TSTP Solution File: SET143+4 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SET143+4 : TPTP v8.1.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n017.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 00:17:53 EDT 2022

% Result   : Theorem 3.95s 1.66s
% Output   : Proof 6.30s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.14  % Problem  : SET143+4 : TPTP v8.1.0. Released v2.2.0.
% 0.04/0.14  % Command  : ePrincess-casc -timeout=%d %s
% 0.14/0.36  % Computer : n017.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % WCLimit  : 600
% 0.14/0.36  % DateTime : Sat Jul  9 21:13:17 EDT 2022
% 0.14/0.36  % CPUTime  : 
% 0.61/0.67          ____       _                          
% 0.61/0.67    ___  / __ \_____(_)___  ________  __________
% 0.61/0.67   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.61/0.67  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.61/0.67  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.61/0.67  
% 0.61/0.67  A Theorem Prover for First-Order Logic
% 0.61/0.67  (ePrincess v.1.0)
% 0.61/0.67  
% 0.61/0.67  (c) Philipp Rümmer, 2009-2015
% 0.61/0.67  (c) Peter Backeman, 2014-2015
% 0.61/0.67  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.61/0.67  Free software under GNU Lesser General Public License (LGPL).
% 0.61/0.67  Bug reports to peter@backeman.se
% 0.61/0.67  
% 0.61/0.67  For more information, visit http://user.uu.se/~petba168/breu/
% 0.61/0.67  
% 0.61/0.67  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.73/0.72  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.62/1.00  Prover 0: Preprocessing ...
% 2.08/1.19  Prover 0: Warning: ignoring some quantifiers
% 2.08/1.22  Prover 0: Constructing countermodel ...
% 2.75/1.38  Prover 0: gave up
% 2.75/1.39  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -resolutionMethod=normal +ignoreQuantifiers -generateTriggers=all
% 2.75/1.41  Prover 1: Preprocessing ...
% 3.18/1.51  Prover 1: Constructing countermodel ...
% 3.95/1.66  Prover 1: proved (277ms)
% 3.95/1.66  
% 3.95/1.66  No countermodel exists, formula is valid
% 3.95/1.66  % SZS status Theorem for theBenchmark
% 3.95/1.66  
% 3.95/1.66  Generating proof ... found it (size 81)
% 5.87/2.08  
% 5.87/2.08  % SZS output start Proof for theBenchmark
% 5.87/2.08  Assumed formulas after preprocessing and simplification: 
% 5.87/2.08  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] : ( ~ (v7 = 0) & intersection(v3, v2) = v4 & intersection(v1, v2) = v5 & intersection(v0, v5) = v6 & intersection(v0, v1) = v3 & equal_set(v4, v6) = v7 &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v12 = 0 |  ~ (product(v9) = v10) |  ~ (member(v8, v11) = v12) |  ~ (member(v8, v10) = 0) |  ? [v13] : ( ~ (v13 = 0) & member(v11, v9) = v13)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v12 = 0 |  ~ (difference(v10, v9) = v11) |  ~ (member(v8, v11) = v12) |  ? [v13] :  ? [v14] : (member(v8, v10) = v13 & member(v8, v9) = v14 & ( ~ (v13 = 0) | v14 = 0))) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v12 = 0 |  ~ (union(v9, v10) = v11) |  ~ (member(v8, v11) = v12) |  ? [v13] :  ? [v14] : ( ~ (v14 = 0) &  ~ (v13 = 0) & member(v8, v10) = v14 & member(v8, v9) = v13)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v12 = 0 |  ~ (intersection(v9, v10) = v11) |  ~ (member(v8, v11) = v12) |  ? [v13] :  ? [v14] : (member(v8, v10) = v14 & member(v8, v9) = v13 & ( ~ (v14 = 0) |  ~ (v13 = 0)))) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] :  ! [v12] : (v11 = 0 |  ~ (sum(v9) = v10) |  ~ (member(v8, v12) = 0) |  ~ (member(v8, v10) = v11) |  ? [v13] : ( ~ (v13 = 0) & member(v12, v9) = v13)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (product(v9) = v10) |  ~ (member(v8, v10) = v11) |  ? [v12] :  ? [v13] : ( ~ (v13 = 0) & member(v12, v9) = 0 & member(v8, v12) = v13)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (unordered_pair(v9, v8) = v10) |  ~ (member(v8, v10) = v11)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (unordered_pair(v8, v9) = v10) |  ~ (member(v8, v10) = v11)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v11 = 0 |  ~ (power_set(v9) = v10) |  ~ (member(v8, v10) = v11) |  ? [v12] : ( ~ (v12 = 0) & subset(v8, v9) = v12)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v10 = v8 | v9 = v8 |  ~ (unordered_pair(v9, v10) = v11) |  ~ (member(v8, v11) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (unordered_pair(v11, v10) = v9) |  ~ (unordered_pair(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (difference(v11, v10) = v9) |  ~ (difference(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (union(v11, v10) = v9) |  ~ (union(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (intersection(v11, v10) = v9) |  ~ (intersection(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (equal_set(v11, v10) = v9) |  ~ (equal_set(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (subset(v11, v10) = v9) |  ~ (subset(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v9 = v8 |  ~ (member(v11, v10) = v9) |  ~ (member(v11, v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : ( ~ (difference(v10, v9) = v11) |  ~ (member(v8, v11) = 0) |  ? [v12] : ( ~ (v12 = 0) & member(v8, v10) = 0 & member(v8, v9) = v12)) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : ( ~ (union(v9, v10) = v11) |  ~ (member(v8, v11) = 0) |  ? [v12] :  ? [v13] : (member(v8, v10) = v13 & member(v8, v9) = v12 & (v13 = 0 | v12 = 0))) &  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : ( ~ (intersection(v9, v10) = v11) |  ~ (member(v8, v11) = 0) | (member(v8, v10) = 0 & member(v8, v9) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (singleton(v8) = v9) |  ~ (member(v8, v9) = v10)) &  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (equal_set(v8, v9) = v10) |  ? [v11] :  ? [v12] : (subset(v9, v8) = v12 & subset(v8, v9) = v11 & ( ~ (v12 = 0) |  ~ (v11 = 0)))) &  ! [v8] :  ! [v9] :  ! [v10] : (v10 = 0 |  ~ (subset(v8, v9) = v10) |  ? [v11] :  ? [v12] : ( ~ (v12 = 0) & member(v11, v9) = v12 & member(v11, v8) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (product(v10) = v9) |  ~ (product(v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (sum(v10) = v9) |  ~ (sum(v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (singleton(v10) = v9) |  ~ (singleton(v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (singleton(v9) = v10) |  ~ (member(v8, v10) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (power_set(v10) = v9) |  ~ (power_set(v10) = v8)) &  ! [v8] :  ! [v9] :  ! [v10] : ( ~ (sum(v9) = v10) |  ~ (member(v8, v10) = 0) |  ? [v11] : (member(v11, v9) = 0 & member(v8, v11) = 0)) &  ! [v8] :  ! [v9] :  ! [v10] : ( ~ (power_set(v9) = v10) |  ~ (member(v8, v10) = 0) | subset(v8, v9) = 0) &  ! [v8] :  ! [v9] :  ! [v10] : ( ~ (subset(v8, v9) = 0) |  ~ (member(v10, v8) = 0) | member(v10, v9) = 0) &  ! [v8] :  ! [v9] : ( ~ (equal_set(v8, v9) = 0) | (subset(v9, v8) = 0 & subset(v8, v9) = 0)) &  ! [v8] :  ~ (member(v8, empty_set) = 0))
% 6.09/2.12  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7 yields:
% 6.09/2.12  | (1)  ~ (all_0_0_0 = 0) & intersection(all_0_4_4, all_0_5_5) = all_0_3_3 & intersection(all_0_6_6, all_0_5_5) = all_0_2_2 & intersection(all_0_7_7, all_0_2_2) = all_0_1_1 & intersection(all_0_7_7, all_0_6_6) = all_0_4_4 & equal_set(all_0_3_3, all_0_1_1) = all_0_0_0 &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v3) = v4) |  ~ (member(v0, v2) = 0) |  ? [v5] : ( ~ (v5 = 0) & member(v3, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v5 & member(v0, v1) = v6 & ( ~ (v5 = 0) | v6 = 0))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : ( ~ (v6 = 0) &  ~ (v5 = 0) & member(v0, v2) = v6 & member(v0, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v6 & member(v0, v1) = v5 & ( ~ (v6 = 0) |  ~ (v5 = 0)))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = 0 |  ~ (sum(v1) = v2) |  ~ (member(v0, v4) = 0) |  ~ (member(v0, v2) = v3) |  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] :  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = 0 & member(v0, v4) = v5)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v1, v0) = v2) |  ~ (member(v0, v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v0, v1) = v2) |  ~ (member(v0, v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] : ( ~ (v4 = 0) & subset(v0, v1) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ (member(v0, v3) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (equal_set(v3, v2) = v1) |  ~ (equal_set(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (member(v3, v2) = v1) |  ~ (member(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] : ( ~ (v4 = 0) & member(v0, v2) = 0 & member(v0, v1) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] :  ? [v5] : (member(v0, v2) = v5 & member(v0, v1) = v4 & (v5 = 0 | v4 = 0))) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = 0) | (member(v0, v2) = 0 & member(v0, v1) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (singleton(v0) = v1) |  ~ (member(v0, v1) = v2)) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (equal_set(v0, v1) = v2) |  ? [v3] :  ? [v4] : (subset(v1, v0) = v4 & subset(v0, v1) = v3 & ( ~ (v4 = 0) |  ~ (v3 = 0)))) &  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & member(v3, v1) = v4 & member(v3, v0) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ (member(v0, v2) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ (member(v0, v2) = 0) |  ? [v3] : (member(v3, v1) = 0 & member(v0, v3) = 0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = 0) | subset(v0, v1) = 0) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (subset(v0, v1) = 0) |  ~ (member(v2, v0) = 0) | member(v2, v1) = 0) &  ! [v0] :  ! [v1] : ( ~ (equal_set(v0, v1) = 0) | (subset(v1, v0) = 0 & subset(v0, v1) = 0)) &  ! [v0] :  ~ (member(v0, empty_set) = 0)
% 6.09/2.13  |
% 6.09/2.13  | Applying alpha-rule on (1) yields:
% 6.09/2.13  | (2)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (subset(v3, v2) = v1) |  ~ (subset(v3, v2) = v0))
% 6.09/2.13  | (3)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (member(v3, v2) = v1) |  ~ (member(v3, v2) = v0))
% 6.09/2.13  | (4)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (subset(v0, v1) = 0) |  ~ (member(v2, v0) = 0) | member(v2, v1) = 0)
% 6.09/2.13  | (5)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] :  ? [v5] : (member(v0, v2) = v5 & member(v0, v1) = v4 & (v5 = 0 | v4 = 0)))
% 6.09/2.13  | (6)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v1, v0) = v2) |  ~ (member(v0, v2) = v3))
% 6.09/2.13  | (7)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (equal_set(v3, v2) = v1) |  ~ (equal_set(v3, v2) = v0))
% 6.09/2.13  | (8)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] :  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = 0 & member(v0, v4) = v5))
% 6.09/2.13  | (9)  ! [v0] :  ~ (member(v0, empty_set) = 0)
% 6.09/2.13  | (10)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = 0 |  ~ (sum(v1) = v2) |  ~ (member(v0, v4) = 0) |  ~ (member(v0, v2) = v3) |  ? [v5] : ( ~ (v5 = 0) & member(v4, v1) = v5))
% 6.09/2.13  | (11)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0))
% 6.09/2.13  | (12)  ~ (all_0_0_0 = 0)
% 6.09/2.13  | (13)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v6 & member(v0, v1) = v5 & ( ~ (v6 = 0) |  ~ (v5 = 0))))
% 6.09/2.14  | (14)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ (member(v0, v2) = 0) |  ? [v3] : (member(v3, v1) = 0 & member(v0, v3) = 0))
% 6.09/2.14  | (15) intersection(all_0_6_6, all_0_5_5) = all_0_2_2
% 6.09/2.14  | (16)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (union(v1, v2) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : ( ~ (v6 = 0) &  ~ (v5 = 0) & member(v0, v2) = v6 & member(v0, v1) = v5))
% 6.09/2.14  | (17)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (unordered_pair(v0, v1) = v2) |  ~ (member(v0, v2) = v3))
% 6.09/2.14  | (18) intersection(all_0_7_7, all_0_2_2) = all_0_1_1
% 6.09/2.14  | (19)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (product(v1) = v2) |  ~ (member(v0, v3) = v4) |  ~ (member(v0, v2) = 0) |  ? [v5] : ( ~ (v5 = 0) & member(v3, v1) = v5))
% 6.09/2.14  | (20) intersection(all_0_7_7, all_0_6_6) = all_0_4_4
% 6.09/2.14  | (21)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ (member(v0, v3) = 0))
% 6.09/2.14  | (22)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (equal_set(v0, v1) = v2) |  ? [v3] :  ? [v4] : (subset(v1, v0) = v4 & subset(v0, v1) = v3 & ( ~ (v4 = 0) |  ~ (v3 = 0))))
% 6.09/2.14  | (23)  ! [v0] :  ! [v1] : ( ~ (equal_set(v0, v1) = 0) | (subset(v1, v0) = 0 & subset(v0, v1) = 0))
% 6.09/2.14  | (24)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = 0) |  ? [v4] : ( ~ (v4 = 0) & member(v0, v2) = 0 & member(v0, v1) = v4))
% 6.09/2.14  | (25)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0))
% 6.09/2.14  | (26)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (singleton(v0) = v1) |  ~ (member(v0, v1) = v2))
% 6.09/2.14  | (27)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0))
% 6.09/2.14  | (28)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0))
% 6.09/2.14  | (29)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0))
% 6.09/2.14  | (30)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 6.09/2.14  | (31)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = 0) | subset(v0, v1) = 0)
% 6.09/2.14  | (32)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0))
% 6.09/2.14  | (33)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0))
% 6.09/2.14  | (34)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v3 = 0 |  ~ (power_set(v1) = v2) |  ~ (member(v0, v2) = v3) |  ? [v4] : ( ~ (v4 = 0) & subset(v0, v1) = v4))
% 6.09/2.14  | (35) intersection(all_0_4_4, all_0_5_5) = all_0_3_3
% 6.09/2.14  | (36)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ (member(v0, v2) = 0))
% 6.09/2.14  | (37)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ (member(v0, v3) = 0) | (member(v0, v2) = 0 & member(v0, v1) = 0))
% 6.09/2.14  | (38) equal_set(all_0_3_3, all_0_1_1) = all_0_0_0
% 6.09/2.14  | (39)  ! [v0] :  ! [v1] :  ! [v2] : (v2 = 0 |  ~ (subset(v0, v1) = v2) |  ? [v3] :  ? [v4] : ( ~ (v4 = 0) & member(v3, v1) = v4 & member(v3, v0) = 0))
% 6.09/2.15  | (40)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v4 = 0 |  ~ (difference(v2, v1) = v3) |  ~ (member(v0, v3) = v4) |  ? [v5] :  ? [v6] : (member(v0, v2) = v5 & member(v0, v1) = v6 & ( ~ (v5 = 0) | v6 = 0)))
% 6.09/2.15  |
% 6.09/2.15  | Instantiating formula (22) with all_0_0_0, all_0_1_1, all_0_3_3 and discharging atoms equal_set(all_0_3_3, all_0_1_1) = all_0_0_0, yields:
% 6.09/2.15  | (41) all_0_0_0 = 0 |  ? [v0] :  ? [v1] : (subset(all_0_1_1, all_0_3_3) = v1 & subset(all_0_3_3, all_0_1_1) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.09/2.15  |
% 6.09/2.15  +-Applying beta-rule and splitting (41), into two cases.
