TSTP Solution File: SET166-6 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET166-6 : TPTP v8.1.0. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:47:46 EDT 2022

% Result   : Timeout 300.04s 300.45s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SET166-6 : TPTP v8.1.0. Bugfixed v2.1.0.
% 0.03/0.13  % Command  : bliksem %s
% 0.12/0.34  % Computer : n026.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % DateTime : Mon Jul 11 07:47:57 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.70/1.11  *** allocated 10000 integers for termspace/termends
% 0.70/1.11  *** allocated 10000 integers for clauses
% 0.70/1.11  *** allocated 10000 integers for justifications
% 0.70/1.11  Bliksem 1.12
% 0.70/1.11  
% 0.70/1.11  
% 0.70/1.11  Automatic Strategy Selection
% 0.70/1.11  
% 0.70/1.11  Clauses:
% 0.70/1.11  [
% 0.70/1.11     [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y ) ],
% 0.70/1.11     [ member( 'not_subclass_element'( X, Y ), X ), subclass( X, Y ) ],
% 0.70/1.11     [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), subclass( X, Y ) ]
% 0.70/1.11    ,
% 0.70/1.11     [ subclass( X, 'universal_class' ) ],
% 0.70/1.11     [ ~( =( X, Y ) ), subclass( X, Y ) ],
% 0.70/1.11     [ ~( =( X, Y ) ), subclass( Y, X ) ],
% 0.70/1.11     [ ~( subclass( X, Y ) ), ~( subclass( Y, X ) ), =( X, Y ) ],
% 0.70/1.11     [ ~( member( X, 'unordered_pair'( Y, Z ) ) ), =( X, Y ), =( X, Z ) ]
% 0.70/1.11    ,
% 0.70/1.11     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( X, Y
% 0.70/1.11     ) ) ],
% 0.70/1.11     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( Y, X
% 0.70/1.11     ) ) ],
% 0.70/1.11     [ member( 'unordered_pair'( X, Y ), 'universal_class' ) ],
% 0.70/1.11     [ =( 'unordered_pair'( X, X ), singleton( X ) ) ],
% 0.70/1.11     [ =( 'unordered_pair'( singleton( X ), 'unordered_pair'( X, singleton( Y
% 0.70/1.11     ) ) ), 'ordered_pair'( X, Y ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.70/1.11    X, Z ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.70/1.11    Y, T ) ],
% 0.70/1.11     [ ~( member( X, Y ) ), ~( member( Z, T ) ), member( 'ordered_pair'( X, Z
% 0.70/1.11     ), 'cross_product'( Y, T ) ) ],
% 0.70/1.11     [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 'ordered_pair'( first( X
% 0.70/1.11     ), second( X ) ), X ) ],
% 0.70/1.11     [ subclass( 'element_relation', 'cross_product'( 'universal_class', 
% 0.70/1.11    'universal_class' ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'element_relation' ) ), member( X, 
% 0.70/1.11    Y ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.70/1.11    , 'universal_class' ) ) ), ~( member( X, Y ) ), member( 'ordered_pair'( X
% 0.70/1.11    , Y ), 'element_relation' ) ],
% 0.70/1.11     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Y ) ],
% 0.70/1.11     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Z ) ],
% 0.70/1.11     [ ~( member( X, Y ) ), ~( member( X, Z ) ), member( X, intersection( Y, 
% 0.70/1.11    Z ) ) ],
% 0.70/1.11     [ ~( member( X, complement( Y ) ) ), ~( member( X, Y ) ) ],
