fof(c_0_95_096,plain,
    ! [X2] :
      ( ~ subclass(X2,cross_product(universal_class,universal_class))
      | ~ subclass(compose(X2,inverse(X2)),identity_relation)
      | function(X2) ),
    inference(fof_simplification,[status(thm)],[c_0_20]) ).

fof(c_0_96_097,plain,
    ! [X4,X3] :
      ( restrict(X3,singleton(X4),universal_class) != null_class
      | ~ member(X4,domain_of(X3)) ),
    inference(fof_simplification,[status(thm)],[c_0_21]) ).

fof(c_0_97_098,plain,
    ! [X5,X6,X7] :
      ( ~ compatible(X5,X7,X6)
      | subclass(range_of(X5),domain_of(domain_of(X6))) ),
    inference(fof_simplification,[status(thm)],[c_0_22]) ).

fof(c_0_98_099,plain,
    ! [X1,X3,X12,X10] :
      ( ~ member(ordered_pair(X10,X12),cross_product(X3,X1))
      | member(X10,X3) ),
    inference(fof_simplification,[status(thm)],[c_0_23]) ).

fof(c_0_99_100,plain,
    ! [X1,X3,X12,X10] :
      ( ~ member(ordered_pair(X10,X12),cross_product(X3,X1))
      | member(X12,X1) ),
    inference(fof_simplification,[status(thm)],[c_0_24]) ).

fof(c_0_100_101,plain,
    ! [X1,X3,X12,X10] :
      ( ~ member(X10,X3)
      | ~ member(X12,X1)
      | member(ordered_pair(X10,X12),cross_product(X3,X1)) ),
    inference(fof_simplification,[status(thm)],[c_0_25]) ).

fof(c_0_101_102,plain,
    ! [X1,X2,X3] :
      ( ~ maps(X2,X3,X1)
      | subclass(range_of(X2),X1) ),
    inference(fof_simplification,[status(thm)],[c_0_26]) ).

fof(c_0_102_103,plain,
    ! [X5,X6,X7] :
      ( ~ compatible(X5,X7,X6)
      | domain_of(domain_of(X7)) = domain_of(X5) ),
    inference(fof_simplification,[status(thm)],[c_0_27]) ).

fof(c_0_103_104,plain,
    ! [X1,X2] :
      ( ~ function(X2)
      | ~ subclass(range_of(X2),X1)
      | maps(X2,domain_of(X2),X1) ),
    inference(fof_simplification,[status(thm)],[c_0_28]) ).

fof(c_0_104_105,plain,
    ! [X4,X3] :
      ( ~ member(X4,universal_class)
      | restrict(X3,singleton(X4),universal_class) = null_class
      | member(X4,domain_of(X3)) ),
    inference(fof_simplification,[status(thm)],[c_0_29]) ).

fof(c_0_105_106,plain,
    ! [X1,X2,X3] :
      ( ~ maps(X2,X3,X1)
      | domain_of(X2) = X3 ),
    inference(fof_simplification,[status(thm)],[c_0_30]) ).

fof(c_0_106_107,plain,
    ! [X4,X1,X3] :
      ( ~ member(X4,cross_product(X3,X1))
      | ordered_pair(first(X4),second(X4)) = X4 ),
    inference(fof_simplification,[status(thm)],[c_0_31]) ).

fof(c_0_107_108,plain,
    ! [X5,X6,X7] :
      ( ~ compatible(X5,X7,X6)
      | function(X5) ),
    inference(fof_simplification,[status(thm)],[c_0_32]) ).

fof(c_0_108_109,plain,
    ! [X5,X6,X7] :
      ( ~ homomorphism(X5,X7,X6)
      | operation(X7) ),
    inference(fof_simplification,[status(thm)],[c_0_33]) ).

fof(c_0_109_110,plain,
    ! [X5,X6,X7] :
      ( ~ homomorphism(X5,X7,X6)
      | operation(X6) ),
    inference(fof_simplification,[status(thm)],[c_0_34]) ).

fof(c_0_110_111,plain,
    ! [X1,X2,X3] :
      ( ~ maps(X2,X3,X1)
      | function(X2) ),
    inference(fof_simplification,[status(thm)],[c_0_35]) ).

fof(c_0_111_112,plain,
    ! [X4,X1,X3] :
      ( ~ member(ordered_pair(X1,X4),compose_class(X3))
      | compose(X3,X1) = X4 ),
    inference(fof_simplification,[status(thm)],[c_0_36]) ).

fof(c_0_112_113,plain,
    ! [X4,X1,X3] :
      ( ~ member(X4,X3)
      | ~ member(X4,X1)
      | member(X4,intersection(X3,X1)) ),
    inference(fof_simplification,[status(thm)],[c_0_37]) ).

fof(c_0_113_114,plain,
    ! [X3] :
      ( ~ subclass(compose(X3,inverse(X3)),identity_relation)
      | single_valued_class(X3) ),
    inference(fof_simplification,[status(thm)],[c_0_38]) ).

fof(c_0_114_115,plain,
    ! [X3] :
      ( ~ member(null_class,X3)
      | ~ subclass(image(successor_relation,X3),X3)
      | inductive(X3) ),
    inference(fof_simplification,[status(thm)],[c_0_39]) ).

fof(c_0_115_116,plain,
    ! [X1,X3] :
      ( ~ member(not_subclass_element(X3,X1),X1)
      | subclass(X3,X1) ),
    inference(fof_simplification,[status(thm)],[c_0_40]) ).

fof(c_0_116_117,plain,
    ! [X4,X1,X3] :
      ( ~ member(X4,intersection(X3,X1))
      | member(X4,X3) ),
    inference(fof_simplification,[status(thm)],[c_0_41]) ).

fof(c_0_117_118,plain,
    ! [X4,X1,X3] :
      ( ~ member(X4,intersection(X3,X1))
      | member(X4,X1) ),
    inference(fof_simplification,[status(thm)],[c_0_42]) ).

fof(c_0_118_119,plain,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),element_relation)
      | member(X3,X1) ),
    inference(fof_simplification,[status(thm)],[c_0_43]) ).

fof(c_0_119_120,plain,
    ! [X3] :
      ( ~ member(X3,universal_class)
      | member(ordered_pair(X3,domain_of(X3)),domain_relation) ),
    inference(fof_simplification,[status(thm)],[c_0_44]) ).

fof(c_0_120_121,plain,
    ! [X1,X3,X10] :
      ( ~ member(X10,unordered_pair(X3,X1))
      | X10 = X3
      | X10 = X1 ),
    inference(fof_simplification,[status(thm)],[c_0_45]) ).

fof(c_0_121_122,plain,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),successor_relation)
      | successor(X3) = X1 ),
    inference(fof_simplification,[status(thm)],[c_0_46]) ).

fof(c_0_122_123,plain,
    ! [X2,X3] :
      ( ~ function(X2)
      | ~ member(X3,universal_class)
      | member(image(X2,X3),universal_class) ),
    inference(fof_simplification,[status(thm)],[c_0_47]) ).

fof(c_0_123_124,plain,
    ! [X1,X3] :
      ( ~ member(ordered_pair(X3,X1),domain_relation)
      | domain_of(X3) = X1 ),
    inference(fof_simplification,[status(thm)],[c_0_48]) ).

fof(c_0_124_125,plain,
    ! [X2] :
      ( ~ operation(X2)
      | cross_product(domain_of(domain_of(X2)),domain_of(domain_of(X2))) = domain_of(X2) ),
    inference(fof_simplification,[status(thm)],[c_0_49]) ).

fof(c_0_125_126,plain,
    ! [X1,X3] :
      ( ~ member(X3,universal_class)
      | member(X3,unordered_pair(X3,X1)) ),
    inference(fof_simplification,[status(thm)],[c_0_50]) ).

fof(c_0_126_127,plain,
    ! [X1,X3] :
      ( ~ member(X1,universal_class)
      | member(X1,unordered_pair(X3,X1)) ),
    inference(fof_simplification,[status(thm)],[c_0_51]) ).

fof(c_0_127_128,plain,
    ! [X1,X3,X10] :
      ( ~ subclass(X3,X1)
      | ~ member(X10,X3)
      | member(X10,X1) ),
    inference(fof_simplification,[status(thm)],[c_0_52]) ).

fof(c_0_128_129,plain,
    ! [X1] :
      ( ~ member(X1,universal_class)
      | X1 = null_class
      | member(apply(choice,X1),X1) ),
    inference(fof_simplification,[status(thm)],[c_0_53]) ).

fof(c_0_129_130,plain,
    ! [X3] :
      ( ~ single_valued_class(X3)
      | subclass(compose(X3,inverse(X3)),identity_relation) ),
    inference(fof_simplification,[status(thm)],[c_0_54]) ).

fof(c_0_130_131,plain,
    ! [X2] :
      ( ~ function(X2)
      | subclass(compose(X2,inverse(X2)),identity_relation) ),
    inference(fof_simplification,[status(thm)],[c_0_55]) ).

fof(c_0_131_132,plain,
    ! [X4,X3] :
      ( ~ member(X4,universal_class)
      | member(X4,complement(X3))
      | member(X4,X3) ),
    inference(fof_simplification,[status(thm)],[c_0_56]) ).

fof(c_0_132_133,plain,
    ! [X4,X3] :
      ( ~ member(X4,complement(X3))
      | ~ member(X4,X3) ),
    inference(fof_simplification,[status(thm)],[c_0_57]) ).

fof(c_0_133_134,axiom,
    ! [X1,X3] :
      ( member(not_subclass_element(X3,X1),X3)
      | subclass(X3,X1) ),
    c_0_58 ).

fof(c_0_134_135,plain,
    ! [X1,X3] :
      ( ~ subclass(X3,X1)
      | ~ subclass(X1,X3)
      | X3 = X1 ),
    inference(fof_simplification,[status(thm)],[c_0_59]) ).

fof(c_0_135_136,plain,
    ! [X2] :
      ( ~ operation(X2)
      | subclass(range_of(X2),domain_of(domain_of(X2))) ),
    inference(fof_simplification,[status(thm)],[c_0_60]) ).

fof(c_0_136_137,plain,
    ! [X3] :
      ( ~ inductive(X3)
      | subclass(image(successor_relation,X3),X3) ),
    inference(fof_simplification,[status(thm)],[c_0_61]) ).

fof(c_0_137_138,plain,
    ! [X2] :
      ( ~ function(X2)
      | subclass(X2,cross_product(universal_class,universal_class)) ),
    inference(fof_simplification,[status(thm)],[c_0_62]) ).

fof(c_0_138_139,plain,
    ! [X3] :
      ( ~ member(X3,universal_class)
      | member(sum_class(X3),universal_class) ),
    inference(fof_simplification,[status(thm)],[c_0_63]) ).

fof(c_0_139_140,plain,
    ! [X10] :
      ( ~ member(X10,universal_class)
      | member(power_class(X10),universal_class) ),
    inference(fof_simplification,[status(thm)],[c_0_64]) ).

fof(c_0_140_141,plain,
    ! [X2] :
      ( ~ function(inverse(X2))
      | ~ function(X2)
      | one_to_one(X2) ),
    inference(fof_simplification,[status(thm)],[c_0_65]) ).

fof(c_0_141_142,axiom,
    ! [X3] :
      ( X3 = null_class
      | member(regular(X3),X3) ),
    c_0_66 ).

fof(c_0_142_143,axiom,
    ! [X3] :
      ( X3 = null_class
      | intersection(X3,regular(X3)) = null_class ),
    c_0_67 ).

fof(c_0_143_144,plain,
    ! [X3] :
      ( ~ inductive(X3)
      | member(null_class,X3) ),
    inference(fof_simplification,[status(thm)],[c_0_68]) ).

fof(c_0_144_145,plain,
    ! [X1] :
      ( ~ inductive(X1)
      | subclass(omega,X1) ),
    inference(fof_simplification,[status(thm)],[c_0_69]) ).

fof(c_0_145_146,axiom,
    ! [X1,X3] :
      ( X3 != X1
      | subclass(X3,X1) ),
    c_0_70 ).

fof(c_0_146_147,axiom,
    ! [X1,X3] :
      ( X3 != X1
      | subclass(X1,X3) ),
    c_0_71 ).

fof(c_0_147_148,plain,
    ! [X2] :
      ( ~ one_to_one(X2)
      | function(inverse(X2)) ),
    inference(fof_simplification,[status(thm)],[c_0_72]) ).

fof(c_0_148_149,plain,
    ! [X2] :
      ( ~ one_to_one(X2)
      | function(X2) ),
    inference(fof_simplification,[status(thm)],[c_0_73]) ).

fof(c_0_149_150,plain,
    ! [X2] :
      ( ~ operation(X2)
      | function(X2) ),
    inference(fof_simplification,[status(thm)],[c_0_74]) ).

fof(c_0_150_151,plain,
    ! [X8,X9,X10] :
      ( ~ operation(X10)
      | ~ operation(X9)
      | ~ compatible(X8,X10,X9)
      | apply(X9,ordered_pair(apply(X8,not_homomorphism1(X8,X10,X9)),apply(X8,not_homomorphism2(X8,X10,X9)))) != apply(X8,apply(X10,ordered_pair(not_homomorphism1(X8,X10,X9),not_homomorphism2(X8,X10,X9))))
      | homomorphism(X8,X10,X9) ),
    inference(variable_rename,[status(thm)],[c_0_75]) ).

fof(c_0_151_152,plain,
    ! [X8,X9,X10] :
      ( ~ operation(X10)
      | ~ operation(X9)
      | ~ compatible(X8,X10,X9)
      | member(ordered_pair(not_homomorphism1(X8,X10,X9),not_homomorphism2(X8,X10,X9)),domain_of(X10))
      | homomorphism(X8,X10,X9) ),
    inference(variable_rename,[status(thm)],[c_0_76]) ).

fof(c_0_152_153,plain,
    ! [X13,X14,X15,X16] :
      ( ~ member(ordered_pair(ordered_pair(X15,X14),X16),X13)
      | ~ member(ordered_pair(ordered_pair(X16,X15),X14),cross_product(cross_product(universal_class,universal_class),universal_class))
      | member(ordered_pair(ordered_pair(X16,X15),X14),rotate(X13)) ),
    inference(variable_rename,[status(thm)],[c_0_77]) ).

fof(c_0_153_154,plain,
    ! [X13,X14,X15,X16] :
      ( ~ member(ordered_pair(ordered_pair(X15,X16),X14),X13)
      | ~ member(ordered_pair(ordered_pair(X16,X15),X14),cross_product(cross_product(universal_class,universal_class),universal_class))
      | member(ordered_pair(ordered_pair(X16,X15),X14),flip(X13)) ),
    inference(variable_rename,[status(thm)],[c_0_78]) ).

fof(c_0_154_155,plain,
    ! [X5,X6,X7] :
      ( ~ member(ordered_pair(X7,ordered_pair(X6,X5)),cross_product(universal_class,cross_product(universal_class,universal_class)))
      | ~ member(X6,domain_of(X7))
      | member(ordered_pair(X7,ordered_pair(X6,apply(X7,X6))),application_function) ),
    inference(variable_rename,[status(thm)],[c_0_79]) ).

fof(c_0_155_156,plain,
    ! [X8,X9,X10,X11,X12] :
      ( ~ homomorphism(X9,X11,X10)
      | ~ member(ordered_pair(X12,X8),domain_of(X11))
      | apply(X10,ordered_pair(apply(X9,X12),apply(X9,X8))) = apply(X9,apply(X11,ordered_pair(X12,X8))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_80])])]) ).

fof(c_0_156_157,plain,
    ! [X10,X11,X12,X13] :
      ( ~ member(X10,image(X11,image(X13,singleton(X12))))
      | ~ member(ordered_pair(X12,X10),cross_product(universal_class,universal_class))
      | member(ordered_pair(X12,X10),compose(X11,X13)) ),
    inference(variable_rename,[status(thm)],[c_0_81]) ).

fof(c_0_157_158,plain,
    ! [X4,X5] :
      ( ~ member(ordered_pair(X5,X4),cross_product(universal_class,universal_class))
      | member(ordered_pair(X5,ordered_pair(X4,compose(X5,X4))),composition_function) ),
    inference(variable_rename,[status(thm)],[c_0_82]) ).

