TSTP Solution File: SET095-7 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET095-7 : TPTP v8.1.0. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:46:59 EDT 2022

% Result   : Unsatisfiable 6.07s 6.44s
% Output   : Refutation 6.07s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : SET095-7 : TPTP v8.1.0. Bugfixed v2.1.0.
% 0.12/0.13  % Command  : bliksem %s
% 0.12/0.34  % Computer : n012.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % DateTime : Sun Jul 10 05:17:28 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.71/1.11  *** allocated 10000 integers for termspace/termends
% 0.71/1.11  *** allocated 10000 integers for clauses
% 0.71/1.11  *** allocated 10000 integers for justifications
% 0.71/1.11  Bliksem 1.12
% 0.71/1.11  
% 0.71/1.11  
% 0.71/1.11  Automatic Strategy Selection
% 0.71/1.11  
% 0.71/1.11  Clauses:
% 0.71/1.11  [
% 0.71/1.11     [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y ) ],
% 0.71/1.11     [ member( 'not_subclass_element'( X, Y ), X ), subclass( X, Y ) ],
% 0.71/1.11     [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), subclass( X, Y ) ]
% 0.71/1.11    ,
% 0.71/1.11     [ subclass( X, 'universal_class' ) ],
% 0.71/1.11     [ ~( =( X, Y ) ), subclass( X, Y ) ],
% 0.71/1.11     [ ~( =( X, Y ) ), subclass( Y, X ) ],
% 0.71/1.11     [ ~( subclass( X, Y ) ), ~( subclass( Y, X ) ), =( X, Y ) ],
% 0.71/1.11     [ ~( member( X, 'unordered_pair'( Y, Z ) ) ), =( X, Y ), =( X, Z ) ]
% 0.71/1.11    ,
% 0.71/1.11     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( X, Y
% 0.71/1.11     ) ) ],
% 0.71/1.11     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( Y, X
% 0.71/1.11     ) ) ],
% 0.71/1.11     [ member( 'unordered_pair'( X, Y ), 'universal_class' ) ],
% 0.71/1.11     [ =( 'unordered_pair'( X, X ), singleton( X ) ) ],
% 0.71/1.11     [ =( 'unordered_pair'( singleton( X ), 'unordered_pair'( X, singleton( Y
% 0.71/1.11     ) ) ), 'ordered_pair'( X, Y ) ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.71/1.11    X, Z ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.71/1.11    Y, T ) ],
% 0.71/1.11     [ ~( member( X, Y ) ), ~( member( Z, T ) ), member( 'ordered_pair'( X, Z
% 0.71/1.11     ), 'cross_product'( Y, T ) ) ],
% 0.71/1.11     [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 'ordered_pair'( first( X
% 0.71/1.11     ), second( X ) ), X ) ],
% 0.71/1.11     [ subclass( 'element_relation', 'cross_product'( 'universal_class', 
% 0.71/1.11    'universal_class' ) ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'element_relation' ) ), member( X, 
% 0.71/1.11    Y ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.71/1.11    , 'universal_class' ) ) ), ~( member( X, Y ) ), member( 'ordered_pair'( X
% 0.71/1.11    , Y ), 'element_relation' ) ],
% 0.71/1.11     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Y ) ],
% 0.71/1.11     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Z ) ],
% 0.71/1.11     [ ~( member( X, Y ) ), ~( member( X, Z ) ), member( X, intersection( Y, 
% 0.71/1.11    Z ) ) ],
% 0.71/1.11     [ ~( member( X, complement( Y ) ) ), ~( member( X, Y ) ) ],
% 0.71/1.11     [ ~( member( X, 'universal_class' ) ), member( X, complement( Y ) ), 
% 0.71/1.11    member( X, Y ) ],
% 0.71/1.11     [ =( complement( intersection( complement( X ), complement( Y ) ) ), 
% 0.71/1.11    union( X, Y ) ) ],
% 0.71/1.11     [ =( intersection( complement( intersection( X, Y ) ), complement( 
% 0.71/1.11    intersection( complement( X ), complement( Y ) ) ) ), 
% 0.71/1.11    'symmetric_difference'( X, Y ) ) ],
% 0.71/1.11     [ =( intersection( X, 'cross_product'( Y, Z ) ), restrict( X, Y, Z ) ) ]
% 0.71/1.11    ,
% 0.71/1.11     [ =( intersection( 'cross_product'( X, Y ), Z ), restrict( Z, X, Y ) ) ]
% 0.71/1.11    ,
% 0.71/1.11     [ ~( =( restrict( X, singleton( Y ), 'universal_class' ), 'null_class' )
% 0.71/1.11     ), ~( member( Y, 'domain_of'( X ) ) ) ],
% 0.71/1.11     [ ~( member( X, 'universal_class' ) ), =( restrict( Y, singleton( X ), 
% 0.71/1.11    'universal_class' ), 'null_class' ), member( X, 'domain_of'( Y ) ) ],
% 0.71/1.11     [ subclass( rotate( X ), 'cross_product'( 'cross_product'( 
% 0.71/1.11    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), rotate( T ) )
% 0.71/1.11     ), member( 'ordered_pair'( 'ordered_pair'( Y, Z ), X ), T ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.71/1.11    member( 'ordered_pair'( 'ordered_pair'( Z, X ), Y ), 'cross_product'( 
% 0.71/1.11    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.71/1.11    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Z, X ), 
% 0.71/1.11    Y ), rotate( T ) ) ],
% 0.71/1.11     [ subclass( flip( X ), 'cross_product'( 'cross_product'( 
% 0.71/1.11    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), flip( T ) ) )
% 0.71/1.11    , member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), T ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.71/1.11    member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), 'cross_product'( 
% 0.71/1.11    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.71/1.11    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, X ), 
% 0.71/1.11    Z ), flip( T ) ) ],
% 0.71/1.11     [ =( 'domain_of'( flip( 'cross_product'( X, 'universal_class' ) ) ), 
% 0.71/1.11    inverse( X ) ) ],
% 0.71/1.11     [ =( 'domain_of'( inverse( X ) ), 'range_of'( X ) ) ],
% 0.71/1.11     [ =( first( 'not_subclass_element'( restrict( X, Y, singleton( Z ) ), 
% 0.71/1.11    'null_class' ) ), domain( X, Y, Z ) ) ],
% 0.71/1.11     [ =( second( 'not_subclass_element'( restrict( X, singleton( Y ), Z ), 
% 0.71/1.11    'null_class' ) ), range( X, Y, Z ) ) ],
% 0.71/1.11     [ =( 'range_of'( restrict( X, Y, 'universal_class' ) ), image( X, Y ) )
% 0.71/1.11     ],
% 0.71/1.11     [ =( union( X, singleton( X ) ), successor( X ) ) ],