% 0.70/1.11     [ ~( member( X, 'universal_class' ) ), member( X, complement( Y ) ), 
% 0.70/1.11    member( X, Y ) ],
% 0.70/1.11     [ =( complement( intersection( complement( X ), complement( Y ) ) ), 
% 0.70/1.11    union( X, Y ) ) ],
% 0.70/1.11     [ =( intersection( complement( intersection( X, Y ) ), complement( 
% 0.70/1.11    intersection( complement( X ), complement( Y ) ) ) ), 
% 0.70/1.11    'symmetric_difference'( X, Y ) ) ],
% 0.70/1.11     [ =( intersection( X, 'cross_product'( Y, Z ) ), restrict( X, Y, Z ) ) ]
% 0.70/1.11    ,
% 0.70/1.11     [ =( intersection( 'cross_product'( X, Y ), Z ), restrict( Z, X, Y ) ) ]
% 0.70/1.11    ,
% 0.70/1.11     [ ~( =( restrict( X, singleton( Y ), 'universal_class' ), 'null_class' )
% 0.70/1.11     ), ~( member( Y, 'domain_of'( X ) ) ) ],
% 0.70/1.11     [ ~( member( X, 'universal_class' ) ), =( restrict( Y, singleton( X ), 
% 0.70/1.11    'universal_class' ), 'null_class' ), member( X, 'domain_of'( Y ) ) ],
% 0.70/1.11     [ subclass( rotate( X ), 'cross_product'( 'cross_product'( 
% 0.70/1.11    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), rotate( T ) )
% 0.70/1.11     ), member( 'ordered_pair'( 'ordered_pair'( Y, Z ), X ), T ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.70/1.11    member( 'ordered_pair'( 'ordered_pair'( Z, X ), Y ), 'cross_product'( 
% 0.70/1.11    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.70/1.11    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Z, X ), 
% 0.70/1.11    Y ), rotate( T ) ) ],
% 0.70/1.11     [ subclass( flip( X ), 'cross_product'( 'cross_product'( 
% 0.70/1.11    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), flip( T ) ) )
% 0.70/1.11    , member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), T ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.70/1.11    member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), 'cross_product'( 
% 0.70/1.11    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.70/1.11    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, X ), 
% 0.70/1.11    Z ), flip( T ) ) ],
% 0.70/1.11     [ =( 'domain_of'( flip( 'cross_product'( X, 'universal_class' ) ) ), 
% 0.70/1.11    inverse( X ) ) ],
% 0.70/1.11     [ =( 'domain_of'( inverse( X ) ), 'range_of'( X ) ) ],
% 0.70/1.11     [ =( first( 'not_subclass_element'( restrict( X, Y, singleton( Z ) ), 
% 0.70/1.11    'null_class' ) ), domain( X, Y, Z ) ) ],
% 0.70/1.11     [ =( second( 'not_subclass_element'( restrict( X, singleton( Y ), Z ), 
% 0.70/1.11    'null_class' ) ), range( X, Y, Z ) ) ],
% 0.70/1.11     [ =( 'range_of'( restrict( X, Y, 'universal_class' ) ), image( X, Y ) )
% 0.70/1.11     ],
% 0.70/1.11     [ =( union( X, singleton( X ) ), successor( X ) ) ],
% 0.70/1.11     [ subclass( 'successor_relation', 'cross_product'( 'universal_class', 
% 0.70/1.11    'universal_class' ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'successor_relation' ) ), =( 
% 0.70/1.11    successor( X ), Y ) ],
% 0.70/1.11     [ ~( =( successor( X ), Y ) ), ~( member( 'ordered_pair'( X, Y ), 
% 0.70/1.11    'cross_product'( 'universal_class', 'universal_class' ) ) ), member( 