fof(c_0_158_159,plain,
    ! [X13,X14,X15,X16] :
      ( ~ member(ordered_pair(ordered_pair(X16,X15),X14),rotate(X13))
      | member(ordered_pair(ordered_pair(X15,X14),X16),X13) ),
    inference(variable_rename,[status(thm)],[c_0_83]) ).

fof(c_0_159_160,plain,
    ! [X13,X14,X15,X16] :
      ( ~ member(ordered_pair(ordered_pair(X16,X15),X14),flip(X13))
      | member(ordered_pair(ordered_pair(X15,X16),X14),X13) ),
    inference(variable_rename,[status(thm)],[c_0_84]) ).

fof(c_0_160_161,plain,
    ! [X10,X11,X12,X13] :
      ( ~ member(ordered_pair(X12,X10),compose(X11,X13))
      | member(X10,image(X11,image(X13,singleton(X12)))) ),
    inference(variable_rename,[status(thm)],[c_0_85]) ).

fof(c_0_161_162,plain,
    ! [X5,X6,X7] :
      ( ~ member(ordered_pair(X6,X5),cross_product(universal_class,universal_class))
      | compose(X7,X6) != X5
      | member(ordered_pair(X6,X5),compose_class(X7)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_86])])]) ).

fof(c_0_162_163,plain,
    ! [X5,X6,X7] :
      ( ~ member(ordered_pair(X7,ordered_pair(X6,X5)),application_function)
      | member(X6,domain_of(X7)) ),
    inference(variable_rename,[status(thm)],[c_0_87]) ).

fof(c_0_163_164,plain,
    ! [X3] :
      ( ~ function(X3)
      | cross_product(domain_of(domain_of(X3)),domain_of(domain_of(X3))) != domain_of(X3)
      | ~ subclass(range_of(X3),domain_of(domain_of(X3)))
      | operation(X3) ),
    inference(variable_rename,[status(thm)],[c_0_88]) ).

fof(c_0_164_165,plain,
    ! [X5,X6,X7] :
      ( ~ member(ordered_pair(X7,ordered_pair(X6,X5)),composition_function)
      | compose(X7,X6) = X5 ),
    inference(variable_rename,[status(thm)],[c_0_89]) ).

fof(c_0_165_166,plain,
    ! [X5,X6,X7] :
      ( ~ member(ordered_pair(X7,ordered_pair(X6,X5)),application_function)
      | apply(X7,X6) = X5 ),
    inference(variable_rename,[status(thm)],[c_0_90]) ).

fof(c_0_166_167,plain,
    ! [X4,X5] :
      ( ~ member(ordered_pair(X5,X4),cross_product(universal_class,universal_class))
      | ~ member(X5,X4)
      | member(ordered_pair(X5,X4),element_relation) ),
    inference(variable_rename,[status(thm)],[c_0_91]) ).

fof(c_0_167_168,plain,
    ! [X8,X9,X10] :
      ( ~ function(X8)
      | domain_of(domain_of(X10)) != domain_of(X8)
      | ~ subclass(range_of(X8),domain_of(domain_of(X9)))
      | compatible(X8,X10,X9) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_92])])]) ).

fof(c_0_168_169,plain,
    ! [X4,X5] :
      ( successor(X5) != X4
      | ~ member(ordered_pair(X5,X4),cross_product(universal_class,universal_class))
      | member(ordered_pair(X5,X4),successor_relation) ),
    inference(variable_rename,[status(thm)],[c_0_93]) ).

fof(c_0_169_170,plain,
    ! [X8,X9,X10] :
      ( ~ homomorphism(X8,X10,X9)
      | compatible(X8,X10,X9) ),
    inference(variable_rename,[status(thm)],[c_0_94]) ).

fof(c_0_170_171,plain,
    ! [X3] :
      ( ~ subclass(X3,cross_product(universal_class,universal_class))
      | ~ subclass(compose(X3,inverse(X3)),identity_relation)
      | function(X3) ),
    inference(variable_rename,[status(thm)],[c_0_95]) ).

fof(c_0_171_172,plain,
    ! [X5,X6] :
      ( restrict(X6,singleton(X5),universal_class) != null_class
      | ~ member(X5,domain_of(X6)) ),
    inference(variable_rename,[status(thm)],[c_0_96]) ).

fof(c_0_172_173,plain,
    ! [X8,X9,X10] :
      ( ~ compatible(X8,X10,X9)
      | subclass(range_of(X8),domain_of(domain_of(X9))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_97])])]) ).

fof(c_0_173_174,plain,
    ! [X13,X14,X15,X16] :
      ( ~ member(ordered_pair(X16,X15),cross_product(X14,X13))
      | member(X16,X14) ),
    inference(variable_rename,[status(thm)],[c_0_98]) ).

fof(c_0_174_175,plain,
    ! [X13,X14,X15,X16] :
      ( ~ member(ordered_pair(X16,X15),cross_product(X14,X13))
      | member(X15,X13) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_99])])]) ).

fof(c_0_175_176,plain,
    ! [X13,X14,X15,X16] :
      ( ~ member(X16,X14)
      | ~ member(X15,X13)
      | member(ordered_pair(X16,X15),cross_product(X14,X13)) ),
    inference(variable_rename,[status(thm)],[c_0_100]) ).

fof(c_0_176_177,plain,
    ! [X4,X5,X6] :
      ( ~ maps(X5,X6,X4)
      | subclass(range_of(X5),X4) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_101])])]) ).

fof(c_0_177_178,plain,
    ! [X8,X9,X10] :
      ( ~ compatible(X8,X10,X9)
      | domain_of(domain_of(X10)) = domain_of(X8) ),
    inference(variable_rename,[status(thm)],[c_0_102]) ).

fof(c_0_178_179,plain,
    ! [X3,X4] :
      ( ~ function(X4)
      | ~ subclass(range_of(X4),X3)
      | maps(X4,domain_of(X4),X3) ),
    inference(variable_rename,[status(thm)],[c_0_103]) ).

fof(c_0_179_180,plain,
    ! [X5,X6] :
      ( ~ member(X5,universal_class)
      | restrict(X6,singleton(X5),universal_class) = null_class
      | member(X5,domain_of(X6)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_104])])]) ).

fof(c_0_180_181,plain,
    ! [X4,X5,X6] :
      ( ~ maps(X5,X6,X4)
      | domain_of(X5) = X6 ),
    inference(variable_rename,[status(thm)],[c_0_105]) ).

fof(c_0_181_182,plain,
    ! [X5,X6,X7] :
      ( ~ member(X5,cross_product(X7,X6))
      | ordered_pair(first(X5),second(X5)) = X5 ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_106])])]) ).

fof(c_0_182_183,plain,
    ! [X8,X9,X10] :
      ( ~ compatible(X8,X10,X9)
      | function(X8) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_107])])]) ).

fof(c_0_183_184,plain,
    ! [X8,X9,X10] :
      ( ~ homomorphism(X8,X10,X9)
      | operation(X10) ),
    inference(variable_rename,[status(thm)],[c_0_108]) ).

fof(c_0_184_185,plain,
    ! [X8,X9,X10] :
      ( ~ homomorphism(X8,X10,X9)
      | operation(X9) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_109])])]) ).

fof(c_0_185,plain,
    ! [X4,X5,X6] :
      ( ~ maps(X5,X6,X4)
      | function(X5) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_110])])]) ).

fof(c_0_186,plain,
    ! [X5,X6,X7] :
      ( ~ member(ordered_pair(X6,X5),compose_class(X7))
      | compose(X7,X6) = X5 ),
    inference(variable_rename,[status(thm)],[c_0_111]) ).

fof(c_0_187,plain,
    ! [X5,X6,X7] :
      ( ~ member(X5,X7)
      | ~ member(X5,X6)
      | member(X5,intersection(X7,X6)) ),
    inference(variable_rename,[status(thm)],[c_0_112]) ).

fof(c_0_188,plain,
    ! [X4] :
      ( ~ subclass(compose(X4,inverse(X4)),identity_relation)
      | single_valued_class(X4) ),
    inference(variable_rename,[status(thm)],[c_0_113]) ).

fof(c_0_189,plain,
    ! [X4] :
      ( ~ member(null_class,X4)
      | ~ subclass(image(successor_relation,X4),X4)
      | inductive(X4) ),
    inference(variable_rename,[status(thm)],[c_0_114]) ).

fof(c_0_190,plain,
    ! [X4,X5] :
      ( ~ member(not_subclass_element(X5,X4),X4)
      | subclass(X5,X4) ),
    inference(variable_rename,[status(thm)],[c_0_115]) ).

fof(c_0_191,plain,
    ! [X5,X6,X7] :
      ( ~ member(X5,intersection(X7,X6))
      | member(X5,X7) ),
    inference(variable_rename,[status(thm)],[c_0_116]) ).

fof(c_0_192,plain,
    ! [X5,X6,X7] :
      ( ~ member(X5,intersection(X7,X6))
      | member(X5,X6) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_117])])]) ).

fof(c_0_193,plain,
    ! [X4,X5] :
      ( ~ member(ordered_pair(X5,X4),element_relation)
      | member(X5,X4) ),
    inference(variable_rename,[status(thm)],[c_0_118]) ).

fof(c_0_194,plain,
    ! [X4] :
      ( ~ member(X4,universal_class)
      | member(ordered_pair(X4,domain_of(X4)),domain_relation) ),
    inference(variable_rename,[status(thm)],[c_0_119]) ).

fof(c_0_195,plain,
    ! [X11,X12,X13] :
      ( ~ member(X13,unordered_pair(X12,X11))
      | X13 = X12
      | X13 = X11 ),
    inference(variable_rename,[status(thm)],[c_0_120]) ).

fof(c_0_196,plain,
    ! [X4,X5] :
      ( ~ member(ordered_pair(X5,X4),successor_relation)
      | successor(X5) = X4 ),
    inference(variable_rename,[status(thm)],[c_0_121]) ).

fof(c_0_197,plain,
    ! [X4,X5] :
      ( ~ function(X4)
      | ~ member(X5,universal_class)
      | member(image(X4,X5),universal_class) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_122])])]) ).

fof(c_0_198,plain,
    ! [X4,X5] :
      ( ~ member(ordered_pair(X5,X4),domain_relation)
      | domain_of(X5) = X4 ),
    inference(variable_rename,[status(thm)],[c_0_123]) ).

fof(c_0_199,plain,
    ! [X3] :
      ( ~ operation(X3)
      | cross_product(domain_of(domain_of(X3)),domain_of(domain_of(X3))) = domain_of(X3) ),
    inference(variable_rename,[status(thm)],[c_0_124]) ).

fof(c_0_200,plain,
    ! [X4,X5] :
      ( ~ member(X5,universal_class)
      | member(X5,unordered_pair(X5,X4)) ),
    inference(variable_rename,[status(thm)],[c_0_125]) ).

fof(c_0_201,plain,
    ! [X4,X5] :
      ( ~ member(X4,universal_class)
      | member(X4,unordered_pair(X5,X4)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_126])])]) ).

fof(c_0_202,plain,
    ! [X11,X12,X13] :
      ( ~ subclass(X12,X11)
      | ~ member(X13,X12)
      | member(X13,X11) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_127])])]) ).

fof(c_0_203,plain,
    ! [X2] :
      ( ~ member(X2,universal_class)
      | X2 = null_class
      | member(apply(choice,X2),X2) ),
    inference(variable_rename,[status(thm)],[c_0_128]) ).

fof(c_0_204,plain,
    ! [X4] :
      ( ~ single_valued_class(X4)
      | subclass(compose(X4,inverse(X4)),identity_relation) ),
    inference(variable_rename,[status(thm)],[c_0_129]) ).

fof(c_0_205,plain,
    ! [X3] :
      ( ~ function(X3)
      | subclass(compose(X3,inverse(X3)),identity_relation) ),
    inference(variable_rename,[status(thm)],[c_0_130]) ).

fof(c_0_206,plain,
    ! [X5,X6] :
      ( ~ member(X5,universal_class)
      | member(X5,complement(X6))
      | member(X5,X6) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_131])])]) ).

fof(c_0_207,plain,
    ! [X5,X6] :
      ( ~ member(X5,complement(X6))
      | ~ member(X5,X6) ),
    inference(variable_rename,[status(thm)],[c_0_132]) ).

fof(c_0_208,plain,
    ! [X4,X5] :
      ( member(not_subclass_element(X5,X4),X5)
      | subclass(X5,X4) ),
    inference(variable_rename,[status(thm)],[c_0_133]) ).

fof(c_0_209,plain,
    ! [X4,X5] :
      ( ~ subclass(X5,X4)
      | ~ subclass(X4,X5)
      | X5 = X4 ),
    inference(variable_rename,[status(thm)],[c_0_134]) ).

fof(c_0_210,plain,
    ! [X3] :
      ( ~ operation(X3)
      | subclass(range_of(X3),domain_of(domain_of(X3))) ),
    inference(variable_rename,[status(thm)],[c_0_135]) ).

fof(c_0_211,plain,
    ! [X4] :
      ( ~ inductive(X4)
      | subclass(image(successor_relation,X4),X4) ),
    inference(variable_rename,[status(thm)],[c_0_136]) ).

fof(c_0_212,plain,
    ! [X3] :
      ( ~ function(X3)
      | subclass(X3,cross_product(universal_class,universal_class)) ),
    inference(variable_rename,[status(thm)],[c_0_137]) ).

fof(c_0_213,plain,
    ! [X4] :
      ( ~ member(X4,universal_class)
      | member(sum_class(X4),universal_class) ),
    inference(variable_rename,[status(thm)],[c_0_138]) ).

fof(c_0_214,plain,
    ! [X11] :
      ( ~ member(X11,universal_class)
      | member(power_class(X11),universal_class) ),
    inference(variable_rename,[status(thm)],[c_0_139]) ).

fof(c_0_215,plain,
    ! [X3] :
      ( ~ function(inverse(X3))
      | ~ function(X3)
      | one_to_one(X3) ),
    inference(variable_rename,[status(thm)],[c_0_140]) ).

fof(c_0_216,plain,
    ! [X4] :
      ( X4 = null_class
      | member(regular(X4),X4) ),
    inference(variable_rename,[status(thm)],[c_0_141]) ).

fof(c_0_217,plain,
    ! [X4] :
      ( X4 = null_class
      | intersection(X4,regular(X4)) = null_class ),
    inference(variable_rename,[status(thm)],[c_0_142]) ).

fof(c_0_218,plain,
    ! [X4] :
      ( ~ inductive(X4)
      | member(null_class,X4) ),
    inference(variable_rename,[status(thm)],[c_0_143]) ).

fof(c_0_219,plain,
    ! [X2] :
      ( ~ inductive(X2)
      | subclass(omega,X2) ),
    inference(variable_rename,[status(thm)],[c_0_144]) ).

fof(c_0_220,plain,
    ! [X4,X5] :
      ( X5 != X4
      | subclass(X5,X4) ),
    inference(variable_rename,[status(thm)],[c_0_145]) ).

fof(c_0_221,plain,
    ! [X4,X5] :
      ( X5 != X4
      | subclass(X4,X5) ),
    inference(variable_rename,[status(thm)],[c_0_146]) ).

fof(c_0_222,plain,
    ! [X3] :
      ( ~ one_to_one(X3)
      | function(inverse(X3)) ),
    inference(variable_rename,[status(thm)],[c_0_147]) ).

fof(c_0_223,plain,
    ! [X3] :
      ( ~ one_to_one(X3)
      | function(X3) ),
    inference(variable_rename,[status(thm)],[c_0_148]) ).

fof(c_0_224,plain,
    ! [X3] :
      ( ~ operation(X3)
      | function(X3) ),
    inference(variable_rename,[status(thm)],[c_0_149]) ).

cnf(c_0_225,plain,
    ( homomorphism(X1,X2,X3)
    | apply(X3,ordered_pair(apply(X1,not_homomorphism1(X1,X2,X3)),apply(X1,not_homomorphism2(X1,X2,X3)))) != apply(X1,apply(X2,ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3))))
    | ~ compatible(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_150]) ).

cnf(c_0_226,plain,
    ( homomorphism(X1,X2,X3)
    | member(ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3)),domain_of(X2))
    | ~ compatible(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_151]) ).

cnf(c_0_227,plain,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),rotate(X4))
    | ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | ~ member(ordered_pair(ordered_pair(X2,X3),X1),X4) ),
    inference(split_conjunct,[status(thm)],[c_0_152]) ).