% 0.71/1.11     [ subclass( 'successor_relation', 'cross_product'( 'universal_class', 
% 0.71/1.11    'universal_class' ) ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'successor_relation' ) ), =( 
% 0.71/1.11    successor( X ), Y ) ],
% 0.71/1.11     [ ~( =( successor( X ), Y ) ), ~( member( 'ordered_pair'( X, Y ), 
% 0.71/1.11    'cross_product'( 'universal_class', 'universal_class' ) ) ), member( 
% 0.71/1.11    'ordered_pair'( X, Y ), 'successor_relation' ) ],
% 0.71/1.11     [ ~( inductive( X ) ), member( 'null_class', X ) ],
% 0.71/1.11     [ ~( inductive( X ) ), subclass( image( 'successor_relation', X ), X ) ]
% 0.71/1.11    ,
% 0.71/1.11     [ ~( member( 'null_class', X ) ), ~( subclass( image( 
% 0.71/1.11    'successor_relation', X ), X ) ), inductive( X ) ],
% 0.71/1.11     [ inductive( omega ) ],
% 0.71/1.11     [ ~( inductive( X ) ), subclass( omega, X ) ],
% 0.71/1.11     [ member( omega, 'universal_class' ) ],
% 0.71/1.11     [ =( 'domain_of'( restrict( 'element_relation', 'universal_class', X ) )
% 0.71/1.11    , 'sum_class'( X ) ) ],
% 0.71/1.11     [ ~( member( X, 'universal_class' ) ), member( 'sum_class'( X ), 
% 0.71/1.11    'universal_class' ) ],
% 0.71/1.11     [ =( complement( image( 'element_relation', complement( X ) ) ), 
% 0.71/1.11    'power_class'( X ) ) ],
% 0.71/1.11     [ ~( member( X, 'universal_class' ) ), member( 'power_class'( X ), 
% 0.71/1.11    'universal_class' ) ],
% 0.71/1.11     [ subclass( compose( X, Y ), 'cross_product'( 'universal_class', 
% 0.71/1.11    'universal_class' ) ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), compose( Z, T ) ) ), member( Y, 
% 0.71/1.11    image( Z, image( T, singleton( X ) ) ) ) ],
% 0.71/1.11     [ ~( member( X, image( Y, image( Z, singleton( T ) ) ) ) ), ~( member( 
% 0.71/1.11    'ordered_pair'( T, X ), 'cross_product'( 'universal_class', 
% 0.71/1.11    'universal_class' ) ) ), member( 'ordered_pair'( T, X ), compose( Y, Z )
% 0.71/1.11     ) ],
% 0.71/1.11     [ ~( 'single_valued_class'( X ) ), subclass( compose( X, inverse( X ) )
% 0.71/1.11    , 'identity_relation' ) ],
% 0.71/1.11     [ ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) ), 
% 0.71/1.11    'single_valued_class'( X ) ],
% 0.71/1.11     [ ~( function( X ) ), subclass( X, 'cross_product'( 'universal_class', 
% 0.71/1.11    'universal_class' ) ) ],
% 0.71/1.11     [ ~( function( X ) ), subclass( compose( X, inverse( X ) ), 
% 0.71/1.11    'identity_relation' ) ],
% 0.71/1.11     [ ~( subclass( X, 'cross_product'( 'universal_class', 'universal_class'
% 0.71/1.11     ) ) ), ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) )
% 0.71/1.11    , function( X ) ],
% 0.71/1.11     [ ~( function( X ) ), ~( member( Y, 'universal_class' ) ), member( image( 
% 0.71/1.11    X, Y ), 'universal_class' ) ],
% 0.71/1.11     [ =( X, 'null_class' ), member( regular( X ), X ) ],
% 0.71/1.11     [ =( X, 'null_class' ), =( intersection( X, regular( X ) ), 'null_class'
% 0.71/1.11     ) ],
% 0.71/1.11     [ =( 'sum_class'( image( X, singleton( Y ) ) ), apply( X, Y ) ) ],
% 0.71/1.11     [ function( choice ) ],
% 0.71/1.11     [ ~( member( X, 'universal_class' ) ), =( X, 'null_class' ), member( 
% 0.71/1.11    apply( choice, X ), X ) ],
% 0.71/1.11     [ ~( 'one_to_one'( X ) ), function( X ) ],
% 0.71/1.11     [ ~( 'one_to_one'( X ) ), function( inverse( X ) ) ],
% 0.71/1.11     [ ~( function( inverse( X ) ) ), ~( function( X ) ), 'one_to_one'( X ) ]
% 0.71/1.11    ,
% 0.71/1.11     [ =( intersection( 'cross_product'( 'universal_class', 'universal_class'
% 0.71/1.11     ), intersection( 'cross_product'( 'universal_class', 'universal_class' )
% 0.71/1.11    , complement( compose( complement( 'element_relation' ), inverse( 
% 0.71/1.11    'element_relation' ) ) ) ) ), 'subset_relation' ) ],
% 0.71/1.11     [ =( intersection( inverse( 'subset_relation' ), 'subset_relation' ), 
% 0.71/1.11    'identity_relation' ) ],
% 0.71/1.11     [ =( complement( 'domain_of'( intersection( X, 'identity_relation' ) ) )
% 0.71/1.11    , diagonalise( X ) ) ],
% 0.71/1.11     [ =( intersection( 'domain_of'( X ), diagonalise( compose( inverse( 
% 0.71/1.11    'element_relation' ), X ) ) ), cantor( X ) ) ],
% 0.71/1.11     [ ~( operation( X ) ), function( X ) ],
% 0.71/1.11     [ ~( operation( X ) ), =( 'cross_product'( 'domain_of'( 'domain_of'( X )
% 0.71/1.11     ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ],
% 0.71/1.11     [ ~( operation( X ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.71/1.11    'domain_of'( X ) ) ) ],
% 0.71/1.11     [ ~( function( X ) ), ~( =( 'cross_product'( 'domain_of'( 'domain_of'( X
% 0.71/1.11     ) ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ), ~( 
% 0.71/1.11    subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( X ) ) ) ), operation( 
% 0.71/1.11    X ) ],
% 0.71/1.11     [ ~( compatible( X, Y, Z ) ), function( X ) ],
% 0.71/1.11     [ ~( compatible( X, Y, Z ) ), =( 'domain_of'( 'domain_of'( Y ) ), 
% 0.71/1.11    'domain_of'( X ) ) ],
% 0.71/1.11     [ ~( compatible( X, Y, Z ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.71/1.11    'domain_of'( Z ) ) ) ],
% 0.71/1.11     [ ~( function( X ) ), ~( =( 'domain_of'( 'domain_of'( Y ) ), 'domain_of'( 
% 0.71/1.11    X ) ) ), ~( subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( Z ) ) )
% 0.71/1.11     ), compatible( X, Y, Z ) ],
% 0.71/1.11     [ ~( homomorphism( X, Y, Z ) ), operation( Y ) ],
% 0.71/1.11     [ ~( homomorphism( X, Y, Z ) ), operation( Z ) ],
% 0.71/1.11     [ ~( homomorphism( X, Y, Z ) ), compatible( X, Y, Z ) ],
% 0.71/1.11     [ ~( homomorphism( X, Y, Z ) ), ~( member( 'ordered_pair'( T, U ), 
% 0.71/1.11    'domain_of'( Y ) ) ), =( apply( Z, 'ordered_pair'( apply( X, T ), apply( 
% 0.71/1.11    X, U ) ) ), apply( X, apply( Y, 'ordered_pair'( T, U ) ) ) ) ],