% 0.70/1.11    'ordered_pair'( X, Y ), 'successor_relation' ) ],
% 0.70/1.11     [ ~( inductive( X ) ), member( 'null_class', X ) ],
% 0.70/1.11     [ ~( inductive( X ) ), subclass( image( 'successor_relation', X ), X ) ]
% 0.70/1.11    ,
% 0.70/1.11     [ ~( member( 'null_class', X ) ), ~( subclass( image( 
% 0.70/1.11    'successor_relation', X ), X ) ), inductive( X ) ],
% 0.70/1.11     [ inductive( omega ) ],
% 0.70/1.11     [ ~( inductive( X ) ), subclass( omega, X ) ],
% 0.70/1.11     [ member( omega, 'universal_class' ) ],
% 0.70/1.11     [ =( 'domain_of'( restrict( 'element_relation', 'universal_class', X ) )
% 0.70/1.11    , 'sum_class'( X ) ) ],
% 0.70/1.11     [ ~( member( X, 'universal_class' ) ), member( 'sum_class'( X ), 
% 0.70/1.11    'universal_class' ) ],
% 0.70/1.11     [ =( complement( image( 'element_relation', complement( X ) ) ), 
% 0.70/1.11    'power_class'( X ) ) ],
% 0.70/1.11     [ ~( member( X, 'universal_class' ) ), member( 'power_class'( X ), 
% 0.70/1.11    'universal_class' ) ],
% 0.70/1.11     [ subclass( compose( X, Y ), 'cross_product'( 'universal_class', 
% 0.70/1.11    'universal_class' ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), compose( Z, T ) ) ), member( Y, 
% 0.70/1.11    image( Z, image( T, singleton( X ) ) ) ) ],
% 0.70/1.11     [ ~( member( X, image( Y, image( Z, singleton( T ) ) ) ) ), ~( member( 
% 0.70/1.11    'ordered_pair'( T, X ), 'cross_product'( 'universal_class', 
% 0.70/1.11    'universal_class' ) ) ), member( 'ordered_pair'( T, X ), compose( Y, Z )
% 0.70/1.11     ) ],
% 0.70/1.11     [ ~( 'single_valued_class'( X ) ), subclass( compose( X, inverse( X ) )
% 0.70/1.11    , 'identity_relation' ) ],
% 0.70/1.11     [ ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) ), 
% 0.70/1.11    'single_valued_class'( X ) ],
% 0.70/1.11     [ ~( function( X ) ), subclass( X, 'cross_product'( 'universal_class', 
% 0.70/1.11    'universal_class' ) ) ],
% 0.70/1.11     [ ~( function( X ) ), subclass( compose( X, inverse( X ) ), 
% 0.70/1.11    'identity_relation' ) ],
% 0.70/1.11     [ ~( subclass( X, 'cross_product'( 'universal_class', 'universal_class'
% 0.70/1.11     ) ) ), ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) )
% 0.70/1.11    , function( X ) ],
% 0.70/1.11     [ ~( function( X ) ), ~( member( Y, 'universal_class' ) ), member( image( 
% 0.70/1.11    X, Y ), 'universal_class' ) ],
% 0.70/1.11     [ =( X, 'null_class' ), member( regular( X ), X ) ],
% 0.70/1.11     [ =( X, 'null_class' ), =( intersection( X, regular( X ) ), 'null_class'
% 0.70/1.11     ) ],
% 0.70/1.11     [ =( 'sum_class'( image( X, singleton( Y ) ) ), apply( X, Y ) ) ],
% 0.70/1.11     [ function( choice ) ],
% 0.70/1.11     [ ~( member( X, 'universal_class' ) ), =( X, 'null_class' ), member( 
% 0.70/1.11    apply( choice, X ), X ) ],
% 0.70/1.11     [ ~( 'one_to_one'( X ) ), function( X ) ],
% 0.70/1.11     [ ~( 'one_to_one'( X ) ), function( inverse( X ) ) ],
% 0.70/1.11     [ ~( function( inverse( X ) ) ), ~( function( X ) ), 'one_to_one'( X ) ]
% 0.70/1.11    ,
% 0.70/1.11     [ =( intersection( 'cross_product'( 'universal_class', 'universal_class'