cnf(c_0_228,plain,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),flip(X4))
    | ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | ~ member(ordered_pair(ordered_pair(X2,X1),X3),X4) ),
    inference(split_conjunct,[status(thm)],[c_0_153]) ).

cnf(c_0_229,plain,
    ( member(ordered_pair(X1,ordered_pair(X2,apply(X1,X2))),application_function)
    | ~ member(X2,domain_of(X1))
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),cross_product(universal_class,cross_product(universal_class,universal_class))) ),
    inference(split_conjunct,[status(thm)],[c_0_154]) ).

cnf(c_0_230,plain,
    ( apply(X1,ordered_pair(apply(X2,X3),apply(X2,X4))) = apply(X2,apply(X5,ordered_pair(X3,X4)))
    | ~ member(ordered_pair(X3,X4),domain_of(X5))
    | ~ homomorphism(X2,X5,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_155]) ).

cnf(c_0_231,plain,
    ( member(ordered_pair(X1,X2),compose(X3,X4))
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | ~ member(X2,image(X3,image(X4,singleton(X1)))) ),
    inference(split_conjunct,[status(thm)],[c_0_156]) ).

cnf(c_0_232,plain,
    ( member(ordered_pair(X1,ordered_pair(X2,compose(X1,X2))),composition_function)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    inference(split_conjunct,[status(thm)],[c_0_157]) ).

cnf(c_0_233,plain,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),X4)
    | ~ member(ordered_pair(ordered_pair(X3,X1),X2),rotate(X4)) ),
    inference(split_conjunct,[status(thm)],[c_0_158]) ).

cnf(c_0_234,plain,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),X4)
    | ~ member(ordered_pair(ordered_pair(X2,X1),X3),flip(X4)) ),
    inference(split_conjunct,[status(thm)],[c_0_159]) ).

cnf(c_0_235,plain,
    ( member(X1,image(X2,image(X3,singleton(X4))))
    | ~ member(ordered_pair(X4,X1),compose(X2,X3)) ),
    inference(split_conjunct,[status(thm)],[c_0_160]) ).

cnf(c_0_236,plain,
    ( member(ordered_pair(X1,X2),compose_class(X3))
    | compose(X3,X1) != X2
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    inference(split_conjunct,[status(thm)],[c_0_161]) ).

cnf(c_0_237,plain,
    ( member(X1,domain_of(X2))
    | ~ member(ordered_pair(X2,ordered_pair(X1,X3)),application_function) ),
    inference(split_conjunct,[status(thm)],[c_0_162]) ).

cnf(c_0_238,plain,
    ( operation(X1)
    | ~ subclass(range_of(X1),domain_of(domain_of(X1)))
    | cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) != domain_of(X1)
    | ~ function(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_163]) ).

cnf(c_0_239,plain,
    ( compose(X1,X2) = X3
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),composition_function) ),
    inference(split_conjunct,[status(thm)],[c_0_164]) ).

cnf(c_0_240,plain,
    ( apply(X1,X2) = X3
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),application_function) ),
    inference(split_conjunct,[status(thm)],[c_0_165]) ).

cnf(c_0_241,plain,
    ( member(ordered_pair(X1,X2),element_relation)
    | ~ member(X1,X2)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    inference(split_conjunct,[status(thm)],[c_0_166]) ).

cnf(c_0_242,plain,
    ( compatible(X1,X2,X3)
    | ~ subclass(range_of(X1),domain_of(domain_of(X3)))
    | domain_of(domain_of(X2)) != domain_of(X1)
    | ~ function(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_167]) ).

cnf(c_0_243,plain,
    ( member(ordered_pair(X1,X2),successor_relation)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | successor(X1) != X2 ),
    inference(split_conjunct,[status(thm)],[c_0_168]) ).

cnf(c_0_244,plain,
    ( compatible(X1,X2,X3)
    | ~ homomorphism(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_169]) ).

cnf(c_0_245,plain,
    ( function(X1)
    | ~ subclass(compose(X1,inverse(X1)),identity_relation)
    | ~ subclass(X1,cross_product(universal_class,universal_class)) ),
    inference(split_conjunct,[status(thm)],[c_0_170]) ).

cnf(c_0_246,plain,
    ( ~ member(X1,domain_of(X2))
    | restrict(X2,singleton(X1),universal_class) != null_class ),
    inference(split_conjunct,[status(thm)],[c_0_171]) ).

cnf(c_0_247,plain,
    ( subclass(range_of(X1),domain_of(domain_of(X2)))
    | ~ compatible(X1,X3,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_172]) ).

cnf(c_0_248,plain,
    ( member(X1,X2)
    | ~ member(ordered_pair(X1,X3),cross_product(X2,X4)) ),
    inference(split_conjunct,[status(thm)],[c_0_173]) ).

cnf(c_0_249,plain,
    ( member(X1,X2)
    | ~ member(ordered_pair(X3,X1),cross_product(X4,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_174]) ).

cnf(c_0_250,plain,
    ( member(ordered_pair(X1,X2),cross_product(X3,X4))
    | ~ member(X2,X4)
    | ~ member(X1,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_175]) ).

cnf(c_0_251,plain,
    ( subclass(range_of(X1),X2)
    | ~ maps(X1,X3,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_176]) ).

cnf(c_0_252,plain,
    ( domain_of(domain_of(X1)) = domain_of(X2)
    | ~ compatible(X2,X1,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_177]) ).

cnf(c_0_253,plain,
    ( maps(X1,domain_of(X1),X2)
    | ~ subclass(range_of(X1),X2)
    | ~ function(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_178]) ).

cnf(c_0_254,plain,
    ( member(X1,domain_of(X2))
    | restrict(X2,singleton(X1),universal_class) = null_class
    | ~ member(X1,universal_class) ),
    inference(split_conjunct,[status(thm)],[c_0_179]) ).

cnf(c_0_255,plain,
    ( domain_of(X1) = X2
    | ~ maps(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_180]) ).

cnf(c_0_256,plain,
    ( ordered_pair(first(X1),second(X1)) = X1
    | ~ member(X1,cross_product(X2,X3)) ),
    inference(split_conjunct,[status(thm)],[c_0_181]) ).

cnf(c_0_257,plain,
    ( function(X1)
    | ~ compatible(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_182]) ).

cnf(c_0_258,plain,
    ( operation(X1)
    | ~ homomorphism(X2,X1,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_183]) ).

cnf(c_0_259,plain,
    ( operation(X1)
    | ~ homomorphism(X2,X3,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_184]) ).

cnf(c_0_260,plain,
    ( function(X1)
    | ~ maps(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_185]) ).

cnf(c_0_261,plain,
    ( compose(X1,X2) = X3
    | ~ member(ordered_pair(X2,X3),compose_class(X1)) ),
    inference(split_conjunct,[status(thm)],[c_0_186]) ).

cnf(c_0_262,plain,
    ( member(X1,intersection(X2,X3))
    | ~ member(X1,X3)
    | ~ member(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_187]) ).

cnf(c_0_263,plain,
    ( single_valued_class(X1)
    | ~ subclass(compose(X1,inverse(X1)),identity_relation) ),
    inference(split_conjunct,[status(thm)],[c_0_188]) ).

cnf(c_0_264,plain,
    ( inductive(X1)
    | ~ subclass(image(successor_relation,X1),X1)
    | ~ member(null_class,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_189]) ).

cnf(c_0_265,plain,
    ( subclass(X1,X2)
    | ~ member(not_subclass_element(X1,X2),X2) ),
    inference(split_conjunct,[status(thm)],[c_0_190]) ).

cnf(c_0_266,plain,
    ( member(X1,X2)
    | ~ member(X1,intersection(X2,X3)) ),
    inference(split_conjunct,[status(thm)],[c_0_191]) ).

cnf(c_0_267,plain,
    ( member(X1,X2)
    | ~ member(X1,intersection(X3,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_192]) ).

cnf(c_0_268,plain,
    ( member(X1,X2)
    | ~ member(ordered_pair(X1,X2),element_relation) ),
    inference(split_conjunct,[status(thm)],[c_0_193]) ).

cnf(c_0_269,plain,
    ( member(ordered_pair(X1,domain_of(X1)),domain_relation)
    | ~ member(X1,universal_class) ),
    inference(split_conjunct,[status(thm)],[c_0_194]) ).

cnf(c_0_270,plain,
    ( X1 = X2
    | X1 = X3
    | ~ member(X1,unordered_pair(X3,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_195]) ).

cnf(c_0_271,plain,
    ( successor(X1) = X2
    | ~ member(ordered_pair(X1,X2),successor_relation) ),
    inference(split_conjunct,[status(thm)],[c_0_196]) ).

cnf(c_0_272,plain,
    ( member(image(X1,X2),universal_class)
    | ~ member(X2,universal_class)
    | ~ function(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_197]) ).

cnf(c_0_273,plain,
    ( domain_of(X1) = X2
    | ~ member(ordered_pair(X1,X2),domain_relation) ),
    inference(split_conjunct,[status(thm)],[c_0_198]) ).

cnf(c_0_274,plain,
    ( cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) = domain_of(X1)
    | ~ operation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_199]) ).

cnf(c_0_275,plain,
    ( member(X1,unordered_pair(X1,X2))
    | ~ member(X1,universal_class) ),
    inference(split_conjunct,[status(thm)],[c_0_200]) ).

cnf(c_0_276,plain,
    ( member(X1,unordered_pair(X2,X1))
    | ~ member(X1,universal_class) ),
    inference(split_conjunct,[status(thm)],[c_0_201]) ).

cnf(c_0_277,plain,
    ( member(X1,X2)
    | ~ member(X1,X3)
    | ~ subclass(X3,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_202]) ).

cnf(c_0_278,plain,
    ( member(apply(choice,X1),X1)
    | X1 = null_class
    | ~ member(X1,universal_class) ),
    inference(split_conjunct,[status(thm)],[c_0_203]) ).

cnf(c_0_279,plain,
    ( subclass(compose(X1,inverse(X1)),identity_relation)
    | ~ single_valued_class(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_204]) ).

cnf(c_0_280,plain,
    ( subclass(compose(X1,inverse(X1)),identity_relation)
    | ~ function(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_205]) ).

cnf(c_0_281,plain,
    ( member(X1,X2)
    | member(X1,complement(X2))
    | ~ member(X1,universal_class) ),
    inference(split_conjunct,[status(thm)],[c_0_206]) ).

cnf(c_0_282,plain,
    ( ~ member(X1,X2)
    | ~ member(X1,complement(X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_207]) ).

cnf(c_0_283,plain,
    ( subclass(X1,X2)
    | member(not_subclass_element(X1,X2),X1) ),
    inference(split_conjunct,[status(thm)],[c_0_208]) ).

cnf(c_0_284,plain,
    ( X1 = X2
    | ~ subclass(X2,X1)
    | ~ subclass(X1,X2) ),
    inference(split_conjunct,[status(thm)],[c_0_209]) ).

cnf(c_0_285,plain,
    ( subclass(range_of(X1),domain_of(domain_of(X1)))
    | ~ operation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_210]) ).

cnf(c_0_286,plain,
    ( subclass(image(successor_relation,X1),X1)
    | ~ inductive(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_211]) ).

cnf(c_0_287,plain,
    ( subclass(X1,cross_product(universal_class,universal_class))
    | ~ function(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_212]) ).

cnf(c_0_288,plain,
    ( member(sum_class(X1),universal_class)
    | ~ member(X1,universal_class) ),
    inference(split_conjunct,[status(thm)],[c_0_213]) ).

cnf(c_0_289,plain,
    ( member(power_class(X1),universal_class)
    | ~ member(X1,universal_class) ),
    inference(split_conjunct,[status(thm)],[c_0_214]) ).

cnf(c_0_290,plain,
    ( one_to_one(X1)
    | ~ function(X1)
    | ~ function(inverse(X1)) ),
    inference(split_conjunct,[status(thm)],[c_0_215]) ).

cnf(c_0_291,plain,
    ( member(regular(X1),X1)
    | X1 = null_class ),
    inference(split_conjunct,[status(thm)],[c_0_216]) ).

cnf(c_0_292,plain,
    ( intersection(X1,regular(X1)) = null_class
    | X1 = null_class ),
    inference(split_conjunct,[status(thm)],[c_0_217]) ).

cnf(c_0_293,plain,
    ( member(null_class,X1)
    | ~ inductive(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_218]) ).

cnf(c_0_294,plain,
    ( subclass(omega,X1)
    | ~ inductive(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_219]) ).

cnf(c_0_295,plain,
    ( subclass(X1,X2)
    | X1 != X2 ),
    inference(split_conjunct,[status(thm)],[c_0_220]) ).

cnf(c_0_296,plain,
    ( subclass(X1,X2)
    | X2 != X1 ),
    inference(split_conjunct,[status(thm)],[c_0_221]) ).

cnf(c_0_297,plain,
    ( function(inverse(X1))
    | ~ one_to_one(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_222]) ).

cnf(c_0_298,plain,
    ( function(X1)
    | ~ one_to_one(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_223]) ).

cnf(c_0_299,plain,
    ( function(X1)
    | ~ operation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_224]) ).

cnf(c_0_300,plain,
    ( homomorphism(X1,X2,X3)
    | apply(X3,ordered_pair(apply(X1,not_homomorphism1(X1,X2,X3)),apply(X1,not_homomorphism2(X1,X2,X3)))) != apply(X1,apply(X2,ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3))))
    | ~ compatible(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    c_0_225,
    [final] ).

cnf(c_0_301,plain,
    ( homomorphism(X1,X2,X3)
    | member(ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3)),domain_of(X2))
    | ~ compatible(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    c_0_226,
    [final] ).

cnf(c_0_302,plain,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),rotate(X4))
    | ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | ~ member(ordered_pair(ordered_pair(X2,X3),X1),X4) ),
    c_0_227,
    [final] ).

cnf(c_0_303,plain,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),flip(X4))
    | ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | ~ member(ordered_pair(ordered_pair(X2,X1),X3),X4) ),
    c_0_228,
    [final] ).

cnf(c_0_304,plain,
    ( member(ordered_pair(X1,ordered_pair(X2,apply(X1,X2))),application_function)
    | ~ member(X2,domain_of(X1))
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),cross_product(universal_class,cross_product(universal_class,universal_class))) ),
    c_0_229,
    [final] ).

cnf(c_0_305,plain,
    ( apply(X1,ordered_pair(apply(X2,X3),apply(X2,X4))) = apply(X2,apply(X5,ordered_pair(X3,X4)))
    | ~ member(ordered_pair(X3,X4),domain_of(X5))
    | ~ homomorphism(X2,X5,X1) ),
    c_0_230,
    [final] ).

cnf(c_0_306,plain,
    ( member(ordered_pair(X1,X2),compose(X3,X4))
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | ~ member(X2,image(X3,image(X4,singleton(X1)))) ),
    c_0_231,
    [final] ).

cnf(c_0_307,plain,
    ( member(ordered_pair(X1,ordered_pair(X2,compose(X1,X2))),composition_function)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    c_0_232,
    [final] ).

cnf(c_0_308,plain,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),X4)
    | ~ member(ordered_pair(ordered_pair(X3,X1),X2),rotate(X4)) ),
    c_0_233,
    [final] ).

cnf(c_0_309,plain,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),X4)
    | ~ member(ordered_pair(ordered_pair(X2,X1),X3),flip(X4)) ),
    c_0_234,
    [final] ).

cnf(c_0_310,plain,
    ( member(X1,image(X2,image(X3,singleton(X4))))
    | ~ member(ordered_pair(X4,X1),compose(X2,X3)) ),
    c_0_235,
    [final] ).

cnf(c_0_311,plain,
    ( member(ordered_pair(X1,X2),compose_class(X3))
    | compose(X3,X1) != X2
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    c_0_236,
    [final] ).

cnf(c_0_312,plain,
    ( member(X1,domain_of(X2))
    | ~ member(ordered_pair(X2,ordered_pair(X1,X3)),application_function) ),
    c_0_237,
    [final] ).

cnf(c_0_313,plain,
    ( operation(X1)
    | ~ subclass(range_of(X1),domain_of(domain_of(X1)))
    | cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) != domain_of(X1)
    | ~ function(X1) ),
    c_0_238,
    [final] ).

cnf(c_0_314,plain,
    ( compose(X1,X2) = X3
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),composition_function) ),
    c_0_239,
    [final] ).