% 0.71/1.11     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.71/1.11    member( 'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 
% 0.71/1.11    'not_homomorphism2'( Z, X, Y ) ), 'domain_of'( X ) ), homomorphism( Z, X
% 0.71/1.11    , Y ) ],
% 0.71/1.11     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.71/1.11    ~( =( apply( Y, 'ordered_pair'( apply( Z, 'not_homomorphism1'( Z, X, Y )
% 0.71/1.11     ), apply( Z, 'not_homomorphism2'( Z, X, Y ) ) ) ), apply( Z, apply( X, 
% 0.71/1.11    'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 'not_homomorphism2'( Z, X
% 0.71/1.11    , Y ) ) ) ) ) ), homomorphism( Z, X, Y ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.71/1.11    X, 'unordered_pair'( X, Y ) ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.71/1.11    Y, 'unordered_pair'( X, Y ) ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.71/1.11    X, 'universal_class' ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.71/1.11    Y, 'universal_class' ) ],
% 0.71/1.11     [ subclass( X, X ) ],
% 0.71/1.11     [ ~( subclass( X, Y ) ), ~( subclass( Y, Z ) ), subclass( X, Z ) ],
% 0.71/1.11     [ =( X, Y ), member( 'not_subclass_element'( X, Y ), X ), member( 
% 0.71/1.11    'not_subclass_element'( Y, X ), Y ) ],
% 0.71/1.11     [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), =( X, Y ), member( 
% 0.71/1.11    'not_subclass_element'( Y, X ), Y ) ],
% 0.71/1.11     [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), =( Y, X ), member( 
% 0.71/1.11    'not_subclass_element'( Y, X ), Y ) ],
% 0.71/1.11     [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), ~( member( 
% 0.71/1.11    'not_subclass_element'( Y, X ), X ) ), =( X, Y ) ],
% 0.71/1.11     [ ~( member( X, intersection( complement( Y ), Y ) ) ) ],
% 0.71/1.11     [ ~( member( X, 'null_class' ) ) ],
% 0.71/1.11     [ subclass( 'null_class', X ) ],
% 0.71/1.11     [ ~( subclass( X, 'null_class' ) ), =( X, 'null_class' ) ],
% 0.71/1.11     [ =( X, 'null_class' ), member( 'not_subclass_element'( X, 'null_class'
% 0.71/1.11     ), X ) ],
% 0.71/1.11     [ member( 'null_class', 'universal_class' ) ],
% 0.71/1.11     [ =( 'unordered_pair'( X, Y ), 'unordered_pair'( Y, X ) ) ],
% 0.71/1.11     [ subclass( singleton( X ), 'unordered_pair'( X, Y ) ) ],
% 0.71/1.11     [ subclass( singleton( X ), 'unordered_pair'( Y, X ) ) ],
% 0.71/1.11     [ member( X, 'universal_class' ), =( 'unordered_pair'( Y, X ), singleton( 
% 0.71/1.11    Y ) ) ],
% 0.71/1.11     [ member( X, 'universal_class' ), =( 'unordered_pair'( X, Y ), singleton( 
% 0.71/1.11    Y ) ) ],
% 0.71/1.11     [ =( 'unordered_pair'( X, Y ), 'null_class' ), member( X, 
% 0.71/1.11    'universal_class' ), member( Y, 'universal_class' ) ],
% 0.71/1.11     [ ~( =( 'unordered_pair'( X, Y ), 'unordered_pair'( X, Z ) ) ), ~( 
% 0.71/1.11    member( 'ordered_pair'( Y, Z ), 'cross_product'( 'universal_class', 
% 0.71/1.11    'universal_class' ) ) ), =( Y, Z ) ],
% 0.71/1.11     [ ~( =( 'unordered_pair'( X, Y ), 'unordered_pair'( Z, Y ) ) ), ~( 
% 0.71/1.11    member( 'ordered_pair'( X, Z ), 'cross_product'( 'universal_class', 
% 0.71/1.11    'universal_class' ) ) ), =( X, Z ) ],
% 0.71/1.11     [ ~( member( X, 'universal_class' ) ), ~( =( 'unordered_pair'( X, Y ), 
% 0.71/1.11    'null_class' ) ) ],
% 0.71/1.11     [ ~( member( X, 'universal_class' ) ), ~( =( 'unordered_pair'( Y, X ), 
% 0.71/1.11    'null_class' ) ) ],
% 0.71/1.11     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), ~( =( 
% 0.71/1.11    'unordered_pair'( X, Y ), 'null_class' ) ) ],
% 6.07/6.44     [ ~( member( X, Y ) ), ~( member( Z, Y ) ), subclass( 'unordered_pair'( 
% 6.07/6.44    X, Z ), Y ) ],
% 6.07/6.44     [ member( singleton( X ), 'universal_class' ) ],
% 6.07/6.44     [ member( singleton( X ), 'unordered_pair'( Y, singleton( X ) ) ) ],
% 6.07/6.44     [ ~( member( X, 'universal_class' ) ), member( X, singleton( X ) ) ]
% 6.07/6.44    ,
% 6.07/6.44     [ ~( member( X, 'universal_class' ) ), ~( =( singleton( X ), 
% 6.07/6.44    'null_class' ) ) ],
% 6.07/6.44     [ member( 'null_class', singleton( 'null_class' ) ) ],
% 6.07/6.44     [ ~( member( X, singleton( Y ) ) ), =( X, Y ) ],
% 6.07/6.44     [ member( X, 'universal_class' ), =( singleton( X ), 'null_class' ) ]
% 6.07/6.44    ,
% 6.07/6.44     [ ~( =( singleton( X ), singleton( Y ) ) ), ~( member( X, 
% 6.07/6.44    'universal_class' ) ), =( X, Y ) ],
% 6.07/6.44     [ ~( =( singleton( X ), singleton( Y ) ) ), ~( member( Y, 
% 6.07/6.44    'universal_class' ) ), =( X, Y ) ],
% 6.07/6.44     [ ~( =( 'unordered_pair'( X, Y ), singleton( Z ) ) ), ~( member( Z, 
% 6.07/6.44    'universal_class' ) ), =( Z, X ), =( Z, Y ) ],
% 6.07/6.44     [ ~( member( X, 'universal_class' ) ), member( 'member_of'( singleton( X
% 6.07/6.44     ) ), 'universal_class' ) ],
% 6.07/6.44     [ ~( member( X, 'universal_class' ) ), =( singleton( 'member_of'( 
% 6.07/6.44    singleton( X ) ) ), singleton( X ) ) ],
% 6.07/6.44     [ member( 'member_of'( X ), 'universal_class' ), =( 'member_of'( X ), X
% 6.07/6.44     ) ],
% 6.07/6.44     [ =( singleton( 'member_of'( X ) ), X ), =( 'member_of'( X ), X ) ],
% 6.07/6.44     [ ~( member( X, 'universal_class' ) ), =( 'member_of'( singleton( X ) )
% 6.07/6.44    , X ) ],
% 6.07/6.44     [ member( 'member_of1'( X ), 'universal_class' ), =( 'member_of'( X ), X
% 6.07/6.44     ) ],
% 6.07/6.44     [ =( singleton( 'member_of1'( X ) ), X ), =( 'member_of'( X ), X ) ]
% 6.07/6.44    ,
% 6.07/6.44     [ ~( =( singleton( 'member_of'( X ) ), X ) ), member( X, 
% 6.07/6.44    'universal_class' ) ],
% 6.07/6.44     [ ~( =( singleton( 'member_of'( X ) ), X ) ), ~( member( Y, X ) ), =( 
% 6.07/6.44    'member_of'( X ), Y ) ],
% 6.07/6.44     [ member( x, y ) ],
% 6.07/6.44     [ ~( subclass( singleton( x ), y ) ) ]
% 6.07/6.44  ] .