% 6.09/2.15  |-Branch one:
% 6.09/2.15  | (42) all_0_0_0 = 0
% 6.09/2.15  |
% 6.09/2.15  	| Equations (42) can reduce 12 to:
% 6.09/2.15  	| (43) $false
% 6.09/2.15  	|
% 6.09/2.15  	|-The branch is then unsatisfiable
% 6.09/2.15  |-Branch two:
% 6.09/2.15  | (12)  ~ (all_0_0_0 = 0)
% 6.09/2.15  | (45)  ? [v0] :  ? [v1] : (subset(all_0_1_1, all_0_3_3) = v1 & subset(all_0_3_3, all_0_1_1) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.09/2.15  |
% 6.09/2.15  	| Instantiating (45) with all_14_0_8, all_14_1_9 yields:
% 6.09/2.15  	| (46) subset(all_0_1_1, all_0_3_3) = all_14_0_8 & subset(all_0_3_3, all_0_1_1) = all_14_1_9 & ( ~ (all_14_0_8 = 0) |  ~ (all_14_1_9 = 0))
% 6.09/2.15  	|
% 6.09/2.15  	| Applying alpha-rule on (46) yields:
% 6.09/2.15  	| (47) subset(all_0_1_1, all_0_3_3) = all_14_0_8
% 6.09/2.15  	| (48) subset(all_0_3_3, all_0_1_1) = all_14_1_9
% 6.09/2.15  	| (49)  ~ (all_14_0_8 = 0) |  ~ (all_14_1_9 = 0)
% 6.09/2.15  	|
% 6.09/2.15  	| Instantiating formula (39) with all_14_0_8, all_0_3_3, all_0_1_1 and discharging atoms subset(all_0_1_1, all_0_3_3) = all_14_0_8, yields:
% 6.09/2.15  	| (50) all_14_0_8 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = 0 & member(v0, all_0_3_3) = v1)
% 6.09/2.15  	|
% 6.09/2.15  	| Instantiating formula (39) with all_14_1_9, all_0_1_1, all_0_3_3 and discharging atoms subset(all_0_3_3, all_0_1_1) = all_14_1_9, yields:
% 6.09/2.15  	| (51) all_14_1_9 = 0 |  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = v1 & member(v0, all_0_3_3) = 0)
% 6.09/2.15  	|
% 6.09/2.15  	+-Applying beta-rule and splitting (49), into two cases.
% 6.09/2.15  	|-Branch one:
% 6.09/2.15  	| (52)  ~ (all_14_0_8 = 0)
% 6.09/2.15  	|
% 6.09/2.15  		+-Applying beta-rule and splitting (50), into two cases.
% 6.09/2.15  		|-Branch one:
% 6.09/2.15  		| (53) all_14_0_8 = 0
% 6.09/2.15  		|
% 6.09/2.15  			| Equations (53) can reduce 52 to:
% 6.09/2.15  			| (43) $false
% 6.09/2.15  			|
% 6.09/2.15  			|-The branch is then unsatisfiable
% 6.09/2.15  		|-Branch two:
% 6.09/2.15  		| (52)  ~ (all_14_0_8 = 0)
% 6.09/2.15  		| (56)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = 0 & member(v0, all_0_3_3) = v1)
% 6.09/2.15  		|
% 6.09/2.15  			| Instantiating (56) with all_42_0_10, all_42_1_11 yields:
% 6.09/2.15  			| (57)  ~ (all_42_0_10 = 0) & member(all_42_1_11, all_0_1_1) = 0 & member(all_42_1_11, all_0_3_3) = all_42_0_10
% 6.09/2.15  			|
% 6.09/2.15  			| Applying alpha-rule on (57) yields:
% 6.09/2.15  			| (58)  ~ (all_42_0_10 = 0)
% 6.09/2.15  			| (59) member(all_42_1_11, all_0_1_1) = 0
% 6.09/2.15  			| (60) member(all_42_1_11, all_0_3_3) = all_42_0_10
% 6.09/2.15  			|
% 6.09/2.15  			| Instantiating formula (37) with all_0_2_2, all_0_5_5, all_0_6_6, all_42_1_11 and discharging atoms intersection(all_0_6_6, all_0_5_5) = all_0_2_2, yields:
% 6.09/2.15  			| (61)  ~ (member(all_42_1_11, all_0_2_2) = 0) | (member(all_42_1_11, all_0_5_5) = 0 & member(all_42_1_11, all_0_6_6) = 0)
% 6.09/2.15  			|
% 6.09/2.15  			| Instantiating formula (37) with all_0_1_1, all_0_2_2, all_0_7_7, all_42_1_11 and discharging atoms intersection(all_0_7_7, all_0_2_2) = all_0_1_1, member(all_42_1_11, all_0_1_1) = 0, yields:
% 6.09/2.15  			| (62) member(all_42_1_11, all_0_2_2) = 0 & member(all_42_1_11, all_0_7_7) = 0
% 6.09/2.15  			|
% 6.09/2.15  			| Applying alpha-rule on (62) yields:
% 6.09/2.15  			| (63) member(all_42_1_11, all_0_2_2) = 0
% 6.09/2.15  			| (64) member(all_42_1_11, all_0_7_7) = 0
% 6.09/2.15  			|
% 6.09/2.15  			| Instantiating formula (13) with all_42_0_10, all_0_3_3, all_0_5_5, all_0_4_4, all_42_1_11 and discharging atoms intersection(all_0_4_4, all_0_5_5) = all_0_3_3, member(all_42_1_11, all_0_3_3) = all_42_0_10, yields:
% 6.09/2.15  			| (65) all_42_0_10 = 0 |  ? [v0] :  ? [v1] : (member(all_42_1_11, all_0_4_4) = v0 & member(all_42_1_11, all_0_5_5) = v1 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.09/2.16  			|
% 6.09/2.16  			+-Applying beta-rule and splitting (61), into two cases.