cnf(c_0_315,plain,
    ( apply(X1,X2) = X3
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),application_function) ),
    c_0_240,
    [final] ).

cnf(c_0_316,plain,
    ( member(ordered_pair(X1,X2),element_relation)
    | ~ member(X1,X2)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    c_0_241,
    [final] ).

cnf(c_0_317,plain,
    ( compatible(X1,X2,X3)
    | ~ subclass(range_of(X1),domain_of(domain_of(X3)))
    | domain_of(domain_of(X2)) != domain_of(X1)
    | ~ function(X1) ),
    c_0_242,
    [final] ).

cnf(c_0_318,plain,
    ( member(ordered_pair(X1,X2),successor_relation)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | successor(X1) != X2 ),
    c_0_243,
    [final] ).

cnf(c_0_319,plain,
    ( compatible(X1,X2,X3)
    | ~ homomorphism(X1,X2,X3) ),
    c_0_244,
    [final] ).

cnf(c_0_320,plain,
    ( function(X1)
    | ~ subclass(compose(X1,inverse(X1)),identity_relation)
    | ~ subclass(X1,cross_product(universal_class,universal_class)) ),
    c_0_245,
    [final] ).

cnf(c_0_321,plain,
    ( ~ member(X1,domain_of(X2))
    | restrict(X2,singleton(X1),universal_class) != null_class ),
    c_0_246,
    [final] ).

cnf(c_0_322,plain,
    ( subclass(range_of(X1),domain_of(domain_of(X2)))
    | ~ compatible(X1,X3,X2) ),
    c_0_247,
    [final] ).

cnf(c_0_323,plain,
    ( member(X1,X2)
    | ~ member(ordered_pair(X1,X3),cross_product(X2,X4)) ),
    c_0_248,
    [final] ).

cnf(c_0_324,plain,
    ( member(X1,X2)
    | ~ member(ordered_pair(X3,X1),cross_product(X4,X2)) ),
    c_0_249,
    [final] ).

cnf(c_0_325,plain,
    ( member(ordered_pair(X1,X2),cross_product(X3,X4))
    | ~ member(X2,X4)
    | ~ member(X1,X3) ),
    c_0_250,
    [final] ).

cnf(c_0_326,plain,
    ( subclass(range_of(X1),X2)
    | ~ maps(X1,X3,X2) ),
    c_0_251,
    [final] ).

cnf(c_0_327,plain,
    ( domain_of(domain_of(X1)) = domain_of(X2)
    | ~ compatible(X2,X1,X3) ),
    c_0_252,
    [final] ).

cnf(c_0_328,plain,
    ( maps(X1,domain_of(X1),X2)
    | ~ subclass(range_of(X1),X2)
    | ~ function(X1) ),
    c_0_253,
    [final] ).

cnf(c_0_329,plain,
    ( member(X1,domain_of(X2))
    | restrict(X2,singleton(X1),universal_class) = null_class
    | ~ member(X1,universal_class) ),
    c_0_254,
    [final] ).

cnf(c_0_330,plain,
    ( domain_of(X1) = X2
    | ~ maps(X1,X2,X3) ),
    c_0_255,
    [final] ).

cnf(c_0_331,plain,
    ( ordered_pair(first(X1),second(X1)) = X1
    | ~ member(X1,cross_product(X2,X3)) ),
    c_0_256,
    [final] ).

cnf(c_0_332,plain,
    ( function(X1)
    | ~ compatible(X1,X2,X3) ),
    c_0_257,
    [final] ).

cnf(c_0_333,plain,
    ( operation(X1)
    | ~ homomorphism(X2,X1,X3) ),
    c_0_258,
    [final] ).

cnf(c_0_334,plain,
    ( operation(X1)
    | ~ homomorphism(X2,X3,X1) ),
    c_0_259,
    [final] ).

cnf(c_0_335,plain,
    ( function(X1)
    | ~ maps(X1,X2,X3) ),
    c_0_260,
    [final] ).

cnf(c_0_336,plain,
    ( compose(X1,X2) = X3
    | ~ member(ordered_pair(X2,X3),compose_class(X1)) ),
    c_0_261,
    [final] ).

cnf(c_0_337,plain,
    ( member(X1,intersection(X2,X3))
    | ~ member(X1,X3)
    | ~ member(X1,X2) ),
    c_0_262,
    [final] ).

cnf(c_0_338,plain,
    ( single_valued_class(X1)
    | ~ subclass(compose(X1,inverse(X1)),identity_relation) ),
    c_0_263,
    [final] ).

cnf(c_0_339,plain,
    ( inductive(X1)
    | ~ subclass(image(successor_relation,X1),X1)
    | ~ member(null_class,X1) ),
    c_0_264,
    [final] ).

cnf(c_0_340,plain,
    ( subclass(X1,X2)
    | ~ member(not_subclass_element(X1,X2),X2) ),
    c_0_265,
    [final] ).

cnf(c_0_341,plain,
    ( member(X1,X2)
    | ~ member(X1,intersection(X2,X3)) ),
    c_0_266,
    [final] ).

cnf(c_0_342,plain,
    ( member(X1,X2)
    | ~ member(X1,intersection(X3,X2)) ),
    c_0_267,
    [final] ).

cnf(c_0_343,plain,
    ( member(X1,X2)
    | ~ member(ordered_pair(X1,X2),element_relation) ),
    c_0_268,
    [final] ).

cnf(c_0_344,plain,
    ( member(ordered_pair(X1,domain_of(X1)),domain_relation)
    | ~ member(X1,universal_class) ),
    c_0_269,
    [final] ).

cnf(c_0_345,plain,
    ( X1 = X2
    | X1 = X3
    | ~ member(X1,unordered_pair(X3,X2)) ),
    c_0_270,
    [final] ).

cnf(c_0_346,plain,
    ( successor(X1) = X2
    | ~ member(ordered_pair(X1,X2),successor_relation) ),
    c_0_271,
    [final] ).

cnf(c_0_347,plain,
    ( member(image(X1,X2),universal_class)
    | ~ member(X2,universal_class)
    | ~ function(X1) ),
    c_0_272,
    [final] ).

cnf(c_0_348,plain,
    ( domain_of(X1) = X2
    | ~ member(ordered_pair(X1,X2),domain_relation) ),
    c_0_273,
    [final] ).

cnf(c_0_349,plain,
    ( cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) = domain_of(X1)
    | ~ operation(X1) ),
    c_0_274,
    [final] ).

cnf(c_0_350,plain,
    ( member(X1,unordered_pair(X1,X2))
    | ~ member(X1,universal_class) ),
    c_0_275,
    [final] ).

cnf(c_0_351,plain,
    ( member(X1,unordered_pair(X2,X1))
    | ~ member(X1,universal_class) ),
    c_0_276,
    [final] ).

cnf(c_0_352,plain,
    ( member(X1,X2)
    | ~ member(X1,X3)
    | ~ subclass(X3,X2) ),
    c_0_277,
    [final] ).

cnf(c_0_353,plain,
    ( member(apply(choice,X1),X1)
    | X1 = null_class
    | ~ member(X1,universal_class) ),
    c_0_278,
    [final] ).

cnf(c_0_354,plain,
    ( subclass(compose(X1,inverse(X1)),identity_relation)
    | ~ single_valued_class(X1) ),
    c_0_279,
    [final] ).

cnf(c_0_355,plain,
    ( subclass(compose(X1,inverse(X1)),identity_relation)
    | ~ function(X1) ),
    c_0_280,
    [final] ).

cnf(c_0_356,plain,
    ( member(X1,X2)
    | member(X1,complement(X2))
    | ~ member(X1,universal_class) ),
    c_0_281,
    [final] ).

cnf(c_0_357,plain,
    ( ~ member(X1,X2)
    | ~ member(X1,complement(X2)) ),
    c_0_282,
    [final] ).

cnf(c_0_358,plain,
    ( subclass(X1,X2)
    | member(not_subclass_element(X1,X2),X1) ),
    c_0_283,
    [final] ).

cnf(c_0_359,plain,
    ( X1 = X2
    | ~ subclass(X2,X1)
    | ~ subclass(X1,X2) ),
    c_0_284,
    [final] ).

cnf(c_0_360,plain,
    ( subclass(range_of(X1),domain_of(domain_of(X1)))
    | ~ operation(X1) ),
    c_0_285,
    [final] ).

cnf(c_0_361,plain,
    ( subclass(image(successor_relation,X1),X1)
    | ~ inductive(X1) ),
    c_0_286,
    [final] ).

cnf(c_0_362,plain,
    ( subclass(X1,cross_product(universal_class,universal_class))
    | ~ function(X1) ),
    c_0_287,
    [final] ).

cnf(c_0_363,plain,
    ( member(sum_class(X1),universal_class)
    | ~ member(X1,universal_class) ),
    c_0_288,
    [final] ).

cnf(c_0_364,plain,
    ( member(power_class(X1),universal_class)
    | ~ member(X1,universal_class) ),
    c_0_289,
    [final] ).

cnf(c_0_365,plain,
    ( one_to_one(X1)
    | ~ function(X1)
    | ~ function(inverse(X1)) ),
    c_0_290,
    [final] ).

cnf(c_0_366,plain,
    ( member(regular(X1),X1)
    | X1 = null_class ),
    c_0_291,
    [final] ).

cnf(c_0_367,plain,
    ( intersection(X1,regular(X1)) = null_class
    | X1 = null_class ),
    c_0_292,
    [final] ).

cnf(c_0_368,plain,
    ( member(null_class,X1)
    | ~ inductive(X1) ),
    c_0_293,
    [final] ).

cnf(c_0_369,plain,
    ( subclass(omega,X1)
    | ~ inductive(X1) ),
    c_0_294,
    [final] ).

cnf(c_0_370,plain,
    ( subclass(X1,X2)
    | X1 != X2 ),
    c_0_295,
    [final] ).

cnf(c_0_371,plain,
    ( subclass(X1,X2)
    | X2 != X1 ),
    c_0_296,
    [final] ).

cnf(c_0_372,plain,
    ( function(inverse(X1))
    | ~ one_to_one(X1) ),
    c_0_297,
    [final] ).

cnf(c_0_373,plain,
    ( function(X1)
    | ~ one_to_one(X1) ),
    c_0_298,
    [final] ).

cnf(c_0_374,plain,
    ( function(X1)
    | ~ operation(X1) ),
    c_0_299,
    [final] ).

% End CNF derivation
% Generating one_way clauses for all literals in the CNF.
cnf(c_0_300_0,axiom,
    ( homomorphism(X1,X2,X3)
    | apply(X3,ordered_pair(apply(X1,not_homomorphism1(X1,X2,X3)),apply(X1,not_homomorphism2(X1,X2,X3)))) != apply(X1,apply(X2,ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3))))
    | ~ compatible(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    inference(literals_permutation,[status(thm)],[c_0_300]) ).

cnf(c_0_300_1,axiom,
    ( apply(X3,ordered_pair(apply(X1,not_homomorphism1(X1,X2,X3)),apply(X1,not_homomorphism2(X1,X2,X3)))) != apply(X1,apply(X2,ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3))))
    | homomorphism(X1,X2,X3)
    | ~ compatible(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    inference(literals_permutation,[status(thm)],[c_0_300]) ).

cnf(c_0_300_2,axiom,
    ( ~ compatible(X1,X2,X3)
    | apply(X3,ordered_pair(apply(X1,not_homomorphism1(X1,X2,X3)),apply(X1,not_homomorphism2(X1,X2,X3)))) != apply(X1,apply(X2,ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3))))
    | homomorphism(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    inference(literals_permutation,[status(thm)],[c_0_300]) ).

cnf(c_0_300_3,axiom,
    ( ~ operation(X3)
    | ~ compatible(X1,X2,X3)
    | apply(X3,ordered_pair(apply(X1,not_homomorphism1(X1,X2,X3)),apply(X1,not_homomorphism2(X1,X2,X3)))) != apply(X1,apply(X2,ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3))))
    | homomorphism(X1,X2,X3)
    | ~ operation(X2) ),
    inference(literals_permutation,[status(thm)],[c_0_300]) ).

cnf(c_0_300_4,axiom,
    ( ~ operation(X2)
    | ~ operation(X3)
    | ~ compatible(X1,X2,X3)
    | apply(X3,ordered_pair(apply(X1,not_homomorphism1(X1,X2,X3)),apply(X1,not_homomorphism2(X1,X2,X3)))) != apply(X1,apply(X2,ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3))))
    | homomorphism(X1,X2,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_300]) ).

cnf(c_0_301_0,axiom,
    ( homomorphism(X1,X2,X3)
    | member(ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3)),domain_of(X2))
    | ~ compatible(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    inference(literals_permutation,[status(thm)],[c_0_301]) ).

cnf(c_0_301_1,axiom,
    ( member(ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3)),domain_of(X2))
    | homomorphism(X1,X2,X3)
    | ~ compatible(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    inference(literals_permutation,[status(thm)],[c_0_301]) ).

cnf(c_0_301_2,axiom,
    ( ~ compatible(X1,X2,X3)
    | member(ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3)),domain_of(X2))
    | homomorphism(X1,X2,X3)
    | ~ operation(X3)
    | ~ operation(X2) ),
    inference(literals_permutation,[status(thm)],[c_0_301]) ).

cnf(c_0_301_3,axiom,
    ( ~ operation(X3)
    | ~ compatible(X1,X2,X3)
    | member(ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3)),domain_of(X2))
    | homomorphism(X1,X2,X3)
    | ~ operation(X2) ),
    inference(literals_permutation,[status(thm)],[c_0_301]) ).

cnf(c_0_301_4,axiom,
    ( ~ operation(X2)
    | ~ operation(X3)
    | ~ compatible(X1,X2,X3)
    | member(ordered_pair(not_homomorphism1(X1,X2,X3),not_homomorphism2(X1,X2,X3)),domain_of(X2))
    | homomorphism(X1,X2,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_301]) ).

cnf(c_0_302_0,axiom,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),rotate(X4))
    | ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | ~ member(ordered_pair(ordered_pair(X2,X3),X1),X4) ),
    inference(literals_permutation,[status(thm)],[c_0_302]) ).

cnf(c_0_302_1,axiom,
    ( ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | member(ordered_pair(ordered_pair(X1,X2),X3),rotate(X4))
    | ~ member(ordered_pair(ordered_pair(X2,X3),X1),X4) ),
    inference(literals_permutation,[status(thm)],[c_0_302]) ).

cnf(c_0_302_2,axiom,
    ( ~ member(ordered_pair(ordered_pair(X2,X3),X1),X4)
    | ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | member(ordered_pair(ordered_pair(X1,X2),X3),rotate(X4)) ),
    inference(literals_permutation,[status(thm)],[c_0_302]) ).

cnf(c_0_303_0,axiom,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),flip(X4))
    | ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | ~ member(ordered_pair(ordered_pair(X2,X1),X3),X4) ),
    inference(literals_permutation,[status(thm)],[c_0_303]) ).

cnf(c_0_303_1,axiom,
    ( ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | member(ordered_pair(ordered_pair(X1,X2),X3),flip(X4))
    | ~ member(ordered_pair(ordered_pair(X2,X1),X3),X4) ),
    inference(literals_permutation,[status(thm)],[c_0_303]) ).

cnf(c_0_303_2,axiom,
    ( ~ member(ordered_pair(ordered_pair(X2,X1),X3),X4)
    | ~ member(ordered_pair(ordered_pair(X1,X2),X3),cross_product(cross_product(universal_class,universal_class),universal_class))
    | member(ordered_pair(ordered_pair(X1,X2),X3),flip(X4)) ),
    inference(literals_permutation,[status(thm)],[c_0_303]) ).

cnf(c_0_304_0,axiom,
    ( member(ordered_pair(X1,ordered_pair(X2,apply(X1,X2))),application_function)
    | ~ member(X2,domain_of(X1))
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),cross_product(universal_class,cross_product(universal_class,universal_class))) ),
    inference(literals_permutation,[status(thm)],[c_0_304]) ).

cnf(c_0_304_1,axiom,
    ( ~ member(X2,domain_of(X1))
    | member(ordered_pair(X1,ordered_pair(X2,apply(X1,X2))),application_function)
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),cross_product(universal_class,cross_product(universal_class,universal_class))) ),
    inference(literals_permutation,[status(thm)],[c_0_304]) ).