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  percentage equality = 0.275000, percentage horn = 0.850000
% 6.07/6.44  This is a problem with some equality
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Options Used:
% 6.07/6.44  
% 6.07/6.44  useres =            1
% 6.07/6.44  useparamod =        1
% 6.07/6.44  useeqrefl =         1
% 6.07/6.44  useeqfact =         1
% 6.07/6.44  usefactor =         1
% 6.07/6.44  usesimpsplitting =  0
% 6.07/6.44  usesimpdemod =      5
% 6.07/6.44  usesimpres =        3
% 6.07/6.44  
% 6.07/6.44  resimpinuse      =  1000
% 6.07/6.44  resimpclauses =     20000
% 6.07/6.44  substype =          eqrewr
% 6.07/6.44  backwardsubs =      1
% 6.07/6.44  selectoldest =      5
% 6.07/6.44  
% 6.07/6.44  litorderings [0] =  split
% 6.07/6.44  litorderings [1] =  extend the termordering, first sorting on arguments
% 6.07/6.44  
% 6.07/6.44  termordering =      kbo
% 6.07/6.44  
% 6.07/6.44  litapriori =        0
% 6.07/6.44  termapriori =       1
% 6.07/6.44  litaposteriori =    0
% 6.07/6.44  termaposteriori =   0
% 6.07/6.44  demodaposteriori =  0
% 6.07/6.44  ordereqreflfact =   0
% 6.07/6.44  
% 6.07/6.44  litselect =         negord
% 6.07/6.44  
% 6.07/6.44  maxweight =         15
% 6.07/6.44  maxdepth =          30000
% 6.07/6.44  maxlength =         115
% 6.07/6.44  maxnrvars =         195
% 6.07/6.44  excuselevel =       1
% 6.07/6.44  increasemaxweight = 1
% 6.07/6.44  
% 6.07/6.44  maxselected =       10000000
% 6.07/6.44  maxnrclauses =      10000000
% 6.07/6.44  
% 6.07/6.44  showgenerated =    0
% 6.07/6.44  showkept =         0
% 6.07/6.44  showselected =     0
% 6.07/6.44  showdeleted =      0
% 6.07/6.44  showresimp =       1
% 6.07/6.44  showstatus =       2000
% 6.07/6.44  
% 6.07/6.44  prologoutput =     1
% 6.07/6.44  nrgoals =          5000000
% 6.07/6.44  totalproof =       1
% 6.07/6.44  
% 6.07/6.44  Symbols occurring in the translation:
% 6.07/6.44  
% 6.07/6.44  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 6.07/6.44  .  [1, 2]      (w:1, o:58, a:1, s:1, b:0), 
% 6.07/6.44  !  [4, 1]      (w:0, o:31, a:1, s:1, b:0), 
% 6.07/6.44  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 6.07/6.44  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 6.07/6.44  subclass  [41, 2]      (w:1, o:83, a:1, s:1, b:0), 
% 6.07/6.44  member  [43, 2]      (w:1, o:84, a:1, s:1, b:0), 
% 6.07/6.44  'not_subclass_element'  [44, 2]      (w:1, o:85, a:1, s:1, b:0), 
% 6.07/6.44  'universal_class'  [45, 0]      (w:1, o:21, a:1, s:1, b:0), 
% 6.07/6.44  'unordered_pair'  [46, 2]      (w:1, o:86, a:1, s:1, b:0), 
% 6.07/6.44  singleton  [47, 1]      (w:1, o:39, a:1, s:1, b:0), 
% 6.07/6.44  'ordered_pair'  [48, 2]      (w:1, o:87, a:1, s:1, b:0), 
% 6.07/6.44  'cross_product'  [50, 2]      (w:1, o:88, a:1, s:1, b:0), 
% 6.07/6.44  first  [52, 1]      (w:1, o:40, a:1, s:1, b:0), 
% 6.07/6.44  second  [53, 1]      (w:1, o:41, a:1, s:1, b:0), 
% 6.07/6.44  'element_relation'  [54, 0]      (w:1, o:25, a:1, s:1, b:0), 
% 6.07/6.44  intersection  [55, 2]      (w:1, o:90, a:1, s:1, b:0), 
% 6.07/6.44  complement  [56, 1]      (w:1, o:42, a:1, s:1, b:0), 
% 6.07/6.44  union  [57, 2]      (w:1, o:91, a:1, s:1, b:0), 
% 6.07/6.44  'symmetric_difference'  [58, 2]      (w:1, o:92, a:1, s:1, b:0), 
% 6.07/6.44  restrict  [60, 3]      (w:1, o:95, a:1, s:1, b:0), 
% 6.07/6.44  'null_class'  [61, 0]      (w:1, o:26, a:1, s:1, b:0), 
% 6.07/6.44  'domain_of'  [62, 1]      (w:1, o:44, a:1, s:1, b:0), 
% 6.07/6.44  rotate  [63, 1]      (w:1, o:36, a:1, s:1, b:0), 
% 6.07/6.44  flip  [65, 1]      (w:1, o:45, a:1, s:1, b:0), 
% 6.07/6.44  inverse  [66, 1]      (w:1, o:46, a:1, s:1, b:0), 
% 6.07/6.44  'range_of'  [67, 1]      (w:1, o:37, a:1, s:1, b:0), 
% 6.07/6.44  domain  [68, 3]      (w:1, o:97, a:1, s:1, b:0), 
% 6.07/6.44  range  [69, 3]      (w:1, o:98, a:1, s:1, b:0), 
% 6.07/6.44  image  [70, 2]      (w:1, o:89, a:1, s:1, b:0), 
% 6.07/6.44  successor  [71, 1]      (w:1, o:47, a:1, s:1, b:0), 
% 6.07/6.44  'successor_relation'  [72, 0]      (w:1, o:6, a:1, s:1, b:0), 
% 6.07/6.44  inductive  [73, 1]      (w:1, o:48, a:1, s:1, b:0), 
% 6.07/6.44  omega  [74, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 6.07/6.44  'sum_class'  [75, 1]      (w:1, o:49, a:1, s:1, b:0), 
% 6.07/6.44  'power_class'  [76, 1]      (w:1, o:52, a:1, s:1, b:0), 
% 6.07/6.44  compose  [78, 2]      (w:1, o:93, a:1, s:1, b:0), 
% 6.07/6.44  'single_valued_class'  [79, 1]      (w:1, o:53, a:1, s:1, b:0), 
% 6.07/6.44  'identity_relation'  [80, 0]      (w:1, o:27, a:1, s:1, b:0), 
% 6.07/6.44  function  [82, 1]      (w:1, o:54, a:1, s:1, b:0), 
% 6.07/6.44  regular  [83, 1]      (w:1, o:38, a:1, s:1, b:0), 
% 6.07/6.44  apply  [84, 2]      (w:1, o:94, a:1, s:1, b:0), 
% 6.07/6.44  choice  [85, 0]      (w:1, o:28, a:1, s:1, b:0), 
% 6.07/6.44  'one_to_one'  [86, 1]      (w:1, o:50, a:1, s:1, b:0), 
% 6.07/6.44  'subset_relation'  [87, 0]      (w:1, o:5, a:1, s:1, b:0), 
% 6.07/6.44  diagonalise  [88, 1]      (w:1, o:55, a:1, s:1, b:0), 
% 6.07/6.44  cantor  [89, 1]      (w:1, o:43, a:1, s:1, b:0), 
% 6.07/6.44  operation  [90, 1]      (w:1, o:51, a:1, s:1, b:0), 
% 6.07/6.44  compatible  [94, 3]      (w:1, o:96, a:1, s:1, b:0), 
% 6.07/6.44  homomorphism  [95, 3]      (w:1, o:99, a:1, s:1, b:0), 
% 6.07/6.44  'not_homomorphism1'  [96, 3]      (w:1, o:100, a:1, s:1, b:0), 
% 6.07/6.44  'not_homomorphism2'  [97, 3]      (w:1, o:101, a:1, s:1, b:0), 
% 6.07/6.44  'member_of'  [98, 1]      (w:1, o:56, a:1, s:1, b:0), 
% 6.07/6.44  'member_of1'  [99, 1]      (w:1, o:57, a:1, s:1, b:0), 
% 6.07/6.44  x  [100, 0]      (w:1, o:29, a:1, s:1, b:0), 
% 6.07/6.44  y  [101, 0]      (w:1, o:30, a:1, s:1, b:0).
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Starting Search:
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    3846
% 6.07/6.44  Kept:         2021
% 6.07/6.44  Inuse:        118
% 6.07/6.44  Deleted:      2
% 6.07/6.44  Deletedinuse: 2
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    8949
% 6.07/6.44  Kept:         4139
% 6.07/6.44  Inuse:        201
% 6.07/6.44  Deleted:      7
% 6.07/6.44  Deletedinuse: 7
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    13863
% 6.07/6.44  Kept:         6155
% 6.07/6.44  Inuse:        285
% 6.07/6.44  Deleted:      10
% 6.07/6.44  Deletedinuse: 10
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    20509
% 6.07/6.44  Kept:         8179
% 6.07/6.44  Inuse:        329
% 6.07/6.44  Deleted:      55
% 6.07/6.44  Deletedinuse: 55
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    27149
% 6.07/6.44  Kept:         10331
% 6.07/6.44  Inuse:        388
% 6.07/6.44  Deleted:      79
% 6.07/6.44  Deletedinuse: 61
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    35000
% 6.07/6.44  Kept:         12335
% 6.07/6.44  Inuse:        428
% 6.07/6.44  Deleted:      81
% 6.07/6.44  Deletedinuse: 63
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    43608
% 6.07/6.44  Kept:         14353
% 6.07/6.44  Inuse:        463
% 6.07/6.44  Deleted:      97
% 6.07/6.44  Deletedinuse: 77
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    48615
% 6.07/6.44  Kept:         17002
% 6.07/6.44  Inuse:        486
% 6.07/6.44  Deleted:      97
% 6.07/6.44  Deletedinuse: 77
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    54185
% 6.07/6.44  Kept:         19017
% 6.07/6.44  Inuse:        500
% 6.07/6.44  Deleted:      101
% 6.07/6.44  Deletedinuse: 81
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  Resimplifying clauses:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    63405
% 6.07/6.44  Kept:         21100
% 6.07/6.44  Inuse:        501
% 6.07/6.44  Deleted:      2117
% 6.07/6.44  Deletedinuse: 82
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    70613
% 6.07/6.44  Kept:         23502
% 6.07/6.44  Inuse:        529
% 6.07/6.44  Deleted:      2119
% 6.07/6.44  Deletedinuse: 82
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Intermediate Status:
% 6.07/6.44  Generated:    76368
% 6.07/6.44  Kept:         25519
% 6.07/6.44  Inuse:        543
% 6.07/6.44  Deleted:      2129
% 6.07/6.44  Deletedinuse: 92
% 6.07/6.44  
% 6.07/6.44  Resimplifying inuse:
% 6.07/6.44  Done
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  Bliksems!, er is een bewijs:
% 6.07/6.44  % SZS status Unsatisfiable
% 6.07/6.44  % SZS output start Refutation
% 6.07/6.44  
% 6.07/6.44  clause( 10, [ =( 'unordered_pair'( X, X ), singleton( X ) ) ] )
% 6.07/6.44  .