% 0.70/1.11     ), intersection( 'cross_product'( 'universal_class', 'universal_class' )
% 0.70/1.11    , complement( compose( complement( 'element_relation' ), inverse( 
% 0.70/1.11    'element_relation' ) ) ) ) ), 'subset_relation' ) ],
% 0.70/1.11     [ =( intersection( inverse( 'subset_relation' ), 'subset_relation' ), 
% 0.70/1.11    'identity_relation' ) ],
% 0.70/1.11     [ =( complement( 'domain_of'( intersection( X, 'identity_relation' ) ) )
% 0.70/1.11    , diagonalise( X ) ) ],
% 0.70/1.11     [ =( intersection( 'domain_of'( X ), diagonalise( compose( inverse( 
% 0.70/1.11    'element_relation' ), X ) ) ), cantor( X ) ) ],
% 0.70/1.11     [ ~( operation( X ) ), function( X ) ],
% 0.70/1.11     [ ~( operation( X ) ), =( 'cross_product'( 'domain_of'( 'domain_of'( X )
% 0.70/1.11     ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ],
% 0.70/1.11     [ ~( operation( X ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.70/1.11    'domain_of'( X ) ) ) ],
% 0.70/1.11     [ ~( function( X ) ), ~( =( 'cross_product'( 'domain_of'( 'domain_of'( X
% 0.70/1.11     ) ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ), ~( 
% 0.70/1.11    subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( X ) ) ) ), operation( 
% 0.70/1.11    X ) ],
% 0.70/1.11     [ ~( compatible( X, Y, Z ) ), function( X ) ],
% 0.70/1.11     [ ~( compatible( X, Y, Z ) ), =( 'domain_of'( 'domain_of'( Y ) ), 
% 0.70/1.11    'domain_of'( X ) ) ],
% 0.70/1.11     [ ~( compatible( X, Y, Z ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.70/1.11    'domain_of'( Z ) ) ) ],
% 0.70/1.11     [ ~( function( X ) ), ~( =( 'domain_of'( 'domain_of'( Y ) ), 'domain_of'( 
% 0.70/1.11    X ) ) ), ~( subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( Z ) ) )
% 0.70/1.11     ), compatible( X, Y, Z ) ],
% 0.70/1.11     [ ~( homomorphism( X, Y, Z ) ), operation( Y ) ],
% 0.70/1.11     [ ~( homomorphism( X, Y, Z ) ), operation( Z ) ],
% 0.70/1.11     [ ~( homomorphism( X, Y, Z ) ), compatible( X, Y, Z ) ],
% 0.70/1.11     [ ~( homomorphism( X, Y, Z ) ), ~( member( 'ordered_pair'( T, U ), 
% 0.70/1.11    'domain_of'( Y ) ) ), =( apply( Z, 'ordered_pair'( apply( X, T ), apply( 
% 0.70/1.11    X, U ) ) ), apply( X, apply( Y, 'ordered_pair'( T, U ) ) ) ) ],
% 0.70/1.11     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.70/1.11    member( 'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 
% 0.70/1.11    'not_homomorphism2'( Z, X, Y ) ), 'domain_of'( X ) ), homomorphism( Z, X
% 0.70/1.11    , Y ) ],
% 0.70/1.11     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.70/1.11    ~( =( apply( Y, 'ordered_pair'( apply( Z, 'not_homomorphism1'( Z, X, Y )
% 0.70/1.11     ), apply( Z, 'not_homomorphism2'( Z, X, Y ) ) ) ), apply( Z, apply( X, 
% 0.70/1.11    'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 'not_homomorphism2'( Z, X
% 0.70/1.11    , Y ) ) ) ) ) ), homomorphism( Z, X, Y ) ],
% 0.70/1.11     [ subclass( 'compose_class'( X ), 'cross_product'( 'universal_class', 
% 0.70/1.11    'universal_class' ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'compose_class'( Z ) ) ), =( 