cnf(c_0_304_2,axiom,
    ( ~ member(ordered_pair(X1,ordered_pair(X2,X3)),cross_product(universal_class,cross_product(universal_class,universal_class)))
    | ~ member(X2,domain_of(X1))
    | member(ordered_pair(X1,ordered_pair(X2,apply(X1,X2))),application_function) ),
    inference(literals_permutation,[status(thm)],[c_0_304]) ).

cnf(c_0_305_0,axiom,
    ( apply(X1,ordered_pair(apply(X2,X3),apply(X2,X4))) = apply(X2,apply(X5,ordered_pair(X3,X4)))
    | ~ member(ordered_pair(X3,X4),domain_of(X5))
    | ~ homomorphism(X2,X5,X1) ),
    inference(literals_permutation,[status(thm)],[c_0_305]) ).

cnf(c_0_305_1,axiom,
    ( ~ member(ordered_pair(X3,X4),domain_of(X5))
    | apply(X1,ordered_pair(apply(X2,X3),apply(X2,X4))) = apply(X2,apply(X5,ordered_pair(X3,X4)))
    | ~ homomorphism(X2,X5,X1) ),
    inference(literals_permutation,[status(thm)],[c_0_305]) ).

cnf(c_0_305_2,axiom,
    ( ~ homomorphism(X2,X5,X1)
    | ~ member(ordered_pair(X3,X4),domain_of(X5))
    | apply(X1,ordered_pair(apply(X2,X3),apply(X2,X4))) = apply(X2,apply(X5,ordered_pair(X3,X4))) ),
    inference(literals_permutation,[status(thm)],[c_0_305]) ).

cnf(c_0_306_0,axiom,
    ( member(ordered_pair(X1,X2),compose(X3,X4))
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | ~ member(X2,image(X3,image(X4,singleton(X1)))) ),
    inference(literals_permutation,[status(thm)],[c_0_306]) ).

cnf(c_0_306_1,axiom,
    ( ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | member(ordered_pair(X1,X2),compose(X3,X4))
    | ~ member(X2,image(X3,image(X4,singleton(X1)))) ),
    inference(literals_permutation,[status(thm)],[c_0_306]) ).

cnf(c_0_306_2,axiom,
    ( ~ member(X2,image(X3,image(X4,singleton(X1))))
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | member(ordered_pair(X1,X2),compose(X3,X4)) ),
    inference(literals_permutation,[status(thm)],[c_0_306]) ).

cnf(c_0_307_0,axiom,
    ( member(ordered_pair(X1,ordered_pair(X2,compose(X1,X2))),composition_function)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    inference(literals_permutation,[status(thm)],[c_0_307]) ).

cnf(c_0_307_1,axiom,
    ( ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | member(ordered_pair(X1,ordered_pair(X2,compose(X1,X2))),composition_function) ),
    inference(literals_permutation,[status(thm)],[c_0_307]) ).

cnf(c_0_308_0,axiom,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),X4)
    | ~ member(ordered_pair(ordered_pair(X3,X1),X2),rotate(X4)) ),
    inference(literals_permutation,[status(thm)],[c_0_308]) ).

cnf(c_0_308_1,axiom,
    ( ~ member(ordered_pair(ordered_pair(X3,X1),X2),rotate(X4))
    | member(ordered_pair(ordered_pair(X1,X2),X3),X4) ),
    inference(literals_permutation,[status(thm)],[c_0_308]) ).

cnf(c_0_309_0,axiom,
    ( member(ordered_pair(ordered_pair(X1,X2),X3),X4)
    | ~ member(ordered_pair(ordered_pair(X2,X1),X3),flip(X4)) ),
    inference(literals_permutation,[status(thm)],[c_0_309]) ).

cnf(c_0_309_1,axiom,
    ( ~ member(ordered_pair(ordered_pair(X2,X1),X3),flip(X4))
    | member(ordered_pair(ordered_pair(X1,X2),X3),X4) ),
    inference(literals_permutation,[status(thm)],[c_0_309]) ).

cnf(c_0_310_0,axiom,
    ( member(X1,image(X2,image(X3,singleton(X4))))
    | ~ member(ordered_pair(X4,X1),compose(X2,X3)) ),
    inference(literals_permutation,[status(thm)],[c_0_310]) ).

cnf(c_0_310_1,axiom,
    ( ~ member(ordered_pair(X4,X1),compose(X2,X3))
    | member(X1,image(X2,image(X3,singleton(X4)))) ),
    inference(literals_permutation,[status(thm)],[c_0_310]) ).

cnf(c_0_311_0,axiom,
    ( member(ordered_pair(X1,X2),compose_class(X3))
    | compose(X3,X1) != X2
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    inference(literals_permutation,[status(thm)],[c_0_311]) ).

cnf(c_0_311_1,axiom,
    ( compose(X3,X1) != X2
    | member(ordered_pair(X1,X2),compose_class(X3))
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    inference(literals_permutation,[status(thm)],[c_0_311]) ).

cnf(c_0_311_2,axiom,
    ( ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | compose(X3,X1) != X2
    | member(ordered_pair(X1,X2),compose_class(X3)) ),
    inference(literals_permutation,[status(thm)],[c_0_311]) ).

cnf(c_0_312_0,axiom,
    ( member(X1,domain_of(X2))
    | ~ member(ordered_pair(X2,ordered_pair(X1,X3)),application_function) ),
    inference(literals_permutation,[status(thm)],[c_0_312]) ).

cnf(c_0_312_1,axiom,
    ( ~ member(ordered_pair(X2,ordered_pair(X1,X3)),application_function)
    | member(X1,domain_of(X2)) ),
    inference(literals_permutation,[status(thm)],[c_0_312]) ).

cnf(c_0_313_0,axiom,
    ( operation(X1)
    | ~ subclass(range_of(X1),domain_of(domain_of(X1)))
    | cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) != domain_of(X1)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_313]) ).

cnf(c_0_313_1,axiom,
    ( ~ subclass(range_of(X1),domain_of(domain_of(X1)))
    | operation(X1)
    | cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) != domain_of(X1)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_313]) ).

cnf(c_0_313_2,axiom,
    ( cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) != domain_of(X1)
    | ~ subclass(range_of(X1),domain_of(domain_of(X1)))
    | operation(X1)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_313]) ).

cnf(c_0_313_3,axiom,
    ( ~ function(X1)
    | cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) != domain_of(X1)
    | ~ subclass(range_of(X1),domain_of(domain_of(X1)))
    | operation(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_313]) ).

cnf(c_0_314_0,axiom,
    ( compose(X1,X2) = X3
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),composition_function) ),
    inference(literals_permutation,[status(thm)],[c_0_314]) ).

cnf(c_0_314_1,axiom,
    ( ~ member(ordered_pair(X1,ordered_pair(X2,X3)),composition_function)
    | compose(X1,X2) = X3 ),
    inference(literals_permutation,[status(thm)],[c_0_314]) ).

cnf(c_0_315_0,axiom,
    ( apply(X1,X2) = X3
    | ~ member(ordered_pair(X1,ordered_pair(X2,X3)),application_function) ),
    inference(literals_permutation,[status(thm)],[c_0_315]) ).

cnf(c_0_315_1,axiom,
    ( ~ member(ordered_pair(X1,ordered_pair(X2,X3)),application_function)
    | apply(X1,X2) = X3 ),
    inference(literals_permutation,[status(thm)],[c_0_315]) ).

cnf(c_0_316_0,axiom,
    ( member(ordered_pair(X1,X2),element_relation)
    | ~ member(X1,X2)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    inference(literals_permutation,[status(thm)],[c_0_316]) ).

cnf(c_0_316_1,axiom,
    ( ~ member(X1,X2)
    | member(ordered_pair(X1,X2),element_relation)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class)) ),
    inference(literals_permutation,[status(thm)],[c_0_316]) ).

cnf(c_0_316_2,axiom,
    ( ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | ~ member(X1,X2)
    | member(ordered_pair(X1,X2),element_relation) ),
    inference(literals_permutation,[status(thm)],[c_0_316]) ).

cnf(c_0_317_0,axiom,
    ( compatible(X1,X2,X3)
    | ~ subclass(range_of(X1),domain_of(domain_of(X3)))
    | domain_of(domain_of(X2)) != domain_of(X1)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_317]) ).

cnf(c_0_317_1,axiom,
    ( ~ subclass(range_of(X1),domain_of(domain_of(X3)))
    | compatible(X1,X2,X3)
    | domain_of(domain_of(X2)) != domain_of(X1)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_317]) ).

cnf(c_0_317_2,axiom,
    ( domain_of(domain_of(X2)) != domain_of(X1)
    | ~ subclass(range_of(X1),domain_of(domain_of(X3)))
    | compatible(X1,X2,X3)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_317]) ).

cnf(c_0_317_3,axiom,
    ( ~ function(X1)
    | domain_of(domain_of(X2)) != domain_of(X1)
    | ~ subclass(range_of(X1),domain_of(domain_of(X3)))
    | compatible(X1,X2,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_317]) ).

cnf(c_0_318_0,axiom,
    ( member(ordered_pair(X1,X2),successor_relation)
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | successor(X1) != X2 ),
    inference(literals_permutation,[status(thm)],[c_0_318]) ).

cnf(c_0_318_1,axiom,
    ( ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | member(ordered_pair(X1,X2),successor_relation)
    | successor(X1) != X2 ),
    inference(literals_permutation,[status(thm)],[c_0_318]) ).

cnf(c_0_318_2,axiom,
    ( successor(X1) != X2
    | ~ member(ordered_pair(X1,X2),cross_product(universal_class,universal_class))
    | member(ordered_pair(X1,X2),successor_relation) ),
    inference(literals_permutation,[status(thm)],[c_0_318]) ).

cnf(c_0_319_0,axiom,
    ( compatible(X1,X2,X3)
    | ~ homomorphism(X1,X2,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_319]) ).

cnf(c_0_319_1,axiom,
    ( ~ homomorphism(X1,X2,X3)
    | compatible(X1,X2,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_319]) ).

cnf(c_0_320_0,axiom,
    ( function(X1)
    | ~ subclass(compose(X1,inverse(X1)),identity_relation)
    | ~ subclass(X1,cross_product(universal_class,universal_class)) ),
    inference(literals_permutation,[status(thm)],[c_0_320]) ).

cnf(c_0_320_1,axiom,
    ( ~ subclass(compose(X1,inverse(X1)),identity_relation)
    | function(X1)
    | ~ subclass(X1,cross_product(universal_class,universal_class)) ),
    inference(literals_permutation,[status(thm)],[c_0_320]) ).

cnf(c_0_320_2,axiom,
    ( ~ subclass(X1,cross_product(universal_class,universal_class))
    | ~ subclass(compose(X1,inverse(X1)),identity_relation)
    | function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_320]) ).

cnf(c_0_321_0,axiom,
    ( ~ member(X1,domain_of(X2))
    | restrict(X2,singleton(X1),universal_class) != null_class ),
    inference(literals_permutation,[status(thm)],[c_0_321]) ).

cnf(c_0_321_1,axiom,
    ( restrict(X2,singleton(X1),universal_class) != null_class
    | ~ member(X1,domain_of(X2)) ),
    inference(literals_permutation,[status(thm)],[c_0_321]) ).

cnf(c_0_322_0,axiom,
    ( subclass(range_of(X1),domain_of(domain_of(X2)))
    | ~ compatible(X1,X3,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_322]) ).

cnf(c_0_322_1,axiom,
    ( ~ compatible(X1,X3,X2)
    | subclass(range_of(X1),domain_of(domain_of(X2))) ),
    inference(literals_permutation,[status(thm)],[c_0_322]) ).

cnf(c_0_323_0,axiom,
    ( member(X1,X2)
    | ~ member(ordered_pair(X1,X3),cross_product(X2,X4)) ),
    inference(literals_permutation,[status(thm)],[c_0_323]) ).

cnf(c_0_323_1,axiom,
    ( ~ member(ordered_pair(X1,X3),cross_product(X2,X4))
    | member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_323]) ).

cnf(c_0_324_0,axiom,
    ( member(X1,X2)
    | ~ member(ordered_pair(X3,X1),cross_product(X4,X2)) ),
    inference(literals_permutation,[status(thm)],[c_0_324]) ).

cnf(c_0_324_1,axiom,
    ( ~ member(ordered_pair(X3,X1),cross_product(X4,X2))
    | member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_324]) ).

cnf(c_0_325_0,axiom,
    ( member(ordered_pair(X1,X2),cross_product(X3,X4))
    | ~ member(X2,X4)
    | ~ member(X1,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_325]) ).

cnf(c_0_325_1,axiom,
    ( ~ member(X2,X4)
    | member(ordered_pair(X1,X2),cross_product(X3,X4))
    | ~ member(X1,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_325]) ).

cnf(c_0_325_2,axiom,
    ( ~ member(X1,X3)
    | ~ member(X2,X4)
    | member(ordered_pair(X1,X2),cross_product(X3,X4)) ),
    inference(literals_permutation,[status(thm)],[c_0_325]) ).

cnf(c_0_326_0,axiom,
    ( subclass(range_of(X1),X2)
    | ~ maps(X1,X3,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_326]) ).

cnf(c_0_326_1,axiom,
    ( ~ maps(X1,X3,X2)
    | subclass(range_of(X1),X2) ),
    inference(literals_permutation,[status(thm)],[c_0_326]) ).

cnf(c_0_327_0,axiom,
    ( domain_of(domain_of(X1)) = domain_of(X2)
    | ~ compatible(X2,X1,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_327]) ).

cnf(c_0_327_1,axiom,
    ( ~ compatible(X2,X1,X3)
    | domain_of(domain_of(X1)) = domain_of(X2) ),
    inference(literals_permutation,[status(thm)],[c_0_327]) ).

cnf(c_0_328_0,axiom,
    ( maps(X1,domain_of(X1),X2)
    | ~ subclass(range_of(X1),X2)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_328]) ).

cnf(c_0_328_1,axiom,
    ( ~ subclass(range_of(X1),X2)
    | maps(X1,domain_of(X1),X2)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_328]) ).

cnf(c_0_328_2,axiom,
    ( ~ function(X1)
    | ~ subclass(range_of(X1),X2)
    | maps(X1,domain_of(X1),X2) ),
    inference(literals_permutation,[status(thm)],[c_0_328]) ).

cnf(c_0_329_0,axiom,
    ( member(X1,domain_of(X2))
    | restrict(X2,singleton(X1),universal_class) = null_class
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_329]) ).

cnf(c_0_329_1,axiom,
    ( restrict(X2,singleton(X1),universal_class) = null_class
    | member(X1,domain_of(X2))
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_329]) ).

cnf(c_0_329_2,axiom,
    ( ~ member(X1,universal_class)
    | restrict(X2,singleton(X1),universal_class) = null_class
    | member(X1,domain_of(X2)) ),
    inference(literals_permutation,[status(thm)],[c_0_329]) ).

cnf(c_0_330_0,axiom,
    ( domain_of(X1) = X2
    | ~ maps(X1,X2,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_330]) ).

cnf(c_0_330_1,axiom,
    ( ~ maps(X1,X2,X3)
    | domain_of(X1) = X2 ),
    inference(literals_permutation,[status(thm)],[c_0_330]) ).

cnf(c_0_331_0,axiom,
    ( ordered_pair(first(X1),second(X1)) = X1
    | ~ member(X1,cross_product(X2,X3)) ),
    inference(literals_permutation,[status(thm)],[c_0_331]) ).

cnf(c_0_331_1,axiom,
    ( ~ member(X1,cross_product(X2,X3))
    | ordered_pair(first(X1),second(X1)) = X1 ),
    inference(literals_permutation,[status(thm)],[c_0_331]) ).

cnf(c_0_332_0,axiom,
    ( function(X1)
    | ~ compatible(X1,X2,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_332]) ).

cnf(c_0_332_1,axiom,
    ( ~ compatible(X1,X2,X3)
    | function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_332]) ).

cnf(c_0_333_0,axiom,
    ( operation(X1)
    | ~ homomorphism(X2,X1,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_333]) ).

cnf(c_0_333_1,axiom,
    ( ~ homomorphism(X2,X1,X3)
    | operation(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_333]) ).

cnf(c_0_334_0,axiom,
    ( operation(X1)
    | ~ homomorphism(X2,X3,X1) ),
    inference(literals_permutation,[status(thm)],[c_0_334]) ).