% 6.07/6.44  clause( 116, [ ~( member( X, Y ) ), ~( member( Z, Y ) ), subclass( 
% 6.07/6.44    'unordered_pair'( X, Z ), Y ) ] )
% 6.07/6.44  .
% 6.07/6.44  clause( 135, [ member( x, y ) ] )
% 6.07/6.44  .
% 6.07/6.44  clause( 136, [ ~( subclass( singleton( x ), y ) ) ] )
% 6.07/6.44  .
% 6.07/6.44  clause( 147, [ ~( member( X, Y ) ), subclass( singleton( X ), Y ) ] )
% 6.07/6.44  .
% 6.07/6.44  clause( 26818, [] )
% 6.07/6.44  .
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  % SZS output end Refutation
% 6.07/6.44  found a proof!
% 6.07/6.44  
% 6.07/6.44  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 6.07/6.44  
% 6.07/6.44  initialclauses(
% 6.07/6.44  [ clause( 26820, [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y
% 6.07/6.44     ) ] )
% 6.07/6.44  , clause( 26821, [ member( 'not_subclass_element'( X, Y ), X ), subclass( X
% 6.07/6.44    , Y ) ] )
% 6.07/6.44  , clause( 26822, [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), 
% 6.07/6.44    subclass( X, Y ) ] )
% 6.07/6.44  , clause( 26823, [ subclass( X, 'universal_class' ) ] )
% 6.07/6.44  , clause( 26824, [ ~( =( X, Y ) ), subclass( X, Y ) ] )
% 6.07/6.44  , clause( 26825, [ ~( =( X, Y ) ), subclass( Y, X ) ] )
% 6.07/6.44  , clause( 26826, [ ~( subclass( X, Y ) ), ~( subclass( Y, X ) ), =( X, Y )
% 6.07/6.44     ] )
% 6.07/6.44  , clause( 26827, [ ~( member( X, 'unordered_pair'( Y, Z ) ) ), =( X, Y ), 
% 6.07/6.44    =( X, Z ) ] )
% 6.07/6.44  , clause( 26828, [ ~( member( X, 'universal_class' ) ), member( X, 
% 6.07/6.44    'unordered_pair'( X, Y ) ) ] )
% 6.07/6.44  , clause( 26829, [ ~( member( X, 'universal_class' ) ), member( X, 
% 6.07/6.44    'unordered_pair'( Y, X ) ) ] )
% 6.07/6.44  , clause( 26830, [ member( 'unordered_pair'( X, Y ), 'universal_class' ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26831, [ =( 'unordered_pair'( X, X ), singleton( X ) ) ] )
% 6.07/6.44  , clause( 26832, [ =( 'unordered_pair'( singleton( X ), 'unordered_pair'( X
% 6.07/6.44    , singleton( Y ) ) ), 'ordered_pair'( X, Y ) ) ] )
% 6.07/6.44  , clause( 26833, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T
% 6.07/6.44     ) ) ), member( X, Z ) ] )
% 6.07/6.44  , clause( 26834, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T
% 6.07/6.44     ) ) ), member( Y, T ) ] )
% 6.07/6.44  , clause( 26835, [ ~( member( X, Y ) ), ~( member( Z, T ) ), member( 
% 6.07/6.44    'ordered_pair'( X, Z ), 'cross_product'( Y, T ) ) ] )
% 6.07/6.44  , clause( 26836, [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 
% 6.07/6.44    'ordered_pair'( first( X ), second( X ) ), X ) ] )
% 6.07/6.44  , clause( 26837, [ subclass( 'element_relation', 'cross_product'( 
% 6.07/6.44    'universal_class', 'universal_class' ) ) ] )
% 6.07/6.44  , clause( 26838, [ ~( member( 'ordered_pair'( X, Y ), 'element_relation' )
% 6.07/6.44     ), member( X, Y ) ] )
% 6.07/6.44  , clause( 26839, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 
% 6.07/6.44    'universal_class', 'universal_class' ) ) ), ~( member( X, Y ) ), member( 
% 6.07/6.44    'ordered_pair'( X, Y ), 'element_relation' ) ] )
% 6.07/6.44  , clause( 26840, [ ~( member( X, intersection( Y, Z ) ) ), member( X, Y ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26841, [ ~( member( X, intersection( Y, Z ) ) ), member( X, Z ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26842, [ ~( member( X, Y ) ), ~( member( X, Z ) ), member( X, 
% 6.07/6.44    intersection( Y, Z ) ) ] )
% 6.07/6.44  , clause( 26843, [ ~( member( X, complement( Y ) ) ), ~( member( X, Y ) ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26844, [ ~( member( X, 'universal_class' ) ), member( X, 
% 6.07/6.44    complement( Y ) ), member( X, Y ) ] )
% 6.07/6.44  , clause( 26845, [ =( complement( intersection( complement( X ), complement( 
% 6.07/6.44    Y ) ) ), union( X, Y ) ) ] )
% 6.07/6.44  , clause( 26846, [ =( intersection( complement( intersection( X, Y ) ), 
% 6.07/6.44    complement( intersection( complement( X ), complement( Y ) ) ) ), 
% 6.07/6.44    'symmetric_difference'( X, Y ) ) ] )
% 6.07/6.44  , clause( 26847, [ =( intersection( X, 'cross_product'( Y, Z ) ), restrict( 
% 6.07/6.44    X, Y, Z ) ) ] )
% 6.07/6.44  , clause( 26848, [ =( intersection( 'cross_product'( X, Y ), Z ), restrict( 
% 6.07/6.44    Z, X, Y ) ) ] )
% 6.07/6.44  , clause( 26849, [ ~( =( restrict( X, singleton( Y ), 'universal_class' ), 
% 6.07/6.44    'null_class' ) ), ~( member( Y, 'domain_of'( X ) ) ) ] )
% 6.07/6.44  , clause( 26850, [ ~( member( X, 'universal_class' ) ), =( restrict( Y, 
% 6.07/6.44    singleton( X ), 'universal_class' ), 'null_class' ), member( X, 
% 6.07/6.44    'domain_of'( Y ) ) ] )
% 6.07/6.44  , clause( 26851, [ subclass( rotate( X ), 'cross_product'( 'cross_product'( 
% 6.07/6.44    'universal_class', 'universal_class' ), 'universal_class' ) ) ] )
% 6.07/6.44  , clause( 26852, [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), 
% 6.07/6.44    rotate( T ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, Z ), X ), T )
% 6.07/6.44     ] )
% 6.07/6.44  , clause( 26853, [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), 
% 6.07/6.44    T ) ), ~( member( 'ordered_pair'( 'ordered_pair'( Z, X ), Y ), 
% 6.07/6.44    'cross_product'( 'cross_product'( 'universal_class', 'universal_class' )
% 6.07/6.44    , 'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Z, X )
% 6.07/6.44    , Y ), rotate( T ) ) ] )
% 6.07/6.44  , clause( 26854, [ subclass( flip( X ), 'cross_product'( 'cross_product'( 
% 6.07/6.44    'universal_class', 'universal_class' ), 'universal_class' ) ) ] )
% 6.07/6.44  , clause( 26855, [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), 
% 6.07/6.44    flip( T ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), T ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26856, [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), 
% 6.07/6.44    T ) ), ~( member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), 
% 6.07/6.44    'cross_product'( 'cross_product'( 'universal_class', 'universal_class' )
% 6.07/6.44    , 'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, X )