% 6.09/2.16  			|-Branch one:
% 6.09/2.16  			| (66)  ~ (member(all_42_1_11, all_0_2_2) = 0)
% 6.09/2.16  			|
% 6.09/2.16  				| Using (63) and (66) yields:
% 6.09/2.16  				| (67) $false
% 6.09/2.16  				|
% 6.09/2.16  				|-The branch is then unsatisfiable
% 6.09/2.16  			|-Branch two:
% 6.09/2.16  			| (63) member(all_42_1_11, all_0_2_2) = 0
% 6.09/2.16  			| (69) member(all_42_1_11, all_0_5_5) = 0 & member(all_42_1_11, all_0_6_6) = 0
% 6.09/2.16  			|
% 6.09/2.16  				| Applying alpha-rule on (69) yields:
% 6.09/2.16  				| (70) member(all_42_1_11, all_0_5_5) = 0
% 6.09/2.16  				| (71) member(all_42_1_11, all_0_6_6) = 0
% 6.09/2.16  				|
% 6.09/2.16  				+-Applying beta-rule and splitting (65), into two cases.
% 6.09/2.16  				|-Branch one:
% 6.09/2.16  				| (72) all_42_0_10 = 0
% 6.09/2.16  				|
% 6.09/2.16  					| Equations (72) can reduce 58 to:
% 6.09/2.16  					| (43) $false
% 6.09/2.16  					|
% 6.09/2.16  					|-The branch is then unsatisfiable
% 6.09/2.16  				|-Branch two:
% 6.09/2.16  				| (58)  ~ (all_42_0_10 = 0)
% 6.09/2.16  				| (75)  ? [v0] :  ? [v1] : (member(all_42_1_11, all_0_4_4) = v0 & member(all_42_1_11, all_0_5_5) = v1 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.09/2.16  				|
% 6.09/2.16  					| Instantiating (75) with all_65_0_12, all_65_1_13 yields:
% 6.09/2.16  					| (76) member(all_42_1_11, all_0_4_4) = all_65_1_13 & member(all_42_1_11, all_0_5_5) = all_65_0_12 & ( ~ (all_65_0_12 = 0) |  ~ (all_65_1_13 = 0))
% 6.09/2.16  					|
% 6.09/2.16  					| Applying alpha-rule on (76) yields:
% 6.09/2.16  					| (77) member(all_42_1_11, all_0_4_4) = all_65_1_13
% 6.09/2.16  					| (78) member(all_42_1_11, all_0_5_5) = all_65_0_12
% 6.09/2.16  					| (79)  ~ (all_65_0_12 = 0) |  ~ (all_65_1_13 = 0)
% 6.09/2.16  					|
% 6.09/2.16  					| Instantiating formula (3) with all_42_1_11, all_0_5_5, all_65_0_12, 0 and discharging atoms member(all_42_1_11, all_0_5_5) = all_65_0_12, member(all_42_1_11, all_0_5_5) = 0, yields:
% 6.09/2.16  					| (80) all_65_0_12 = 0
% 6.09/2.16  					|
% 6.09/2.16  					+-Applying beta-rule and splitting (79), into two cases.