% 0.70/1.11    compose( Z, X ), Y ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.70/1.11    , 'universal_class' ) ) ), ~( =( compose( Z, X ), Y ) ), member( 
% 0.70/1.11    'ordered_pair'( X, Y ), 'compose_class'( Z ) ) ],
% 0.70/1.11     [ subclass( 'composition_function', 'cross_product'( 'universal_class', 
% 0.70/1.11    'cross_product'( 'universal_class', 'universal_class' ) ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.70/1.11    'composition_function' ) ), =( compose( X, Y ), Z ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.70/1.11    , 'universal_class' ) ) ), member( 'ordered_pair'( X, 'ordered_pair'( Y, 
% 0.70/1.11    compose( X, Y ) ) ), 'composition_function' ) ],
% 0.70/1.11     [ subclass( 'domain_relation', 'cross_product'( 'universal_class', 
% 0.70/1.11    'universal_class' ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'domain_relation' ) ), =( 
% 0.70/1.11    'domain_of'( X ), Y ) ],
% 0.70/1.11     [ ~( member( X, 'universal_class' ) ), member( 'ordered_pair'( X, 
% 0.70/1.11    'domain_of'( X ) ), 'domain_relation' ) ],
% 0.70/1.11     [ =( first( 'not_subclass_element'( compose( X, inverse( X ) ), 
% 0.70/1.11    'identity_relation' ) ), 'single_valued1'( X ) ) ],
% 0.70/1.11     [ =( second( 'not_subclass_element'( compose( X, inverse( X ) ), 
% 0.70/1.11    'identity_relation' ) ), 'single_valued2'( X ) ) ],
% 0.70/1.11     [ =( domain( X, image( inverse( X ), singleton( 'single_valued1'( X ) )
% 0.70/1.11     ), 'single_valued2'( X ) ), 'single_valued3'( X ) ) ],
% 0.70/1.11     [ =( intersection( complement( compose( 'element_relation', complement( 
% 0.70/1.11    'identity_relation' ) ) ), 'element_relation' ), 'singleton_relation' ) ]
% 0.70/1.11    ,
% 0.70/1.11     [ subclass( 'application_function', 'cross_product'( 'universal_class', 
% 0.70/1.11    'cross_product'( 'universal_class', 'universal_class' ) ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.70/1.11    'application_function' ) ), member( Y, 'domain_of'( X ) ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.70/1.11    'application_function' ) ), =( apply( X, Y ), Z ) ],
% 0.70/1.11     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.70/1.11    'cross_product'( 'universal_class', 'cross_product'( 'universal_class', 
% 0.70/1.11    'universal_class' ) ) ) ), ~( member( Y, 'domain_of'( X ) ) ), member( 
% 0.70/1.11    'ordered_pair'( X, 'ordered_pair'( Y, apply( X, Y ) ) ), 
% 0.70/1.11    'application_function' ) ],
% 0.70/1.11     [ ~( maps( X, Y, Z ) ), function( X ) ],
% 0.70/1.11     [ ~( maps( X, Y, Z ) ), =( 'domain_of'( X ), Y ) ],
% 8.16/8.56     [ ~( maps( X, Y, Z ) ), subclass( 'range_of'( X ), Z ) ],
% 8.16/8.56     [ ~( function( X ) ), ~( subclass( 'range_of'( X ), Y ) ), maps( X, 
% 8.16/8.56    'domain_of'( X ), Y ) ],
% 8.16/8.56     [ member( x, union( y, z ) ) ],
% 8.16/8.56     [ ~( member( x, y ) ) ],
% 8.16/8.56     [ ~( member( x, z ) ) ]
% 8.16/8.56  ] .
% 8.16/8.56  
% 8.16/8.56  
% 8.16/8.56  percentage equality = 0.221719, percentage horn = 0.930435