% 6.07/6.44    , Z ), flip( T ) ) ] )
% 6.07/6.44  , clause( 26857, [ =( 'domain_of'( flip( 'cross_product'( X, 
% 6.07/6.44    'universal_class' ) ) ), inverse( X ) ) ] )
% 6.07/6.44  , clause( 26858, [ =( 'domain_of'( inverse( X ) ), 'range_of'( X ) ) ] )
% 6.07/6.44  , clause( 26859, [ =( first( 'not_subclass_element'( restrict( X, Y, 
% 6.07/6.44    singleton( Z ) ), 'null_class' ) ), domain( X, Y, Z ) ) ] )
% 6.07/6.44  , clause( 26860, [ =( second( 'not_subclass_element'( restrict( X, 
% 6.07/6.44    singleton( Y ), Z ), 'null_class' ) ), range( X, Y, Z ) ) ] )
% 6.07/6.44  , clause( 26861, [ =( 'range_of'( restrict( X, Y, 'universal_class' ) ), 
% 6.07/6.44    image( X, Y ) ) ] )
% 6.07/6.44  , clause( 26862, [ =( union( X, singleton( X ) ), successor( X ) ) ] )
% 6.07/6.44  , clause( 26863, [ subclass( 'successor_relation', 'cross_product'( 
% 6.07/6.44    'universal_class', 'universal_class' ) ) ] )
% 6.07/6.44  , clause( 26864, [ ~( member( 'ordered_pair'( X, Y ), 'successor_relation'
% 6.07/6.44     ) ), =( successor( X ), Y ) ] )
% 6.07/6.44  , clause( 26865, [ ~( =( successor( X ), Y ) ), ~( member( 'ordered_pair'( 
% 6.07/6.44    X, Y ), 'cross_product'( 'universal_class', 'universal_class' ) ) ), 
% 6.07/6.44    member( 'ordered_pair'( X, Y ), 'successor_relation' ) ] )
% 6.07/6.44  , clause( 26866, [ ~( inductive( X ) ), member( 'null_class', X ) ] )
% 6.07/6.44  , clause( 26867, [ ~( inductive( X ) ), subclass( image( 
% 6.07/6.44    'successor_relation', X ), X ) ] )
% 6.07/6.44  , clause( 26868, [ ~( member( 'null_class', X ) ), ~( subclass( image( 
% 6.07/6.44    'successor_relation', X ), X ) ), inductive( X ) ] )
% 6.07/6.44  , clause( 26869, [ inductive( omega ) ] )
% 6.07/6.44  , clause( 26870, [ ~( inductive( X ) ), subclass( omega, X ) ] )
% 6.07/6.44  , clause( 26871, [ member( omega, 'universal_class' ) ] )
% 6.07/6.44  , clause( 26872, [ =( 'domain_of'( restrict( 'element_relation', 
% 6.07/6.44    'universal_class', X ) ), 'sum_class'( X ) ) ] )
% 6.07/6.44  , clause( 26873, [ ~( member( X, 'universal_class' ) ), member( 'sum_class'( 
% 6.07/6.44    X ), 'universal_class' ) ] )
% 6.07/6.44  , clause( 26874, [ =( complement( image( 'element_relation', complement( X
% 6.07/6.44     ) ) ), 'power_class'( X ) ) ] )
% 6.07/6.44  , clause( 26875, [ ~( member( X, 'universal_class' ) ), member( 
% 6.07/6.44    'power_class'( X ), 'universal_class' ) ] )
% 6.07/6.44  , clause( 26876, [ subclass( compose( X, Y ), 'cross_product'( 
% 6.07/6.44    'universal_class', 'universal_class' ) ) ] )
% 6.07/6.44  , clause( 26877, [ ~( member( 'ordered_pair'( X, Y ), compose( Z, T ) ) ), 
% 6.07/6.44    member( Y, image( Z, image( T, singleton( X ) ) ) ) ] )
% 6.07/6.44  , clause( 26878, [ ~( member( X, image( Y, image( Z, singleton( T ) ) ) ) )
% 6.07/6.44    , ~( member( 'ordered_pair'( T, X ), 'cross_product'( 'universal_class', 
% 6.07/6.44    'universal_class' ) ) ), member( 'ordered_pair'( T, X ), compose( Y, Z )
% 6.07/6.44     ) ] )
% 6.07/6.44  , clause( 26879, [ ~( 'single_valued_class'( X ) ), subclass( compose( X, 
% 6.07/6.44    inverse( X ) ), 'identity_relation' ) ] )
% 6.07/6.44  , clause( 26880, [ ~( subclass( compose( X, inverse( X ) ), 
% 6.07/6.44    'identity_relation' ) ), 'single_valued_class'( X ) ] )
% 6.07/6.44  , clause( 26881, [ ~( function( X ) ), subclass( X, 'cross_product'( 
% 6.07/6.44    'universal_class', 'universal_class' ) ) ] )
% 6.07/6.44  , clause( 26882, [ ~( function( X ) ), subclass( compose( X, inverse( X ) )
% 6.07/6.44    , 'identity_relation' ) ] )
% 6.07/6.44  , clause( 26883, [ ~( subclass( X, 'cross_product'( 'universal_class', 
% 6.07/6.44    'universal_class' ) ) ), ~( subclass( compose( X, inverse( X ) ), 
% 6.07/6.44    'identity_relation' ) ), function( X ) ] )
% 6.07/6.44  , clause( 26884, [ ~( function( X ) ), ~( member( Y, 'universal_class' ) )
% 6.07/6.44    , member( image( X, Y ), 'universal_class' ) ] )
% 6.07/6.44  , clause( 26885, [ =( X, 'null_class' ), member( regular( X ), X ) ] )
% 6.07/6.44  , clause( 26886, [ =( X, 'null_class' ), =( intersection( X, regular( X ) )
% 6.07/6.44    , 'null_class' ) ] )
% 6.07/6.44  , clause( 26887, [ =( 'sum_class'( image( X, singleton( Y ) ) ), apply( X, 
% 6.07/6.44    Y ) ) ] )
% 6.07/6.44  , clause( 26888, [ function( choice ) ] )
% 6.07/6.44  , clause( 26889, [ ~( member( X, 'universal_class' ) ), =( X, 'null_class'
% 6.07/6.44     ), member( apply( choice, X ), X ) ] )
% 6.07/6.44  , clause( 26890, [ ~( 'one_to_one'( X ) ), function( X ) ] )
% 6.07/6.44  , clause( 26891, [ ~( 'one_to_one'( X ) ), function( inverse( X ) ) ] )
% 6.07/6.44  , clause( 26892, [ ~( function( inverse( X ) ) ), ~( function( X ) ), 
% 6.07/6.44    'one_to_one'( X ) ] )
% 6.07/6.44  , clause( 26893, [ =( intersection( 'cross_product'( 'universal_class', 
% 6.07/6.44    'universal_class' ), intersection( 'cross_product'( 'universal_class', 
% 6.07/6.44    'universal_class' ), complement( compose( complement( 'element_relation'
% 6.07/6.44     ), inverse( 'element_relation' ) ) ) ) ), 'subset_relation' ) ] )
% 6.07/6.44  , clause( 26894, [ =( intersection( inverse( 'subset_relation' ), 
% 6.07/6.44    'subset_relation' ), 'identity_relation' ) ] )
% 6.07/6.44  , clause( 26895, [ =( complement( 'domain_of'( intersection( X, 
% 6.07/6.44    'identity_relation' ) ) ), diagonalise( X ) ) ] )
% 6.07/6.44  , clause( 26896, [ =( intersection( 'domain_of'( X ), diagonalise( compose( 
% 6.07/6.44    inverse( 'element_relation' ), X ) ) ), cantor( X ) ) ] )
% 6.07/6.44  , clause( 26897, [ ~( operation( X ) ), function( X ) ] )
% 6.07/6.44  , clause( 26898, [ ~( operation( X ) ), =( 'cross_product'( 'domain_of'( 
% 6.07/6.44    'domain_of'( X ) ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) )
% 6.07/6.44     ] )
% 6.07/6.44  , clause( 26899, [ ~( operation( X ) ), subclass( 'range_of'( X ), 
% 6.07/6.44    'domain_of'( 'domain_of'( X ) ) ) ] )
% 6.07/6.44  , clause( 26900, [ ~( function( X ) ), ~( =( 'cross_product'( 'domain_of'( 
% 6.07/6.44    'domain_of'( X ) ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) )