cnf(c_0_334_1,axiom,
    ( ~ homomorphism(X2,X3,X1)
    | operation(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_334]) ).

cnf(c_0_335_0,axiom,
    ( function(X1)
    | ~ maps(X1,X2,X3) ),
    inference(literals_permutation,[status(thm)],[c_0_335]) ).

cnf(c_0_335_1,axiom,
    ( ~ maps(X1,X2,X3)
    | function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_335]) ).

cnf(c_0_336_0,axiom,
    ( compose(X1,X2) = X3
    | ~ member(ordered_pair(X2,X3),compose_class(X1)) ),
    inference(literals_permutation,[status(thm)],[c_0_336]) ).

cnf(c_0_336_1,axiom,
    ( ~ member(ordered_pair(X2,X3),compose_class(X1))
    | compose(X1,X2) = X3 ),
    inference(literals_permutation,[status(thm)],[c_0_336]) ).

cnf(c_0_337_0,axiom,
    ( member(X1,intersection(X2,X3))
    | ~ member(X1,X3)
    | ~ member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_337]) ).

cnf(c_0_337_1,axiom,
    ( ~ member(X1,X3)
    | member(X1,intersection(X2,X3))
    | ~ member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_337]) ).

cnf(c_0_337_2,axiom,
    ( ~ member(X1,X2)
    | ~ member(X1,X3)
    | member(X1,intersection(X2,X3)) ),
    inference(literals_permutation,[status(thm)],[c_0_337]) ).

cnf(c_0_338_0,axiom,
    ( single_valued_class(X1)
    | ~ subclass(compose(X1,inverse(X1)),identity_relation) ),
    inference(literals_permutation,[status(thm)],[c_0_338]) ).

cnf(c_0_338_1,axiom,
    ( ~ subclass(compose(X1,inverse(X1)),identity_relation)
    | single_valued_class(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_338]) ).

cnf(c_0_339_0,axiom,
    ( inductive(X1)
    | ~ subclass(image(successor_relation,X1),X1)
    | ~ member(null_class,X1) ),
    inference(literals_permutation,[status(thm)],[c_0_339]) ).

cnf(c_0_339_1,axiom,
    ( ~ subclass(image(successor_relation,X1),X1)
    | inductive(X1)
    | ~ member(null_class,X1) ),
    inference(literals_permutation,[status(thm)],[c_0_339]) ).

cnf(c_0_339_2,axiom,
    ( ~ member(null_class,X1)
    | ~ subclass(image(successor_relation,X1),X1)
    | inductive(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_339]) ).

cnf(c_0_340_0,axiom,
    ( subclass(X1,X2)
    | ~ member(not_subclass_element(X1,X2),X2) ),
    inference(literals_permutation,[status(thm)],[c_0_340]) ).

cnf(c_0_340_1,axiom,
    ( ~ member(not_subclass_element(X1,X2),X2)
    | subclass(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_340]) ).

cnf(c_0_341_0,axiom,
    ( member(X1,X2)
    | ~ member(X1,intersection(X2,X3)) ),
    inference(literals_permutation,[status(thm)],[c_0_341]) ).

cnf(c_0_341_1,axiom,
    ( ~ member(X1,intersection(X2,X3))
    | member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_341]) ).

cnf(c_0_342_0,axiom,
    ( member(X1,X2)
    | ~ member(X1,intersection(X3,X2)) ),
    inference(literals_permutation,[status(thm)],[c_0_342]) ).

cnf(c_0_342_1,axiom,
    ( ~ member(X1,intersection(X3,X2))
    | member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_342]) ).

cnf(c_0_343_0,axiom,
    ( member(X1,X2)
    | ~ member(ordered_pair(X1,X2),element_relation) ),
    inference(literals_permutation,[status(thm)],[c_0_343]) ).

cnf(c_0_343_1,axiom,
    ( ~ member(ordered_pair(X1,X2),element_relation)
    | member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_343]) ).

cnf(c_0_344_0,axiom,
    ( member(ordered_pair(X1,domain_of(X1)),domain_relation)
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_344]) ).

cnf(c_0_344_1,axiom,
    ( ~ member(X1,universal_class)
    | member(ordered_pair(X1,domain_of(X1)),domain_relation) ),
    inference(literals_permutation,[status(thm)],[c_0_344]) ).

cnf(c_0_345_0,axiom,
    ( X1 = X2
    | X1 = X3
    | ~ member(X1,unordered_pair(X3,X2)) ),
    inference(literals_permutation,[status(thm)],[c_0_345]) ).

cnf(c_0_345_1,axiom,
    ( X1 = X3
    | X1 = X2
    | ~ member(X1,unordered_pair(X3,X2)) ),
    inference(literals_permutation,[status(thm)],[c_0_345]) ).

cnf(c_0_345_2,axiom,
    ( ~ member(X1,unordered_pair(X3,X2))
    | X1 = X3
    | X1 = X2 ),
    inference(literals_permutation,[status(thm)],[c_0_345]) ).

cnf(c_0_346_0,axiom,
    ( successor(X1) = X2
    | ~ member(ordered_pair(X1,X2),successor_relation) ),
    inference(literals_permutation,[status(thm)],[c_0_346]) ).

cnf(c_0_346_1,axiom,
    ( ~ member(ordered_pair(X1,X2),successor_relation)
    | successor(X1) = X2 ),
    inference(literals_permutation,[status(thm)],[c_0_346]) ).

cnf(c_0_347_0,axiom,
    ( member(image(X1,X2),universal_class)
    | ~ member(X2,universal_class)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_347]) ).

cnf(c_0_347_1,axiom,
    ( ~ member(X2,universal_class)
    | member(image(X1,X2),universal_class)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_347]) ).

cnf(c_0_347_2,axiom,
    ( ~ function(X1)
    | ~ member(X2,universal_class)
    | member(image(X1,X2),universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_347]) ).

cnf(c_0_348_0,axiom,
    ( domain_of(X1) = X2
    | ~ member(ordered_pair(X1,X2),domain_relation) ),
    inference(literals_permutation,[status(thm)],[c_0_348]) ).

cnf(c_0_348_1,axiom,
    ( ~ member(ordered_pair(X1,X2),domain_relation)
    | domain_of(X1) = X2 ),
    inference(literals_permutation,[status(thm)],[c_0_348]) ).

cnf(c_0_349_0,axiom,
    ( cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) = domain_of(X1)
    | ~ operation(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_349]) ).

cnf(c_0_349_1,axiom,
    ( ~ operation(X1)
    | cross_product(domain_of(domain_of(X1)),domain_of(domain_of(X1))) = domain_of(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_349]) ).

cnf(c_0_350_0,axiom,
    ( member(X1,unordered_pair(X1,X2))
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_350]) ).

cnf(c_0_350_1,axiom,
    ( ~ member(X1,universal_class)
    | member(X1,unordered_pair(X1,X2)) ),
    inference(literals_permutation,[status(thm)],[c_0_350]) ).

cnf(c_0_351_0,axiom,
    ( member(X1,unordered_pair(X2,X1))
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_351]) ).

cnf(c_0_351_1,axiom,
    ( ~ member(X1,universal_class)
    | member(X1,unordered_pair(X2,X1)) ),
    inference(literals_permutation,[status(thm)],[c_0_351]) ).

cnf(c_0_352_0,axiom,
    ( member(X1,X2)
    | ~ member(X1,X3)
    | ~ subclass(X3,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_352]) ).

cnf(c_0_352_1,axiom,
    ( ~ member(X1,X3)
    | member(X1,X2)
    | ~ subclass(X3,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_352]) ).

cnf(c_0_352_2,axiom,
    ( ~ subclass(X3,X2)
    | ~ member(X1,X3)
    | member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_352]) ).

cnf(c_0_353_0,axiom,
    ( member(apply(choice,X1),X1)
    | X1 = null_class
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_353]) ).

cnf(c_0_353_1,axiom,
    ( X1 = null_class
    | member(apply(choice,X1),X1)
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_353]) ).

cnf(c_0_353_2,axiom,
    ( ~ member(X1,universal_class)
    | X1 = null_class
    | member(apply(choice,X1),X1) ),
    inference(literals_permutation,[status(thm)],[c_0_353]) ).

cnf(c_0_354_0,axiom,
    ( subclass(compose(X1,inverse(X1)),identity_relation)
    | ~ single_valued_class(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_354]) ).

cnf(c_0_354_1,axiom,
    ( ~ single_valued_class(X1)
    | subclass(compose(X1,inverse(X1)),identity_relation) ),
    inference(literals_permutation,[status(thm)],[c_0_354]) ).

cnf(c_0_355_0,axiom,
    ( subclass(compose(X1,inverse(X1)),identity_relation)
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_355]) ).

cnf(c_0_355_1,axiom,
    ( ~ function(X1)
    | subclass(compose(X1,inverse(X1)),identity_relation) ),
    inference(literals_permutation,[status(thm)],[c_0_355]) ).

cnf(c_0_356_0,axiom,
    ( member(X1,X2)
    | member(X1,complement(X2))
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_356]) ).

cnf(c_0_356_1,axiom,
    ( member(X1,complement(X2))
    | member(X1,X2)
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_356]) ).

cnf(c_0_356_2,axiom,
    ( ~ member(X1,universal_class)
    | member(X1,complement(X2))
    | member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_356]) ).

cnf(c_0_357_0,axiom,
    ( ~ member(X1,X2)
    | ~ member(X1,complement(X2)) ),
    inference(literals_permutation,[status(thm)],[c_0_357]) ).

cnf(c_0_357_1,axiom,
    ( ~ member(X1,complement(X2))
    | ~ member(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_357]) ).

cnf(c_0_358_0,axiom,
    ( subclass(X1,X2)
    | member(not_subclass_element(X1,X2),X1) ),
    inference(literals_permutation,[status(thm)],[c_0_358]) ).

cnf(c_0_358_1,axiom,
    ( member(not_subclass_element(X1,X2),X1)
    | subclass(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_358]) ).

cnf(c_0_359_0,axiom,
    ( X1 = X2
    | ~ subclass(X2,X1)
    | ~ subclass(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_359]) ).

cnf(c_0_359_1,axiom,
    ( ~ subclass(X2,X1)
    | X1 = X2
    | ~ subclass(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_359]) ).

cnf(c_0_359_2,axiom,
    ( ~ subclass(X1,X2)
    | ~ subclass(X2,X1)
    | X1 = X2 ),
    inference(literals_permutation,[status(thm)],[c_0_359]) ).

cnf(c_0_360_0,axiom,
    ( subclass(range_of(X1),domain_of(domain_of(X1)))
    | ~ operation(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_360]) ).

cnf(c_0_360_1,axiom,
    ( ~ operation(X1)
    | subclass(range_of(X1),domain_of(domain_of(X1))) ),
    inference(literals_permutation,[status(thm)],[c_0_360]) ).

cnf(c_0_361_0,axiom,
    ( subclass(image(successor_relation,X1),X1)
    | ~ inductive(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_361]) ).

cnf(c_0_361_1,axiom,
    ( ~ inductive(X1)
    | subclass(image(successor_relation,X1),X1) ),
    inference(literals_permutation,[status(thm)],[c_0_361]) ).

cnf(c_0_362_0,axiom,
    ( subclass(X1,cross_product(universal_class,universal_class))
    | ~ function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_362]) ).

cnf(c_0_362_1,axiom,
    ( ~ function(X1)
    | subclass(X1,cross_product(universal_class,universal_class)) ),
    inference(literals_permutation,[status(thm)],[c_0_362]) ).

cnf(c_0_363_0,axiom,
    ( member(sum_class(X1),universal_class)
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_363]) ).

cnf(c_0_363_1,axiom,
    ( ~ member(X1,universal_class)
    | member(sum_class(X1),universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_363]) ).

cnf(c_0_364_0,axiom,
    ( member(power_class(X1),universal_class)
    | ~ member(X1,universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_364]) ).

cnf(c_0_364_1,axiom,
    ( ~ member(X1,universal_class)
    | member(power_class(X1),universal_class) ),
    inference(literals_permutation,[status(thm)],[c_0_364]) ).

cnf(c_0_365_0,axiom,
    ( one_to_one(X1)
    | ~ function(X1)
    | ~ function(inverse(X1)) ),
    inference(literals_permutation,[status(thm)],[c_0_365]) ).

cnf(c_0_365_1,axiom,
    ( ~ function(X1)
    | one_to_one(X1)
    | ~ function(inverse(X1)) ),
    inference(literals_permutation,[status(thm)],[c_0_365]) ).

cnf(c_0_365_2,axiom,
    ( ~ function(inverse(X1))
    | ~ function(X1)
    | one_to_one(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_365]) ).

cnf(c_0_366_0,axiom,
    ( member(regular(X1),X1)
    | X1 = null_class ),
    inference(literals_permutation,[status(thm)],[c_0_366]) ).

cnf(c_0_366_1,axiom,
    ( X1 = null_class
    | member(regular(X1),X1) ),
    inference(literals_permutation,[status(thm)],[c_0_366]) ).

cnf(c_0_367_0,axiom,
    ( intersection(X1,regular(X1)) = null_class
    | X1 = null_class ),
    inference(literals_permutation,[status(thm)],[c_0_367]) ).

cnf(c_0_367_1,axiom,
    ( X1 = null_class
    | intersection(X1,regular(X1)) = null_class ),
    inference(literals_permutation,[status(thm)],[c_0_367]) ).

cnf(c_0_368_0,axiom,
    ( member(null_class,X1)
    | ~ inductive(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_368]) ).

cnf(c_0_368_1,axiom,
    ( ~ inductive(X1)
    | member(null_class,X1) ),
    inference(literals_permutation,[status(thm)],[c_0_368]) ).

cnf(c_0_369_0,axiom,
    ( subclass(omega,X1)
    | ~ inductive(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_369]) ).

cnf(c_0_369_1,axiom,
    ( ~ inductive(X1)
    | subclass(omega,X1) ),
    inference(literals_permutation,[status(thm)],[c_0_369]) ).

cnf(c_0_370_0,axiom,
    ( subclass(X1,X2)
    | X1 != X2 ),
    inference(literals_permutation,[status(thm)],[c_0_370]) ).

cnf(c_0_370_1,axiom,
    ( X1 != X2
    | subclass(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_370]) ).

cnf(c_0_371_0,axiom,
    ( subclass(X1,X2)
    | X2 != X1 ),
    inference(literals_permutation,[status(thm)],[c_0_371]) ).

cnf(c_0_371_1,axiom,
    ( X2 != X1
    | subclass(X1,X2) ),
    inference(literals_permutation,[status(thm)],[c_0_371]) ).

cnf(c_0_372_0,axiom,
    ( function(inverse(X1))
    | ~ one_to_one(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_372]) ).

cnf(c_0_372_1,axiom,
    ( ~ one_to_one(X1)
    | function(inverse(X1)) ),
    inference(literals_permutation,[status(thm)],[c_0_372]) ).

cnf(c_0_373_0,axiom,
    ( function(X1)
    | ~ one_to_one(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_373]) ).

cnf(c_0_373_1,axiom,
    ( ~ one_to_one(X1)
    | function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_373]) ).

cnf(c_0_374_0,axiom,
    ( function(X1)
    | ~ operation(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_374]) ).

cnf(c_0_374_1,axiom,
    ( ~ operation(X1)
    | function(X1) ),
    inference(literals_permutation,[status(thm)],[c_0_374]) ).

% CNF of non-axioms
% Start CNF derivation
fof(c_0_0_186,negated_conjecture,
    ~ member(ordered_pair(v,u),cross_product(y,x)),
    file('<stdin>',prove_cross_product_property2_2) ).

fof(c_0_1_187,negated_conjecture,
    member(ordered_pair(u,v),cross_product(x,y)),
    file('<stdin>',prove_cross_product_property2_1) ).

fof(c_0_2_188,negated_conjecture,
    ~ member(ordered_pair(v,u),cross_product(y,x)),
    inference(fof_simplification,[status(thm)],[c_0_0]) ).

fof(c_0_3_189,negated_conjecture,
    member(ordered_pair(u,v),cross_product(x,y)),
    c_0_1 ).

fof(c_0_4_190,negated_conjecture,
    ~ member(ordered_pair(v,u),cross_product(y,x)),
    c_0_2 ).

fof(c_0_5_191,negated_conjecture,
    member(ordered_pair(u,v),cross_product(x,y)),
    c_0_3 ).

cnf(c_0_6_192,negated_conjecture,
    ~ member(ordered_pair(v,u),cross_product(y,x)),
    inference(split_conjunct,[status(thm)],[c_0_4]) ).

cnf(c_0_7_193,negated_conjecture,
    member(ordered_pair(u,v),cross_product(x,y)),
    inference(split_conjunct,[status(thm)],[c_0_5]) ).

cnf(c_0_8_194,negated_conjecture,
    ~ member(ordered_pair(v,u),cross_product(y,x)),
    c_0_6,
    [final] ).

cnf(c_0_9_195,negated_conjecture,
    member(ordered_pair(u,v),cross_product(x,y)),
    c_0_7,
    [final] ).