% 8.16/8.56  This is a problem with some equality
% 8.16/8.56  
% 8.16/8.56  
% 8.16/8.56  
% 8.16/8.56  Options Used:
% 8.16/8.56  
% 8.16/8.56  useres =            1
% 8.16/8.56  useparamod =        1
% 8.16/8.56  useeqrefl =         1
% 8.16/8.56  useeqfact =         1
% 8.16/8.56  usefactor =         1
% 8.16/8.56  usesimpsplitting =  0
% 8.16/8.56  usesimpdemod =      5
% 8.16/8.56  usesimpres =        3
% 8.16/8.56  
% 8.16/8.56  resimpinuse      =  1000
% 8.16/8.56  resimpclauses =     20000
% 8.16/8.56  substype =          eqrewr
% 8.16/8.56  backwardsubs =      1
% 8.16/8.56  selectoldest =      5
% 8.16/8.56  
% 8.16/8.56  litorderings [0] =  split
% 8.16/8.56  litorderings [1] =  extend the termordering, first sorting on arguments
% 8.16/8.56  
% 8.16/8.56  termordering =      kbo
% 8.16/8.56  
% 8.16/8.56  litapriori =        0
% 8.16/8.56  termapriori =       1
% 8.16/8.56  litaposteriori =    0
% 8.16/8.56  termaposteriori =   0
% 8.16/8.56  demodaposteriori =  0
% 8.16/8.56  ordereqreflfact =   0
% 8.16/8.56  
% 8.16/8.56  litselect =         negord
% 8.16/8.56  
% 8.16/8.56  maxweight =         15
% 8.16/8.56  maxdepth =          30000
% 8.16/8.56  maxlength =         115
% 8.16/8.56  maxnrvars =         195
% 8.16/8.56  excuselevel =       1
% 8.16/8.56  increasemaxweight = 1
% 8.16/8.56  
% 8.16/8.56  maxselected =       10000000
% 8.16/8.56  maxnrclauses =      10000000
% 8.16/8.56  
% 8.16/8.56  showgenerated =    0
% 8.16/8.56  showkept =         0
% 8.16/8.56  showselected =     0
% 8.16/8.56  showdeleted =      0
% 8.16/8.56  showresimp =       1
% 8.16/8.56  showstatus =       2000
% 8.16/8.56  
% 8.16/8.56  prologoutput =     1
% 8.16/8.56  nrgoals =          5000000
% 8.16/8.56  totalproof =       1
% 8.16/8.56  
% 8.16/8.56  Symbols occurring in the translation:
% 8.16/8.56  
% 8.16/8.56  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 8.16/8.56  .  [1, 2]      (w:1, o:65, a:1, s:1, b:0), 
% 8.16/8.56  !  [4, 1]      (w:0, o:36, a:1, s:1, b:0), 
% 8.16/8.56  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 8.16/8.56  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 8.16/8.56  subclass  [41, 2]      (w:1, o:90, a:1, s:1, b:0), 
% 8.16/8.56  member  [43, 2]      (w:1, o:91, a:1, s:1, b:0), 
% 8.16/8.56  'not_subclass_element'  [44, 2]      (w:1, o:92, a:1, s:1, b:0), 
% 8.16/8.56  'universal_class'  [45, 0]      (w:1, o:22, a:1, s:1, b:0), 
% 8.16/8.56  'unordered_pair'  [46, 2]      (w:1, o:93, a:1, s:1, b:0), 
% 8.16/8.56  singleton  [47, 1]      (w:1, o:44, a:1, s:1, b:0), 
% 8.16/8.56  'ordered_pair'  [48, 2]      (w:1, o:94, a:1, s:1, b:0), 
% 8.16/8.56  'cross_product'  [50, 2]      (w:1, o:95, a:1, s:1, b:0), 
% 8.16/8.56  first  [52, 1]      (w:1, o:45, a:1, s:1, b:0), 
% 8.16/8.56  second  [53, 1]      (w:1, o:46, a:1, s:1, b:0), 
% 8.16/8.56  'element_relation'  [54, 0]      (w:1, o:27, a:1, s:1, b:0), 
% 8.16/8.56  intersection  [55, 2]      (w:1, o:97, a:1, s:1, b:0), 
% 8.16/8.56  complement  [56, 1]      (w:1, o:47, a:1, s:1, b:0), 
% 8.16/8.56  union  [57, 2]      (w:1, o:98, a:1, s:1, b:0), 