% 6.07/6.44     ), ~( subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( X ) ) ) ), 
% 6.07/6.44    operation( X ) ] )
% 6.07/6.44  , clause( 26901, [ ~( compatible( X, Y, Z ) ), function( X ) ] )
% 6.07/6.44  , clause( 26902, [ ~( compatible( X, Y, Z ) ), =( 'domain_of'( 'domain_of'( 
% 6.07/6.44    Y ) ), 'domain_of'( X ) ) ] )
% 6.07/6.44  , clause( 26903, [ ~( compatible( X, Y, Z ) ), subclass( 'range_of'( X ), 
% 6.07/6.44    'domain_of'( 'domain_of'( Z ) ) ) ] )
% 6.07/6.44  , clause( 26904, [ ~( function( X ) ), ~( =( 'domain_of'( 'domain_of'( Y )
% 6.07/6.44     ), 'domain_of'( X ) ) ), ~( subclass( 'range_of'( X ), 'domain_of'( 
% 6.07/6.44    'domain_of'( Z ) ) ) ), compatible( X, Y, Z ) ] )
% 6.07/6.44  , clause( 26905, [ ~( homomorphism( X, Y, Z ) ), operation( Y ) ] )
% 6.07/6.44  , clause( 26906, [ ~( homomorphism( X, Y, Z ) ), operation( Z ) ] )
% 6.07/6.44  , clause( 26907, [ ~( homomorphism( X, Y, Z ) ), compatible( X, Y, Z ) ] )
% 6.07/6.44  , clause( 26908, [ ~( homomorphism( X, Y, Z ) ), ~( member( 'ordered_pair'( 
% 6.07/6.44    T, U ), 'domain_of'( Y ) ) ), =( apply( Z, 'ordered_pair'( apply( X, T )
% 6.07/6.44    , apply( X, U ) ) ), apply( X, apply( Y, 'ordered_pair'( T, U ) ) ) ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26909, [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( 
% 6.07/6.44    Z, X, Y ) ), member( 'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 
% 6.07/6.44    'not_homomorphism2'( Z, X, Y ) ), 'domain_of'( X ) ), homomorphism( Z, X
% 6.07/6.44    , Y ) ] )
% 6.07/6.44  , clause( 26910, [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( 
% 6.07/6.44    Z, X, Y ) ), ~( =( apply( Y, 'ordered_pair'( apply( Z, 
% 6.07/6.44    'not_homomorphism1'( Z, X, Y ) ), apply( Z, 'not_homomorphism2'( Z, X, Y
% 6.07/6.44     ) ) ) ), apply( Z, apply( X, 'ordered_pair'( 'not_homomorphism1'( Z, X, 
% 6.07/6.44    Y ), 'not_homomorphism2'( Z, X, Y ) ) ) ) ) ), homomorphism( Z, X, Y ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26911, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T
% 6.07/6.44     ) ) ), member( X, 'unordered_pair'( X, Y ) ) ] )
% 6.07/6.44  , clause( 26912, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T
% 6.07/6.44     ) ) ), member( Y, 'unordered_pair'( X, Y ) ) ] )
% 6.07/6.44  , clause( 26913, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T
% 6.07/6.44     ) ) ), member( X, 'universal_class' ) ] )
% 6.07/6.44  , clause( 26914, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T
% 6.07/6.44     ) ) ), member( Y, 'universal_class' ) ] )
% 6.07/6.44  , clause( 26915, [ subclass( X, X ) ] )
% 6.07/6.44  , clause( 26916, [ ~( subclass( X, Y ) ), ~( subclass( Y, Z ) ), subclass( 
% 6.07/6.44    X, Z ) ] )
% 6.07/6.44  , clause( 26917, [ =( X, Y ), member( 'not_subclass_element'( X, Y ), X ), 
% 6.07/6.44    member( 'not_subclass_element'( Y, X ), Y ) ] )
% 6.07/6.44  , clause( 26918, [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), =( X, 
% 6.07/6.44    Y ), member( 'not_subclass_element'( Y, X ), Y ) ] )
% 6.07/6.44  , clause( 26919, [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), =( Y, 
% 6.07/6.44    X ), member( 'not_subclass_element'( Y, X ), Y ) ] )
% 6.07/6.44  , clause( 26920, [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), ~( 
% 6.07/6.44    member( 'not_subclass_element'( Y, X ), X ) ), =( X, Y ) ] )
% 6.07/6.44  , clause( 26921, [ ~( member( X, intersection( complement( Y ), Y ) ) ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26922, [ ~( member( X, 'null_class' ) ) ] )
% 6.07/6.44  , clause( 26923, [ subclass( 'null_class', X ) ] )
% 6.07/6.44  , clause( 26924, [ ~( subclass( X, 'null_class' ) ), =( X, 'null_class' ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26925, [ =( X, 'null_class' ), member( 'not_subclass_element'( X
% 6.07/6.44    , 'null_class' ), X ) ] )
% 6.07/6.44  , clause( 26926, [ member( 'null_class', 'universal_class' ) ] )
% 6.07/6.44  , clause( 26927, [ =( 'unordered_pair'( X, Y ), 'unordered_pair'( Y, X ) )
% 6.07/6.44     ] )
% 6.07/6.44  , clause( 26928, [ subclass( singleton( X ), 'unordered_pair'( X, Y ) ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26929, [ subclass( singleton( X ), 'unordered_pair'( Y, X ) ) ]
% 6.07/6.44     )
% 6.07/6.44  , clause( 26930, [ member( X, 'universal_class' ), =( 'unordered_pair'( Y, 
% 6.07/6.44    X ), singleton( Y ) ) ] )
% 6.07/6.44  , clause( 26931, [ member( X, 'universal_class' ), =( 'unordered_pair'( X, 
% 6.07/6.44    Y ), singleton( Y ) ) ] )
% 6.07/6.44  , clause( 26932, [ =( 'unordered_pair'( X, Y ), 'null_class' ), member( X, 
% 6.07/6.44    'universal_class' ), member( Y, 'universal_class' ) ] )
% 6.07/6.44  , clause( 26933, [ ~( =( 'unordered_pair'( X, Y ), 'unordered_pair'( X, Z )
% 6.07/6.44     ) ), ~( member( 'ordered_pair'( Y, Z ), 'cross_product'( 
% 6.07/6.44    'universal_class', 'universal_class' ) ) ), =( Y, Z ) ] )
% 6.07/6.44  , clause( 26934, [ ~( =( 'unordered_pair'( X, Y ), 'unordered_pair'( Z, Y )
% 6.07/6.44     ) ), ~( member( 'ordered_pair'( X, Z ), 'cross_product'( 
% 6.07/6.44    'universal_class', 'universal_class' ) ) ), =( X, Z ) ] )
% 6.07/6.44  , clause( 26935, [ ~( member( X, 'universal_class' ) ), ~( =( 
% 6.07/6.44    'unordered_pair'( X, Y ), 'null_class' ) ) ] )
% 6.07/6.44  , clause( 26936, [ ~( member( X, 'universal_class' ) ), ~( =( 
% 6.07/6.44    'unordered_pair'( Y, X ), 'null_class' ) ) ] )
% 6.07/6.44  , clause( 26937, [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T
% 6.07/6.44     ) ) ), ~( =( 'unordered_pair'( X, Y ), 'null_class' ) ) ] )
% 6.07/6.44  , clause( 26938, [ ~( member( X, Y ) ), ~( member( Z, Y ) ), subclass( 
% 6.07/6.44    'unordered_pair'( X, Z ), Y ) ] )
% 6.07/6.44  , clause( 26939, [ member( singleton( X ), 'universal_class' ) ] )
% 6.07/6.44  , clause( 26940, [ member( singleton( X ), 'unordered_pair'( Y, singleton( 
% 6.07/6.44    X ) ) ) ] )
% 6.07/6.44  , clause( 26941, [ ~( member( X, 'universal_class' ) ), member( X, 
% 6.07/6.44    singleton( X ) ) ] )
% 6.07/6.44  , clause( 26942, [ ~( member( X, 'universal_class' ) ), ~( =( singleton( X