% 6.09/2.16  					|-Branch one:
% 6.09/2.16  					| (81)  ~ (all_65_0_12 = 0)
% 6.09/2.16  					|
% 6.09/2.16  						| Equations (80) can reduce 81 to:
% 6.09/2.16  						| (43) $false
% 6.09/2.16  						|
% 6.09/2.16  						|-The branch is then unsatisfiable
% 6.09/2.16  					|-Branch two:
% 6.09/2.16  					| (80) all_65_0_12 = 0
% 6.09/2.16  					| (84)  ~ (all_65_1_13 = 0)
% 6.09/2.16  					|
% 6.09/2.16  						| Instantiating formula (13) with all_65_1_13, all_0_4_4, all_0_6_6, all_0_7_7, all_42_1_11 and discharging atoms intersection(all_0_7_7, all_0_6_6) = all_0_4_4, member(all_42_1_11, all_0_4_4) = all_65_1_13, yields:
% 6.09/2.16  						| (85) all_65_1_13 = 0 |  ? [v0] :  ? [v1] : (member(all_42_1_11, all_0_6_6) = v1 & member(all_42_1_11, all_0_7_7) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.09/2.16  						|
% 6.30/2.16  						+-Applying beta-rule and splitting (85), into two cases.
% 6.30/2.16  						|-Branch one:
% 6.30/2.16  						| (86) all_65_1_13 = 0
% 6.30/2.16  						|
% 6.30/2.16  							| Equations (86) can reduce 84 to:
% 6.30/2.16  							| (43) $false
% 6.30/2.16  							|
% 6.30/2.16  							|-The branch is then unsatisfiable
% 6.30/2.16  						|-Branch two:
% 6.30/2.16  						| (84)  ~ (all_65_1_13 = 0)
% 6.30/2.16  						| (89)  ? [v0] :  ? [v1] : (member(all_42_1_11, all_0_6_6) = v1 & member(all_42_1_11, all_0_7_7) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.30/2.16  						|
% 6.30/2.16  							| Instantiating (89) with all_106_0_14, all_106_1_15 yields:
% 6.30/2.16  							| (90) member(all_42_1_11, all_0_6_6) = all_106_0_14 & member(all_42_1_11, all_0_7_7) = all_106_1_15 & ( ~ (all_106_0_14 = 0) |  ~ (all_106_1_15 = 0))
% 6.30/2.16  							|
% 6.30/2.16  							| Applying alpha-rule on (90) yields:
% 6.30/2.16  							| (91) member(all_42_1_11, all_0_6_6) = all_106_0_14
% 6.30/2.16  							| (92) member(all_42_1_11, all_0_7_7) = all_106_1_15
% 6.30/2.16  							| (93)  ~ (all_106_0_14 = 0) |  ~ (all_106_1_15 = 0)
% 6.30/2.16  							|
% 6.30/2.16  							| Instantiating formula (3) with all_42_1_11, all_0_6_6, all_106_0_14, 0 and discharging atoms member(all_42_1_11, all_0_6_6) = all_106_0_14, member(all_42_1_11, all_0_6_6) = 0, yields:
% 6.30/2.16  							| (94) all_106_0_14 = 0
% 6.30/2.16  							|
% 6.30/2.16  							| Instantiating formula (3) with all_42_1_11, all_0_7_7, all_106_1_15, 0 and discharging atoms member(all_42_1_11, all_0_7_7) = all_106_1_15, member(all_42_1_11, all_0_7_7) = 0, yields:
% 6.30/2.16  							| (95) all_106_1_15 = 0
% 6.30/2.16  							|
% 6.30/2.16  							+-Applying beta-rule and splitting (93), into two cases.
% 6.30/2.16  							|-Branch one:
% 6.30/2.16  							| (96)  ~ (all_106_0_14 = 0)
% 6.30/2.16  							|
% 6.30/2.16  								| Equations (94) can reduce 96 to:
% 6.30/2.16  								| (43) $false
% 6.30/2.16  								|
% 6.30/2.16  								|-The branch is then unsatisfiable
% 6.30/2.16  							|-Branch two:
% 6.30/2.16  							| (94) all_106_0_14 = 0
% 6.30/2.16  							| (99)  ~ (all_106_1_15 = 0)
% 6.30/2.16  							|
% 6.30/2.16  								| Equations (95) can reduce 99 to:
% 6.30/2.16  								| (43) $false
% 6.30/2.16  								|
% 6.30/2.16  								|-The branch is then unsatisfiable
% 6.30/2.17  	|-Branch two:
% 6.30/2.17  	| (53) all_14_0_8 = 0
% 6.30/2.17  	| (102)  ~ (all_14_1_9 = 0)
% 6.30/2.17  	|
% 6.30/2.17  		+-Applying beta-rule and splitting (51), into two cases.