% 8.16/8.56  'symmetric_difference'  [58, 2]      (w:1, o:99, a:1, s:1, b:0), 
% 8.16/8.56  restrict  [60, 3]      (w:1, o:102, a:1, s:1, b:0), 
% 8.16/8.56  'null_class'  [61, 0]      (w:1, o:28, a:1, s:1, b:0), 
% 8.16/8.56  'domain_of'  [62, 1]      (w:1, o:50, a:1, s:1, b:0), 
% 8.16/8.56  rotate  [63, 1]      (w:1, o:41, a:1, s:1, b:0), 
% 8.16/8.56  flip  [65, 1]      (w:1, o:51, a:1, s:1, b:0), 
% 8.16/8.56  inverse  [66, 1]      (w:1, o:52, a:1, s:1, b:0), 
% 8.16/8.56  'range_of'  [67, 1]      (w:1, o:42, a:1, s:1, b:0), 
% 8.16/8.56  domain  [68, 3]      (w:1, o:104, a:1, s:1, b:0), 
% 8.16/8.56  range  [69, 3]      (w:1, o:105, a:1, s:1, b:0), 
% 8.16/8.56  image  [70, 2]      (w:1, o:96, a:1, s:1, b:0), 
% 8.16/8.56  successor  [71, 1]      (w:1, o:53, a:1, s:1, b:0), 
% 8.16/8.56  'successor_relation'  [72, 0]      (w:1, o:6, a:1, s:1, b:0), 
% 8.16/8.56  inductive  [73, 1]      (w:1, o:54, a:1, s:1, b:0), 
% 8.16/8.56  omega  [74, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 8.16/8.56  'sum_class'  [75, 1]      (w:1, o:55, a:1, s:1, b:0), 
% 8.16/8.56  'power_class'  [76, 1]      (w:1, o:58, a:1, s:1, b:0), 
% 8.16/8.56  compose  [78, 2]      (w:1, o:100, a:1, s:1, b:0), 
% 8.16/8.56  'single_valued_class'  [79, 1]      (w:1, o:59, a:1, s:1, b:0), 
% 8.16/8.56  'identity_relation'  [80, 0]      (w:1, o:29, a:1, s:1, b:0), 
% 8.16/8.56  function  [82, 1]      (w:1, o:60, a:1, s:1, b:0), 
% 8.16/8.56  regular  [83, 1]      (w:1, o:43, a:1, s:1, b:0), 
% 8.16/8.56  apply  [84, 2]      (w:1, o:101, a:1, s:1, b:0), 
% 8.16/8.56  choice  [85, 0]      (w:1, o:30, a:1, s:1, b:0), 
% 8.16/8.56  'one_to_one'  [86, 1]      (w:1, o:56, a:1, s:1, b:0), 
% 8.16/8.56  'subset_relation'  [87, 0]      (w:1, o:5, a:1, s:1, b:0), 
% 8.16/8.56  diagonalise  [88, 1]      (w:1, o:61, a:1, s:1, b:0), 
% 8.16/8.56  cantor  [89, 1]      (w:1, o:48, a:1, s:1, b:0), 
% 8.16/8.56  operation  [90, 1]      (w:1, o:57, a:1, s:1, b:0), 
% 8.16/8.56  compatible  [94, 3]      (w:1, o:103, a:1, s:1, b:0), 
% 8.16/8.56  homomorphism  [95, 3]      (w:1, o:106, a:1, s:1, b:0), 
% 143.96/144.39  'not_homomorphism1'  [96, 3]      (w:1, o:108, a:1, s:1, b:0), 
% 143.96/144.39  'not_homomorphism2'  [97, 3]      (w:1, o:109, a:1, s:1, b:0), 
% 143.96/144.39  'compose_class'  [98, 1]      (w:1, o:49, a:1, s:1, b:0), 
% 143.96/144.39  'composition_function'  [99, 0]      (w:1, o:31, a:1, s:1, b:0), 
% 143.96/144.39  'domain_relation'  [100, 0]      (w:1, o:26, a:1, s:1, b:0), 
% 143.96/144.39  'single_valued1'  [101, 1]      (w:1, o:62, a:1, s:1, b:0), 
% 143.96/144.39  'single_valued2'  [102, 1]      (w:1, o:63, a:1, s:1, b:0), 
% 143.96/144.39  'single_valued3'  [103, 1]      (w:1, o:64, a:1, s:1, b:0), 
% 143.96/144.39  'singleton_relation'  [104, 0]      (w:1, o:7, a:1, s:1, b:0), 
% 143.96/144.39  'application_function'  [105, 0]      (w:1, o:32, a:1, s:1, b:0), 
% 143.96/144.39  maps  [106, 3]      (w:1, o:107, a:1, s:1, b:0), 
% 143.96/144.39  x  [107, 0]      (w:1, o:33, a:1, s:1, b:0), 
% 143.96/144.39  y  [108, 0]      (w:1, o:34, a:1, s:1, b:0), 
% 143.96/144.39  z  [109, 0]      (w:1, o:35, a:1, s:1, b:0).