% End CNF derivation

%-------------------------------------------------------------
% Proof by iprover

cnf(c_71,plain,
    ( member(ordered_pair(X0,X1),cross_product(X2,X3))
    | ~ member(X1,X3)
    | ~ member(X0,X2) ),
    file('/export/starexec/sandbox2/tmp/iprover_modulo_98c421.p',c_0_325_2) ).

cnf(c_396,plain,
    ( member(ordered_pair(X0,X1),cross_product(X2,X3))
    | ~ member(X1,X3)
    | ~ member(X0,X2) ),
    inference(copy,[status(esa)],[c_71]) ).

cnf(c_14612,plain,
    ( member(ordered_pair(X0,u),cross_product(X1,x))
    | ~ member(u,x)
    | ~ member(X0,X1) ),
    inference(instantiation,[status(thm)],[c_396]) ).

cnf(c_41824,plain,
    ( member(ordered_pair(v,u),cross_product(y,x))
    | ~ member(v,y)
    | ~ member(u,x) ),
    inference(instantiation,[status(thm)],[c_14612]) ).

cnf(c_67,plain,
    ( ~ member(ordered_pair(X0,X1),cross_product(X2,X3))
    | member(X1,X3) ),
    file('/export/starexec/sandbox2/tmp/iprover_modulo_98c421.p',c_0_324_0) ).

cnf(c_392,plain,
    ( ~ member(ordered_pair(X0,X1),cross_product(X2,X3))
    | member(X1,X3) ),
    inference(copy,[status(esa)],[c_67]) ).

cnf(c_14508,plain,
    ( ~ member(ordered_pair(u,v),cross_product(x,y))
    | member(v,y) ),
    inference(instantiation,[status(thm)],[c_392]) ).

cnf(c_65,plain,
    ( ~ member(ordered_pair(X0,X1),cross_product(X2,X3))
    | member(X0,X2) ),
    file('/export/starexec/sandbox2/tmp/iprover_modulo_98c421.p',c_0_323_0) ).

cnf(c_390,plain,
    ( ~ member(ordered_pair(X0,X1),cross_product(X2,X3))
    | member(X0,X2) ),
    inference(copy,[status(esa)],[c_65]) ).

cnf(c_14506,plain,
    ( ~ member(ordered_pair(u,v),cross_product(x,y))
    | member(u,x) ),
    inference(instantiation,[status(thm)],[c_390]) ).

cnf(c_218,negated_conjecture,
    ~ member(ordered_pair(v,u),cross_product(y,x)),
    file('/export/starexec/sandbox2/tmp/iprover_modulo_98c421.p',c_0_8) ).

cnf(c_219,negated_conjecture,
    member(ordered_pair(u,v),cross_product(x,y)),
    file('/export/starexec/sandbox2/tmp/iprover_modulo_98c421.p',c_0_9) ).