% 6.30/2.17  		|-Branch one:
% 6.30/2.17  		| (103) all_14_1_9 = 0
% 6.30/2.17  		|
% 6.30/2.17  			| Equations (103) can reduce 102 to:
% 6.30/2.17  			| (43) $false
% 6.30/2.17  			|
% 6.30/2.17  			|-The branch is then unsatisfiable
% 6.30/2.17  		|-Branch two:
% 6.30/2.17  		| (102)  ~ (all_14_1_9 = 0)
% 6.30/2.17  		| (106)  ? [v0] :  ? [v1] : ( ~ (v1 = 0) & member(v0, all_0_1_1) = v1 & member(v0, all_0_3_3) = 0)
% 6.30/2.17  		|
% 6.30/2.17  			| Instantiating (106) with all_42_0_16, all_42_1_17 yields:
% 6.30/2.17  			| (107)  ~ (all_42_0_16 = 0) & member(all_42_1_17, all_0_1_1) = all_42_0_16 & member(all_42_1_17, all_0_3_3) = 0
% 6.30/2.17  			|
% 6.30/2.17  			| Applying alpha-rule on (107) yields:
% 6.30/2.17  			| (108)  ~ (all_42_0_16 = 0)
% 6.30/2.17  			| (109) member(all_42_1_17, all_0_1_1) = all_42_0_16
% 6.30/2.17  			| (110) member(all_42_1_17, all_0_3_3) = 0
% 6.30/2.17  			|
% 6.30/2.17  			| Instantiating formula (13) with all_42_0_16, all_0_1_1, all_0_2_2, all_0_7_7, all_42_1_17 and discharging atoms intersection(all_0_7_7, all_0_2_2) = all_0_1_1, member(all_42_1_17, all_0_1_1) = all_42_0_16, yields:
% 6.30/2.17  			| (111) all_42_0_16 = 0 |  ? [v0] :  ? [v1] : (member(all_42_1_17, all_0_2_2) = v1 & member(all_42_1_17, all_0_7_7) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.30/2.17  			|
% 6.30/2.17  			| Instantiating formula (37) with all_0_3_3, all_0_5_5, all_0_4_4, all_42_1_17 and discharging atoms intersection(all_0_4_4, all_0_5_5) = all_0_3_3, member(all_42_1_17, all_0_3_3) = 0, yields:
% 6.30/2.17  			| (112) member(all_42_1_17, all_0_4_4) = 0 & member(all_42_1_17, all_0_5_5) = 0
% 6.30/2.17  			|
% 6.30/2.17  			| Applying alpha-rule on (112) yields:
% 6.30/2.17  			| (113) member(all_42_1_17, all_0_4_4) = 0
% 6.30/2.17  			| (114) member(all_42_1_17, all_0_5_5) = 0
% 6.30/2.17  			|
% 6.30/2.17  			| Instantiating formula (37) with all_0_4_4, all_0_6_6, all_0_7_7, all_42_1_17 and discharging atoms intersection(all_0_7_7, all_0_6_6) = all_0_4_4, yields:
% 6.30/2.17  			| (115)  ~ (member(all_42_1_17, all_0_4_4) = 0) | (member(all_42_1_17, all_0_6_6) = 0 & member(all_42_1_17, all_0_7_7) = 0)
% 6.30/2.17  			|
% 6.30/2.17  			+-Applying beta-rule and splitting (115), into two cases.
% 6.30/2.17  			|-Branch one:
% 6.30/2.17  			| (116)  ~ (member(all_42_1_17, all_0_4_4) = 0)
% 6.30/2.17  			|
% 6.30/2.17  				| Using (113) and (116) yields:
% 6.30/2.17  				| (67) $false
% 6.30/2.17  				|
% 6.30/2.17  				|-The branch is then unsatisfiable
% 6.30/2.17  			|-Branch two:
% 6.30/2.17  			| (113) member(all_42_1_17, all_0_4_4) = 0
% 6.30/2.17  			| (119) member(all_42_1_17, all_0_6_6) = 0 & member(all_42_1_17, all_0_7_7) = 0
% 6.30/2.17  			|
% 6.30/2.17  				| Applying alpha-rule on (119) yields:
% 6.30/2.17  				| (120) member(all_42_1_17, all_0_6_6) = 0
% 6.30/2.17  				| (121) member(all_42_1_17, all_0_7_7) = 0
% 6.30/2.17  				|
% 6.30/2.17  				+-Applying beta-rule and splitting (111), into two cases.
% 6.30/2.17  				|-Branch one:
% 6.30/2.17  				| (122) all_42_0_16 = 0
% 6.30/2.17  				|
% 6.30/2.17  					| Equations (122) can reduce 108 to:
% 6.30/2.17  					| (43) $false
% 6.30/2.17  					|
% 6.30/2.17  					|-The branch is then unsatisfiable
% 6.30/2.17  				|-Branch two:
% 6.30/2.17  				| (108)  ~ (all_42_0_16 = 0)
% 6.30/2.17  				| (125)  ? [v0] :  ? [v1] : (member(all_42_1_17, all_0_2_2) = v1 & member(all_42_1_17, all_0_7_7) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.30/2.17  				|
% 6.30/2.17  					| Instantiating (125) with all_69_0_18, all_69_1_19 yields:
% 6.30/2.17  					| (126) member(all_42_1_17, all_0_2_2) = all_69_0_18 & member(all_42_1_17, all_0_7_7) = all_69_1_19 & ( ~ (all_69_0_18 = 0) |  ~ (all_69_1_19 = 0))
% 6.30/2.17  					|
% 6.30/2.17  					| Applying alpha-rule on (126) yields:
% 6.30/2.17  					| (127) member(all_42_1_17, all_0_2_2) = all_69_0_18
% 6.30/2.17  					| (128) member(all_42_1_17, all_0_7_7) = all_69_1_19
% 6.30/2.17  					| (129)  ~ (all_69_0_18 = 0) |  ~ (all_69_1_19 = 0)
% 6.30/2.17  					|
% 6.30/2.17  					| Instantiating formula (3) with all_42_1_17, all_0_7_7, all_69_1_19, 0 and discharging atoms member(all_42_1_17, all_0_7_7) = all_69_1_19, member(all_42_1_17, all_0_7_7) = 0, yields:
% 6.30/2.17  					| (130) all_69_1_19 = 0
% 6.30/2.17  					|
% 6.30/2.17  					+-Applying beta-rule and splitting (129), into two cases.