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Starting Search:
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    4064
% 143.96/144.39  Kept:         2004
% 143.96/144.39  Inuse:        112
% 143.96/144.39  Deleted:      2
% 143.96/144.39  Deletedinuse: 2
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    9603
% 143.96/144.39  Kept:         4415
% 143.96/144.39  Inuse:        197
% 143.96/144.39  Deleted:      8
% 143.96/144.39  Deletedinuse: 4
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    14674
% 143.96/144.39  Kept:         7017
% 143.96/144.39  Inuse:        280
% 143.96/144.39  Deleted:      13
% 143.96/144.39  Deletedinuse: 7
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    20180
% 143.96/144.39  Kept:         9037
% 143.96/144.39  Inuse:        343
% 143.96/144.39  Deleted:      27
% 143.96/144.39  Deletedinuse: 21
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    25531
% 143.96/144.39  Kept:         11046
% 143.96/144.39  Inuse:        380
% 143.96/144.39  Deleted:      31
% 143.96/144.39  Deletedinuse: 25
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    29926
% 143.96/144.39  Kept:         13584
% 143.96/144.39  Inuse:        399
% 143.96/144.39  Deleted:      37
% 143.96/144.39  Deletedinuse: 25
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    34682
% 143.96/144.39  Kept:         16161
% 143.96/144.39  Inuse:        439
% 143.96/144.39  Deleted:      39
% 143.96/144.39  Deletedinuse: 27
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    37944
% 143.96/144.39  Kept:         18164
% 143.96/144.39  Inuse:        460
% 143.96/144.39  Deleted:      41
% 143.96/144.39  Deletedinuse: 27
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    41070
% 143.96/144.39  Kept:         20220
% 143.96/144.39  Inuse:        462
% 143.96/144.39  Deleted:      41
% 143.96/144.39  Deletedinuse: 27
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying clauses:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    46770
% 143.96/144.39  Kept:         22324
% 143.96/144.39  Inuse:        467
% 143.96/144.39  Deleted:      1053
% 143.96/144.39  Deletedinuse: 27
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    52242
% 143.96/144.39  Kept:         24368
% 143.96/144.39  Inuse:        474
% 143.96/144.39  Deleted:      1054
% 143.96/144.39  Deletedinuse: 28
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    57773
% 143.96/144.39  Kept:         26409
% 143.96/144.39  Inuse:        519
% 143.96/144.39  Deleted:      1059
% 143.96/144.39  Deletedinuse: 31
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    61434
% 143.96/144.39  Kept:         28416
% 143.96/144.39  Inuse:        542
% 143.96/144.39  Deleted:      1060
% 143.96/144.39  Deletedinuse: 31
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    65085
% 143.96/144.39  Kept:         30420
% 143.96/144.39  Inuse:        569
% 143.96/144.39  Deleted:      1060
% 143.96/144.39  Deletedinuse: 31
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    69818
% 143.96/144.39  Kept:         32471
% 143.96/144.39  Inuse:        598
% 143.96/144.39  Deleted:      1060
% 143.96/144.39  Deletedinuse: 31
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    76531
% 143.96/144.39  Kept:         34498
% 143.96/144.39  Inuse:        608
% 143.96/144.39  Deleted:      1060
% 143.96/144.39  Deletedinuse: 31
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    82468
% 143.96/144.39  Kept:         36536
% 143.96/144.39  Inuse:        624
% 143.96/144.39  Deleted:      1062
% 143.96/144.39  Deletedinuse: 32
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    87667
% 143.96/144.39  Kept:         38541
% 143.96/144.39  Inuse:        671
% 143.96/144.39  Deleted:      1078
% 143.96/144.39  Deletedinuse: 47
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying clauses:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    93941
% 143.96/144.39  Kept:         40568
% 143.96/144.39  Inuse:        727
% 143.96/144.39  Deleted:      3858
% 143.96/144.39  Deletedinuse: 47
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  Resimplifying inuse:
% 143.96/144.39  Done
% 143.96/144.39  
% 143.96/144.39  
% 143.96/144.39  Intermediate Status:
% 143.96/144.39  Generated:    99235
% 143.96/144.39  Kept:         42568
% 143.96/144.39  Inuse:        781
% 143.96/144.39  Deleted:      3866
% 143.96/144.39  Deletedinuse:Cputime limit exceeded (core dumped)
%------------------------------------------------------------------------------