cnf(contradiction,plain,
    $false,
    inference(minisat,[status(thm)],[c_41824,c_14508,c_14506,c_218,c_219]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.14  % Problem  : SET204-6 : TPTP v8.1.0. Bugfixed v2.1.0.
% 0.03/0.15  % Command  : iprover_modulo %s %d
% 0.14/0.37  % Computer : n021.cluster.edu
% 0.14/0.37  % Model    : x86_64 x86_64
% 0.14/0.37  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.37  % Memory   : 8042.1875MB
% 0.14/0.37  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.37  % CPULimit : 300
% 0.14/0.37  % WCLimit  : 600
% 0.14/0.37  % DateTime : Mon Jul 11 03:31:38 EDT 2022
% 0.14/0.37  % CPUTime  : 
% 0.14/0.38  % Running in mono-core mode
% 0.23/0.46  % Orienting using strategy Equiv(ClausalAll)
% 0.23/0.46  % Orientation found
% 0.23/0.46  % Executing iprover_moduloopt --modulo true --schedule none --sub_typing false --res_to_prop_solver none --res_prop_simpl_given false --res_lit_sel kbo_max --large_theory_mode false --res_time_limit 1000 --res_orphan_elimination false --prep_sem_filter none --prep_unflatten false --comb_res_mult 1000 --comb_inst_mult 300 --clausifier .//eprover --clausifier_options "--tstp-format  " --proof_out_file /export/starexec/sandbox2/tmp/iprover_proof_24d177.s --tptp_safe_out true --time_out_real 150 /export/starexec/sandbox2/tmp/iprover_modulo_98c421.p | tee /export/starexec/sandbox2/tmp/iprover_modulo_out_1ce25c | grep -v "SZS"
% 0.23/0.49  
% 0.23/0.49  %---------------- iProver v2.5 (CASC-J8 2016) ----------------%
% 0.23/0.49  
% 0.23/0.49  % 
% 0.23/0.49  % ------  iProver source info 
% 0.23/0.49  
% 0.23/0.49  % git: sha1: 57accf6c58032223c7708532cf852a99fa48c1b3
% 0.23/0.49  % git: non_committed_changes: true
% 0.23/0.49  % git: last_make_outside_of_git: true
% 0.23/0.49  
% 0.23/0.49  % 
% 0.23/0.49  % ------ Input Options
% 0.23/0.49  
% 0.23/0.49  % --out_options                         all
% 0.23/0.49  % --tptp_safe_out                       true
% 0.23/0.49  % --problem_path                        ""
% 0.23/0.49  % --include_path                        ""
% 0.23/0.49  % --clausifier                          .//eprover
% 0.23/0.49  % --clausifier_options                  --tstp-format  
% 0.23/0.49  % --stdin                               false
% 0.23/0.49  % --dbg_backtrace                       false
% 0.23/0.49  % --dbg_dump_prop_clauses               false
% 0.23/0.49  % --dbg_dump_prop_clauses_file          -
% 0.23/0.49  % --dbg_out_stat                        false
% 0.23/0.49  
% 0.23/0.49  % ------ General Options
% 0.23/0.49  
% 0.23/0.49  % --fof                                 false
% 0.23/0.49  % --time_out_real                       150.
% 0.23/0.49  % --time_out_prep_mult                  0.2
% 0.23/0.49  % --time_out_virtual                    -1.
% 0.23/0.49  % --schedule                            none
% 0.23/0.49  % --ground_splitting                    input
% 0.23/0.49  % --splitting_nvd                       16
% 0.23/0.49  % --non_eq_to_eq                        false
% 0.23/0.49  % --prep_gs_sim                         true
% 0.23/0.49  % --prep_unflatten                      false
% 0.23/0.49  % --prep_res_sim                        true
% 0.23/0.49  % --prep_upred                          true
% 0.23/0.49  % --res_sim_input                       true
% 0.23/0.49  % --clause_weak_htbl                    true
% 0.23/0.49  % --gc_record_bc_elim                   false
% 0.23/0.49  % --symbol_type_check                   false
% 0.23/0.49  % --clausify_out                        false
% 0.23/0.49  % --large_theory_mode                   false
% 0.23/0.49  % --prep_sem_filter                     none
% 0.23/0.49  % --prep_sem_filter_out                 false
% 0.23/0.49  % --preprocessed_out                    false
% 0.23/0.49  % --sub_typing                          false
% 0.23/0.49  % --brand_transform                     false
% 0.23/0.49  % --pure_diseq_elim                     true
% 0.23/0.49  % --min_unsat_core                      false
% 0.23/0.49  % --pred_elim                           true
% 0.23/0.49  % --add_important_lit                   false
% 0.23/0.49  % --soft_assumptions                    false
% 0.23/0.49  % --reset_solvers                       false
% 0.23/0.49  % --bc_imp_inh                          []
% 0.23/0.49  % --conj_cone_tolerance                 1.5
% 0.23/0.49  % --prolific_symb_bound                 500
% 0.23/0.49  % --lt_threshold                        2000
% 0.23/0.49  
% 0.23/0.49  % ------ SAT Options
% 0.23/0.49  
% 0.23/0.49  % --sat_mode                            false
% 0.23/0.49  % --sat_fm_restart_options              ""
% 0.23/0.49  % --sat_gr_def                          false
% 0.23/0.49  % --sat_epr_types                       true
% 0.23/0.49  % --sat_non_cyclic_types                false
% 0.23/0.49  % --sat_finite_models                   false
% 0.23/0.49  % --sat_fm_lemmas                       false
% 0.23/0.49  % --sat_fm_prep                         false
% 0.23/0.49  % --sat_fm_uc_incr                      true
% 0.23/0.49  % --sat_out_model                       small
% 0.23/0.49  % --sat_out_clauses                     false
% 0.23/0.49  
% 0.23/0.49  % ------ QBF Options
% 0.23/0.49  
% 0.23/0.49  % --qbf_mode                            false
% 0.23/0.49  % --qbf_elim_univ                       true
% 0.23/0.49  % --qbf_sk_in                           true
% 0.23/0.49  % --qbf_pred_elim                       true
% 0.23/0.49  % --qbf_split                           32
% 0.23/0.49  
% 0.23/0.49  % ------ BMC1 Options
% 0.23/0.49  
% 0.23/0.49  % --bmc1_incremental                    false
% 0.23/0.49  % --bmc1_axioms                         reachable_all
% 0.23/0.49  % --bmc1_min_bound                      0
% 0.23/0.49  % --bmc1_max_bound                      -1
% 0.23/0.49  % --bmc1_max_bound_default              -1
% 0.23/0.49  % --bmc1_symbol_reachability            true
% 0.23/0.49  % --bmc1_property_lemmas                false
% 0.23/0.49  % --bmc1_k_induction                    false
% 0.23/0.49  % --bmc1_non_equiv_states               false
% 0.23/0.49  % --bmc1_deadlock                       false
% 0.23/0.49  % --bmc1_ucm                            false
% 0.23/0.49  % --bmc1_add_unsat_core                 none
% 0.23/0.49  % --bmc1_unsat_core_children            false
% 0.23/0.49  % --bmc1_unsat_core_extrapolate_axioms  false
% 0.23/0.49  % --bmc1_out_stat                       full
% 0.23/0.49  % --bmc1_ground_init                    false
% 0.23/0.49  % --bmc1_pre_inst_next_state            false
% 0.23/0.49  % --bmc1_pre_inst_state                 false
% 0.23/0.49  % --bmc1_pre_inst_reach_state           false
% 0.23/0.49  % --bmc1_out_unsat_core                 false
% 0.23/0.49  % --bmc1_aig_witness_out                false
% 0.23/0.49  % --bmc1_verbose                        false
% 0.23/0.49  % --bmc1_dump_clauses_tptp              false
% 1.06/1.41  % --bmc1_dump_unsat_core_tptp           false
% 1.06/1.41  % --bmc1_dump_file                      -
% 1.06/1.41  % --bmc1_ucm_expand_uc_limit            128
% 1.06/1.41  % --bmc1_ucm_n_expand_iterations        6
% 1.06/1.41  % --bmc1_ucm_extend_mode                1
% 1.06/1.41  % --bmc1_ucm_init_mode                  2
% 1.06/1.41  % --bmc1_ucm_cone_mode                  none
% 1.06/1.41  % --bmc1_ucm_reduced_relation_type      0
% 1.06/1.41  % --bmc1_ucm_relax_model                4
% 1.06/1.41  % --bmc1_ucm_full_tr_after_sat          true
% 1.06/1.41  % --bmc1_ucm_expand_neg_assumptions     false
% 1.06/1.41  % --bmc1_ucm_layered_model              none
% 1.06/1.41  % --bmc1_ucm_max_lemma_size             10
% 1.06/1.41  
% 1.06/1.41  % ------ AIG Options
% 1.06/1.41  
% 1.06/1.41  % --aig_mode                            false
% 1.06/1.41  
% 1.06/1.41  % ------ Instantiation Options
% 1.06/1.41  
% 1.06/1.41  % --instantiation_flag                  true
% 1.06/1.41  % --inst_lit_sel                        [+prop;+sign;+ground;-num_var;-num_symb]
% 1.06/1.41  % --inst_solver_per_active              750
% 1.06/1.41  % --inst_solver_calls_frac              0.5
% 1.06/1.41  % --inst_passive_queue_type             priority_queues
% 1.06/1.41  % --inst_passive_queues                 [[-conj_dist;+conj_symb;-num_var];[+age;-num_symb]]
% 1.06/1.41  % --inst_passive_queues_freq            [25;2]
% 1.06/1.41  % --inst_dismatching                    true
% 1.06/1.41  % --inst_eager_unprocessed_to_passive   true
% 1.06/1.41  % --inst_prop_sim_given                 true
% 1.06/1.41  % --inst_prop_sim_new                   false
% 1.06/1.41  % --inst_orphan_elimination             true
% 1.06/1.41  % --inst_learning_loop_flag             true
% 1.06/1.41  % --inst_learning_start                 3000
% 1.06/1.41  % --inst_learning_factor                2
% 1.06/1.41  % --inst_start_prop_sim_after_learn     3
% 1.06/1.41  % --inst_sel_renew                      solver
% 1.06/1.41  % --inst_lit_activity_flag              true
% 1.06/1.41  % --inst_out_proof                      true
% 1.06/1.41  
% 1.06/1.41  % ------ Resolution Options
% 1.06/1.41  
% 1.06/1.41  % --resolution_flag                     true
% 1.06/1.41  % --res_lit_sel                         kbo_max
% 1.06/1.41  % --res_to_prop_solver                  none
% 1.06/1.41  % --res_prop_simpl_new                  false
% 1.06/1.41  % --res_prop_simpl_given                false
% 1.06/1.41  % --res_passive_queue_type              priority_queues
% 1.06/1.41  % --res_passive_queues                  [[-conj_dist;+conj_symb;-num_symb];[+age;-num_symb]]
% 1.06/1.41  % --res_passive_queues_freq             [15;5]
% 1.06/1.41  % --res_forward_subs                    full
% 1.06/1.41  % --res_backward_subs                   full
% 1.06/1.41  % --res_forward_subs_resolution         true
% 1.06/1.41  % --res_backward_subs_resolution        true
% 1.06/1.41  % --res_orphan_elimination              false
% 1.06/1.41  % --res_time_limit                      1000.
% 1.06/1.41  % --res_out_proof                       true
% 1.06/1.41  % --proof_out_file                      /export/starexec/sandbox2/tmp/iprover_proof_24d177.s
% 1.06/1.41  % --modulo                              true
% 1.06/1.41  
% 1.06/1.41  % ------ Combination Options
% 1.06/1.41  
% 1.06/1.41  % --comb_res_mult                       1000
% 1.06/1.41  % --comb_inst_mult                      300
% 1.06/1.41  % ------ 
% 1.06/1.41  
% 1.06/1.41  % ------ Parsing...% successful
% 1.06/1.41  
% 1.06/1.41  % ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e  pe_s  pe_e  snvd_s sp: 0 0s snvd_e % 
% 1.06/1.41  
% 1.06/1.41  % ------ Proving...
% 1.06/1.41  % ------ Problem Properties 
% 1.06/1.41  
% 1.06/1.41  % 
% 1.06/1.41  % EPR                                   false
% 1.06/1.41  % Horn                                  false
% 1.06/1.41  % Has equality                          true
% 1.06/1.41  
% 1.06/1.41  % % ------ Input Options Time Limit: Unbounded
% 1.06/1.42  
% 1.06/1.42  
% 1.06/1.42  Compiling...
% 1.06/1.42  Loading plugin: done.
% 1.06/1.42  Compiling...
% 1.06/1.42  Loading plugin: done.
% 1.06/1.42  Compiling...
% 1.06/1.42  Loading plugin: done.
% 1.06/1.42  Compiling...
% 1.06/1.42  Loading plugin: done.
% 1.06/1.42  Compiling...
% 1.06/1.42  Loading plugin: done.
% 1.06/1.42  Compiling...
% 1.06/1.42  Loading plugin: done.
% 1.06/1.42  Compiling...
% 1.06/1.42  Loading plugin: done.
% 1.06/1.42  % % ------ Current options:
% 1.06/1.42  
% 1.06/1.42  % ------ Input Options
% 1.06/1.42  
% 1.06/1.42  % --out_options                         all
% 1.06/1.42  % --tptp_safe_out                       true
% 1.06/1.42  % --problem_path                        ""
% 1.06/1.42  % --include_path                        ""
% 1.06/1.42  % --clausifier                          .//eprover
% 1.06/1.42  % --clausifier_options                  --tstp-format  
% 1.06/1.42  % --stdin                               false
% 1.06/1.42  % --dbg_backtrace                       false
% 1.06/1.42  % --dbg_dump_prop_clauses               false
% 1.06/1.42  % --dbg_dump_prop_clauses_file          -
% 1.06/1.42  % --dbg_out_stat                        false
% 1.06/1.42  
% 1.06/1.42  % ------ General Options
% 1.06/1.42  
% 1.06/1.42  % --fof                                 false
% 1.06/1.42  % --time_out_real                       150.
% 1.06/1.42  % --time_out_prep_mult                  0.2
% 1.06/1.42  % --time_out_virtual                    -1.
% 1.06/1.42  % --schedule                            none
% 1.06/1.42  % --ground_splitting                    input
% 1.06/1.42  % --splitting_nvd                       16
% 1.06/1.42  % --non_eq_to_eq                        false
% 1.06/1.42  % --prep_gs_sim                         true
% 1.06/1.42  % --prep_unflatten                      false
% 1.06/1.42  % --prep_res_sim                        true
% 1.06/1.42  % --prep_upred                          true
% 1.06/1.42  % --res_sim_input                       true
% 1.06/1.42  % --clause_weak_htbl                    true
% 1.06/1.42  % --gc_record_bc_elim                   false
% 1.06/1.42  % --symbol_type_check                   false
% 1.06/1.42  % --clausify_out                        false
% 1.06/1.42  % --large_theory_mode                   false
% 1.06/1.42  % --prep_sem_filter                     none
% 1.06/1.42  % --prep_sem_filter_out                 false
% 1.06/1.42  % --preprocessed_out                    false
% 1.06/1.42  % --sub_typing                          false
% 1.06/1.42  % --brand_transform                     false
% 1.06/1.42  % --pure_diseq_elim                     true
% 1.06/1.42  % --min_unsat_core                      false
% 1.06/1.42  % --pred_elim                           true
% 1.06/1.42  % --add_important_lit                   false
% 1.06/1.42  % --soft_assumptions                    false
% 1.06/1.42  % --reset_solvers                       false
% 1.06/1.42  % --bc_imp_inh                          []
% 1.06/1.42  % --conj_cone_tolerance                 1.5
% 1.06/1.42  % --prolific_symb_bound                 500
% 1.06/1.42  % --lt_threshold                        2000
% 1.06/1.42  
% 1.06/1.42  % ------ SAT Options
% 1.06/1.42  
% 1.06/1.42  % --sat_mode                            false
% 1.06/1.42  % --sat_fm_restart_options              ""
% 1.06/1.42  % --sat_gr_def                          false
% 1.06/1.42  % --sat_epr_types                       true
% 1.06/1.42  % --sat_non_cyclic_types                false
% 1.06/1.42  % --sat_finite_models                   false
% 1.06/1.42  % --sat_fm_lemmas                       false
% 1.06/1.42  % --sat_fm_prep                         false
% 1.06/1.42  % --sat_fm_uc_incr                      true
% 1.06/1.42  % --sat_out_model                       small
% 1.06/1.42  % --sat_out_clauses                     false
% 1.06/1.42  
% 1.06/1.42  % ------ QBF Options
% 1.06/1.42  
% 1.06/1.42  % --qbf_mode                            false
% 1.06/1.42  % --qbf_elim_univ                       true
% 1.06/1.42  % --qbf_sk_in                           true
% 1.06/1.42  % --qbf_pred_elim                       true
% 1.06/1.42  % --qbf_split                           32
% 1.06/1.42  
% 1.06/1.42  % ------ BMC1 Options
% 1.06/1.42  
% 1.06/1.42  % --bmc1_incremental                    false
% 1.06/1.42  % --bmc1_axioms                         reachable_all
% 1.06/1.42  % --bmc1_min_bound                      0
% 1.06/1.42  % --bmc1_max_bound                      -1
% 1.06/1.42  % --bmc1_max_bound_default              -1
% 1.06/1.42  % --bmc1_symbol_reachability            true
% 1.06/1.42  % --bmc1_property_lemmas                false
% 1.06/1.42  % --bmc1_k_induction                    false
% 1.06/1.42  % --bmc1_non_equiv_states               false
% 1.06/1.42  % --bmc1_deadlock                       false
% 1.06/1.42  % --bmc1_ucm                            false
% 1.06/1.42  % --bmc1_add_unsat_core                 none
% 1.06/1.42  % --bmc1_unsat_core_children            false
% 1.06/1.42  % --bmc1_unsat_core_extrapolate_axioms  false
% 1.06/1.42  % --bmc1_out_stat                       full
% 1.06/1.42  % --bmc1_ground_init                    false
% 1.06/1.42  % --bmc1_pre_inst_next_state            false
% 1.06/1.42  % --bmc1_pre_inst_state                 false
% 1.06/1.42  % --bmc1_pre_inst_reach_state           false
% 1.06/1.42  % --bmc1_out_unsat_core                 false
% 1.06/1.42  % --bmc1_aig_witness_out                false
% 1.06/1.42  % --bmc1_verbose                        false
% 1.06/1.42  % --bmc1_dump_clauses_tptp              false
% 1.06/1.42  % --bmc1_dump_unsat_core_tptp           false
% 1.06/1.42  % --bmc1_dump_file                      -
% 1.06/1.42  % --bmc1_ucm_expand_uc_limit            128
% 1.06/1.42  % --bmc1_ucm_n_expand_iterations        6
% 1.06/1.42  % --bmc1_ucm_extend_mode                1
% 1.06/1.42  % --bmc1_ucm_init_mode                  2
% 1.06/1.42  % --bmc1_ucm_cone_mode                  none
% 1.06/1.42  % --bmc1_ucm_reduced_relation_type      0
% 1.06/1.42  % --bmc1_ucm_relax_model                4
% 1.06/1.42  % --bmc1_ucm_full_tr_after_sat          true
% 1.06/1.42  % --bmc1_ucm_expand_neg_assumptions     false
% 1.06/1.42  % --bmc1_ucm_layered_model              none
% 1.06/1.42  % --bmc1_ucm_max_lemma_size             10
% 1.06/1.42  
% 1.06/1.42  % ------ AIG Options
% 1.06/1.42  
% 1.06/1.42  % --aig_mode                            false
% 1.06/1.42  
% 1.06/1.42  % ------ Instantiation Options
% 1.06/1.42  
% 1.06/1.42  % --instantiation_flag                  true
% 1.06/1.42  % --inst_lit_sel                        [+prop;+sign;+ground;-num_var;-num_symb]
% 1.06/1.42  % --inst_solver_per_active              750
% 1.06/1.42  % --inst_solver_calls_frac              0.5
% 1.06/1.42  % --inst_passive_queue_type             priority_queues
% 1.06/1.42  % --inst_passive_queues                 [[-conj_dist;+conj_symb;-num_var];[+age;-num_symb]]
% 2.18/2.43  % --inst_passive_queues_freq            [25;2]
% 2.18/2.43  % --inst_dismatching                    true
% 2.18/2.43  % --inst_eager_unprocessed_to_passive   true
% 2.18/2.43  % --inst_prop_sim_given                 true
% 2.18/2.43  % --inst_prop_sim_new                   false
% 2.18/2.43  % --inst_orphan_elimination             true
% 2.18/2.43  % --inst_learning_loop_flag             true
% 2.18/2.43  % --inst_learning_start                 3000
% 2.18/2.43  % --inst_learning_factor                2
% 2.18/2.43  % --inst_start_prop_sim_after_learn     3
% 2.18/2.43  % --inst_sel_renew                      solver
% 2.18/2.43  % --inst_lit_activity_flag              true
% 2.18/2.43  % --inst_out_proof                      true
% 2.18/2.43  
% 2.18/2.43  % ------ Resolution Options
% 2.18/2.43  
% 2.18/2.43  % --resolution_flag                     true
% 2.18/2.43  % --res_lit_sel                         kbo_max
% 2.18/2.43  % --res_to_prop_solver                  none
% 2.18/2.43  % --res_prop_simpl_new                  false
% 2.18/2.43  % --res_prop_simpl_given                false
% 2.18/2.43  % --res_passive_queue_type              priority_queues
% 2.18/2.43  % --res_passive_queues                  [[-conj_dist;+conj_symb;-num_symb];[+age;-num_symb]]
% 2.18/2.43  % --res_passive_queues_freq             [15;5]
% 2.18/2.43  % --res_forward_subs                    full
% 2.18/2.43  % --res_backward_subs                   full
% 2.18/2.43  % --res_forward_subs_resolution         true
% 2.18/2.43  % --res_backward_subs_resolution        true
% 2.18/2.43  % --res_orphan_elimination              false
% 2.18/2.43  % --res_time_limit                      1000.
% 2.18/2.43  % --res_out_proof                       true
% 2.18/2.43  % --proof_out_file                      /export/starexec/sandbox2/tmp/iprover_proof_24d177.s
% 2.18/2.43  % --modulo                              true
% 2.18/2.43  
% 2.18/2.43  % ------ Combination Options
% 2.18/2.43  
% 2.18/2.43  % --comb_res_mult                       1000
% 2.18/2.43  % --comb_inst_mult                      300
% 2.18/2.43  % ------ 
% 2.18/2.43  
% 2.18/2.43  
% 2.18/2.43  
% 2.18/2.43  % ------ Proving...
% 2.18/2.43  % 
% 2.18/2.43  
% 2.18/2.43  
% 2.18/2.43  % ------                             Statistics
% 2.18/2.43  
% 2.18/2.43  % ------ General
% 2.18/2.43  
% 2.18/2.43  % num_of_input_clauses:                 220
% 2.18/2.43  % num_of_input_neg_conjectures:         2
% 2.18/2.43  % num_of_splits:                        0
% 2.18/2.43  % num_of_split_atoms:                   0
% 2.18/2.43  % num_of_sem_filtered_clauses:          0
% 2.18/2.43  % num_of_subtypes:                      0
% 2.18/2.43  % monotx_restored_types:                0
% 2.18/2.43  % sat_num_of_epr_types:                 0
% 2.18/2.43  % sat_num_of_non_cyclic_types:          0
% 2.18/2.43  % sat_guarded_non_collapsed_types:      0
% 2.18/2.43  % is_epr:                               0
% 2.18/2.43  % is_horn:                              0
% 2.18/2.43  % has_eq:                               1
% 2.18/2.43  % num_pure_diseq_elim:                  0
% 2.18/2.43  % simp_replaced_by:                     0
% 2.18/2.43  % res_preprocessed:                     4
% 2.18/2.43  % prep_upred:                           0
% 2.18/2.43  % prep_unflattend:                      0
% 2.18/2.43  % pred_elim_cands:                      0
% 2.18/2.43  % pred_elim:                            0
% 2.18/2.43  % pred_elim_cl:                         0
% 2.18/2.43  % pred_elim_cycles:                     0
% 2.18/2.43  % forced_gc_time:                       0
% 2.18/2.43  % gc_basic_clause_elim:                 0
% 2.18/2.43  % parsing_time:                         0.009
% 2.18/2.43  % sem_filter_time:                      0.
% 2.18/2.43  % pred_elim_time:                       0.
% 2.18/2.43  % out_proof_time:                       0.
% 2.18/2.43  % monotx_time:                          0.
% 2.18/2.43  % subtype_inf_time:                     0.
% 2.18/2.43  % unif_index_cands_time:                0.011
% 2.18/2.43  % unif_index_add_time:                  0.008
% 2.18/2.43  % total_time:                           1.965
% 2.18/2.43  % num_of_symbols:                       85
% 2.18/2.43  % num_of_terms:                         48149
% 2.18/2.43  
% 2.18/2.43  % ------ Propositional Solver
% 2.18/2.43  
% 2.18/2.43  % prop_solver_calls:                    7
% 2.18/2.43  % prop_fast_solver_calls:               6
% 2.18/2.43  % prop_num_of_clauses:                  1464
% 2.18/2.43  % prop_preprocess_simplified:           2006
% 2.18/2.43  % prop_fo_subsumed:                     0
% 2.18/2.43  % prop_solver_time:                     0.
% 2.18/2.43  % prop_fast_solver_time:                0.
% 2.18/2.43  % prop_unsat_core_time:                 0.
% 2.18/2.43  
% 2.18/2.43  % ------ QBF 
% 2.18/2.43  
% 2.18/2.43  % qbf_q_res:                            0
% 2.18/2.43  % qbf_num_tautologies:                  0
% 2.18/2.43  % qbf_prep_cycles:                      0
% 2.18/2.43  
% 2.18/2.43  % ------ BMC1
% 2.18/2.43  
% 2.18/2.43  % bmc1_current_bound:                   -1
% 2.18/2.43  % bmc1_last_solved_bound:               -1
% 2.18/2.43  % bmc1_unsat_core_size:                 -1
% 2.18/2.43  % bmc1_unsat_core_parents_size:         -1
% 2.18/2.43  % bmc1_merge_next_fun:                  0
% 2.18/2.43  % bmc1_unsat_core_clauses_time:         0.
% 2.18/2.44  
% 2.18/2.44  % ------ Instantiation
% 2.18/2.44  
% 2.18/2.44  % inst_num_of_clauses:                  1084
% 2.18/2.44  % inst_num_in_passive:                  425
% 2.18/2.44  % inst_num_in_active:                   354
% 2.18/2.44  % inst_num_in_unprocessed:              303
% 2.18/2.44  % inst_num_of_loops:                    392
% 2.18/2.44  % inst_num_of_learning_restarts:        0
% 2.18/2.44  % inst_num_moves_active_passive:        35
% 2.18/2.44  % inst_lit_activity:                    502
% 2.18/2.44  % inst_lit_activity_moves:              1
% 2.18/2.44  % inst_num_tautologies:                 0
% 2.18/2.44  % inst_num_prop_implied:                0
% 2.18/2.44  % inst_num_existing_simplified:         0
% 2.18/2.44  % inst_num_eq_res_simplified:           0
% 2.18/2.44  % inst_num_child_elim:                  0
% 2.18/2.44  % inst_num_of_dismatching_blockings:    361
% 2.18/2.44  % inst_num_of_non_proper_insts:         819
% 2.18/2.44  % inst_num_of_duplicates:               761
% 2.18/2.44  % inst_inst_num_from_inst_to_res:       0
% 2.18/2.44  % inst_dismatching_checking_time:       0.002
% 2.18/2.44  
% 2.18/2.44  % ------ Resolution
% 2.18/2.44  
% 2.18/2.44  % res_num_of_clauses:                   13964
% 2.18/2.44  % res_num_in_passive:                   12237
% 2.18/2.44  % res_num_in_active:                    1587
% 2.18/2.44  % res_num_of_loops:                     2000
% 2.18/2.44  % res_forward_subset_subsumed:          3408
% 2.18/2.44  % res_backward_subset_subsumed:         0
% 2.18/2.44  % res_forward_subsumed:                 509
% 2.18/2.44  % res_backward_subsumed:                0
% 2.18/2.44  % res_forward_subsumption_resolution:   0
% 2.18/2.44  % res_backward_subsumption_resolution:  0
% 2.18/2.44  % res_clause_to_clause_subsumption:     6563
% 2.18/2.44  % res_orphan_elimination:               0
% 2.18/2.44  % res_tautology_del:                    0
% 2.18/2.44  % res_num_eq_res_simplified:            0
% 2.18/2.44  % res_num_sel_changes:                  0
% 2.18/2.44  % res_moves_from_active_to_pass:        0
% 2.18/2.44  
% 2.18/2.44  % Status Unsatisfiable
% 2.18/2.44  % SZS status Unsatisfiable
% 2.18/2.44  % SZS output start CNFRefutation
% See solution above
%------------------------------------------------------------------------------