% 6.30/2.17  					|-Branch one:
% 6.30/2.17  					| (131)  ~ (all_69_0_18 = 0)
% 6.30/2.17  					|
% 6.30/2.17  						| Instantiating formula (13) with all_69_0_18, all_0_2_2, all_0_5_5, all_0_6_6, all_42_1_17 and discharging atoms intersection(all_0_6_6, all_0_5_5) = all_0_2_2, member(all_42_1_17, all_0_2_2) = all_69_0_18, yields:
% 6.30/2.17  						| (132) all_69_0_18 = 0 |  ? [v0] :  ? [v1] : (member(all_42_1_17, all_0_5_5) = v1 & member(all_42_1_17, all_0_6_6) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.30/2.17  						|
% 6.30/2.17  						+-Applying beta-rule and splitting (132), into two cases.
% 6.30/2.17  						|-Branch one:
% 6.30/2.17  						| (133) all_69_0_18 = 0
% 6.30/2.18  						|
% 6.30/2.18  							| Equations (133) can reduce 131 to:
% 6.30/2.18  							| (43) $false
% 6.30/2.18  							|
% 6.30/2.18  							|-The branch is then unsatisfiable
% 6.30/2.18  						|-Branch two:
% 6.30/2.18  						| (131)  ~ (all_69_0_18 = 0)
% 6.30/2.18  						| (136)  ? [v0] :  ? [v1] : (member(all_42_1_17, all_0_5_5) = v1 & member(all_42_1_17, all_0_6_6) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 6.30/2.18  						|
% 6.30/2.18  							| Instantiating (136) with all_110_0_22, all_110_1_23 yields:
% 6.30/2.18  							| (137) member(all_42_1_17, all_0_5_5) = all_110_0_22 & member(all_42_1_17, all_0_6_6) = all_110_1_23 & ( ~ (all_110_0_22 = 0) |  ~ (all_110_1_23 = 0))
% 6.30/2.18  							|
% 6.30/2.18  							| Applying alpha-rule on (137) yields:
% 6.30/2.18  							| (138) member(all_42_1_17, all_0_5_5) = all_110_0_22
% 6.30/2.18  							| (139) member(all_42_1_17, all_0_6_6) = all_110_1_23
% 6.30/2.18  							| (140)  ~ (all_110_0_22 = 0) |  ~ (all_110_1_23 = 0)
% 6.30/2.18  							|
% 6.30/2.18  							| Instantiating formula (3) with all_42_1_17, all_0_5_5, all_110_0_22, 0 and discharging atoms member(all_42_1_17, all_0_5_5) = all_110_0_22, member(all_42_1_17, all_0_5_5) = 0, yields:
% 6.30/2.18  							| (141) all_110_0_22 = 0
% 6.30/2.18  							|
% 6.30/2.18  							| Instantiating formula (3) with all_42_1_17, all_0_6_6, all_110_1_23, 0 and discharging atoms member(all_42_1_17, all_0_6_6) = all_110_1_23, member(all_42_1_17, all_0_6_6) = 0, yields:
% 6.30/2.18  							| (142) all_110_1_23 = 0
% 6.30/2.18  							|
% 6.30/2.18  							+-Applying beta-rule and splitting (140), into two cases.
% 6.30/2.18  							|-Branch one:
% 6.30/2.18  							| (143)  ~ (all_110_0_22 = 0)
% 6.30/2.18  							|
% 6.30/2.18  								| Equations (141) can reduce 143 to:
% 6.30/2.18  								| (43) $false
% 6.30/2.18  								|
% 6.30/2.18  								|-The branch is then unsatisfiable
% 6.30/2.18  							|-Branch two:
% 6.30/2.18  							| (141) all_110_0_22 = 0
% 6.30/2.18  							| (146)  ~ (all_110_1_23 = 0)
% 6.30/2.18  							|
% 6.30/2.18  								| Equations (142) can reduce 146 to:
% 6.30/2.18  								| (43) $false
% 6.30/2.18  								|
% 6.30/2.18  								|-The branch is then unsatisfiable
% 6.30/2.18  					|-Branch two:
% 6.30/2.18  					| (133) all_69_0_18 = 0
% 6.30/2.18  					| (149)  ~ (all_69_1_19 = 0)
% 6.30/2.18  					|
% 6.30/2.18  						| Equations (130) can reduce 149 to:
% 6.30/2.18  						| (43) $false
% 6.30/2.18  						|
% 6.30/2.18  						|-The branch is then unsatisfiable
% 6.30/2.18  % SZS output end Proof for theBenchmark
% 6.30/2.18  
% 6.30/2.18  1505ms
%------------------------------------------------------------------------------