% 6.07/6.44     ), 'null_class' ) ) ] )
% 6.07/6.44  , clause( 26943, [ member( 'null_class', singleton( 'null_class' ) ) ] )
% 6.07/6.44  , clause( 26944, [ ~( member( X, singleton( Y ) ) ), =( X, Y ) ] )
% 6.07/6.44  , clause( 26945, [ member( X, 'universal_class' ), =( singleton( X ), 
% 6.07/6.44    'null_class' ) ] )
% 6.07/6.44  , clause( 26946, [ ~( =( singleton( X ), singleton( Y ) ) ), ~( member( X, 
% 6.07/6.44    'universal_class' ) ), =( X, Y ) ] )
% 6.07/6.44  , clause( 26947, [ ~( =( singleton( X ), singleton( Y ) ) ), ~( member( Y, 
% 6.07/6.44    'universal_class' ) ), =( X, Y ) ] )
% 6.07/6.44  , clause( 26948, [ ~( =( 'unordered_pair'( X, Y ), singleton( Z ) ) ), ~( 
% 6.07/6.44    member( Z, 'universal_class' ) ), =( Z, X ), =( Z, Y ) ] )
% 6.07/6.44  , clause( 26949, [ ~( member( X, 'universal_class' ) ), member( 'member_of'( 
% 6.07/6.44    singleton( X ) ), 'universal_class' ) ] )
% 6.07/6.44  , clause( 26950, [ ~( member( X, 'universal_class' ) ), =( singleton( 
% 6.07/6.44    'member_of'( singleton( X ) ) ), singleton( X ) ) ] )
% 6.07/6.44  , clause( 26951, [ member( 'member_of'( X ), 'universal_class' ), =( 
% 6.07/6.44    'member_of'( X ), X ) ] )
% 6.07/6.44  , clause( 26952, [ =( singleton( 'member_of'( X ) ), X ), =( 'member_of'( X
% 6.07/6.44     ), X ) ] )
% 6.07/6.44  , clause( 26953, [ ~( member( X, 'universal_class' ) ), =( 'member_of'( 
% 6.07/6.44    singleton( X ) ), X ) ] )
% 6.07/6.44  , clause( 26954, [ member( 'member_of1'( X ), 'universal_class' ), =( 
% 6.07/6.44    'member_of'( X ), X ) ] )
% 6.07/6.44  , clause( 26955, [ =( singleton( 'member_of1'( X ) ), X ), =( 'member_of'( 
% 6.07/6.44    X ), X ) ] )
% 6.07/6.44  , clause( 26956, [ ~( =( singleton( 'member_of'( X ) ), X ) ), member( X, 
% 6.07/6.44    'universal_class' ) ] )
% 6.07/6.44  , clause( 26957, [ ~( =( singleton( 'member_of'( X ) ), X ) ), ~( member( Y
% 6.07/6.44    , X ) ), =( 'member_of'( X ), Y ) ] )
% 6.07/6.44  , clause( 26958, [ member( x, y ) ] )
% 6.07/6.44  , clause( 26959, [ ~( subclass( singleton( x ), y ) ) ] )
% 6.07/6.44  ] ).
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  
% 6.07/6.44  subsumption(
% 6.07/6.44  clause( 10, [ =( 'unordered_pair'( X, X ), singleton( X ) ) ] )
% 6.07/6.45  , clause( 26831, [ =( 'unordered_pair'( X, X ), singleton( X ) ) ] )
% 6.07/6.45  , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  subsumption(
% 6.07/6.45  clause( 116, [ ~( member( X, Y ) ), ~( member( Z, Y ) ), subclass( 
% 6.07/6.45    'unordered_pair'( X, Z ), Y ) ] )
% 6.07/6.45  , clause( 26938, [ ~( member( X, Y ) ), ~( member( Z, Y ) ), subclass( 
% 6.07/6.45    'unordered_pair'( X, Z ), Y ) ] )
% 6.07/6.45  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 6.07/6.45    permutation( 0, [ ==>( 0, 0 ), ==>( 1, 1 ), ==>( 2, 2 )] ) ).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  subsumption(
% 6.07/6.45  clause( 135, [ member( x, y ) ] )
% 6.07/6.45  , clause( 26958, [ member( x, y ) ] )
% 6.07/6.45  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  subsumption(
% 6.07/6.45  clause( 136, [ ~( subclass( singleton( x ), y ) ) ] )
% 6.07/6.45  , clause( 26959, [ ~( subclass( singleton( x ), y ) ) ] )
% 6.07/6.45  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  factor(
% 6.07/6.45  clause( 27254, [ ~( member( X, Y ) ), subclass( 'unordered_pair'( X, X ), Y
% 6.07/6.45     ) ] )
% 6.07/6.45  , clause( 116, [ ~( member( X, Y ) ), ~( member( Z, Y ) ), subclass( 
% 6.07/6.45    'unordered_pair'( X, Z ), Y ) ] )
% 6.07/6.45  , 0, 1, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, X )] )).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  paramod(
% 6.07/6.45  clause( 27255, [ subclass( singleton( X ), Y ), ~( member( X, Y ) ) ] )
% 6.07/6.45  , clause( 10, [ =( 'unordered_pair'( X, X ), singleton( X ) ) ] )
% 6.07/6.45  , 0, clause( 27254, [ ~( member( X, Y ) ), subclass( 'unordered_pair'( X, X
% 6.07/6.45     ), Y ) ] )
% 6.07/6.45  , 1, 1, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X ), 
% 6.07/6.45    :=( Y, Y )] )).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  subsumption(
% 6.07/6.45  clause( 147, [ ~( member( X, Y ) ), subclass( singleton( X ), Y ) ] )
% 6.07/6.45  , clause( 27255, [ subclass( singleton( X ), Y ), ~( member( X, Y ) ) ] )
% 6.07/6.45  , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 1
% 6.07/6.45     ), ==>( 1, 0 )] ) ).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  resolution(
% 6.07/6.45  clause( 27256, [ ~( member( x, y ) ) ] )
% 6.07/6.45  , clause( 136, [ ~( subclass( singleton( x ), y ) ) ] )
% 6.07/6.45  , 0, clause( 147, [ ~( member( X, Y ) ), subclass( singleton( X ), Y ) ] )
% 6.07/6.45  , 1, substitution( 0, [] ), substitution( 1, [ :=( X, x ), :=( Y, y )] )
% 6.07/6.45    ).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  resolution(
% 6.07/6.45  clause( 27257, [] )
% 6.07/6.45  , clause( 27256, [ ~( member( x, y ) ) ] )
% 6.07/6.45  , 0, clause( 135, [ member( x, y ) ] )
% 6.07/6.45  , 0, substitution( 0, [] ), substitution( 1, [] )).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  subsumption(
% 6.07/6.45  clause( 26818, [] )
% 6.07/6.45  , clause( 27257, [] )
% 6.07/6.45  , substitution( 0, [] ), permutation( 0, [] ) ).
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  end.
% 6.07/6.45  
% 6.07/6.45  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 6.07/6.45  
% 6.07/6.45  Memory use:
% 6.07/6.45  
% 6.07/6.45  space for terms:        450182
% 6.07/6.45  space for clauses:      1211378
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  clauses generated:      81746
% 6.07/6.45  clauses kept:           26819
% 6.07/6.45  clauses selected:       576
% 6.07/6.45  clauses deleted:        2132
% 6.07/6.45  clauses inuse deleted:  92
% 6.07/6.45  
% 6.07/6.45  subsentry:          330737
% 6.07/6.45  literals s-matched: 255266
% 6.07/6.45  literals matched:   246076
% 6.07/6.45  full subsumption:   144031
% 6.07/6.45  
% 6.07/6.45  checksum:           -419709428
% 6.07/6.45  
% 6.07/6.45  
% 6.07/6.45  Bliksem ended
%------------------------------------------------------------------------------