TSTP Solution File: SET064+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET064+1 : TPTP v8.1.0. Bugfixed v5.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:46:24 EDT 2022

% Result   : Theorem 0.72s 1.10s
% Output   : Refutation 0.72s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SET064+1 : TPTP v8.1.0. Bugfixed v5.4.0.
% 0.03/0.13  % Command  : bliksem %s
% 0.12/0.34  % Computer : n005.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % DateTime : Sun Jul 10 13:43:22 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.72/1.10  *** allocated 10000 integers for termspace/termends
% 0.72/1.10  *** allocated 10000 integers for clauses
% 0.72/1.10  *** allocated 10000 integers for justifications
% 0.72/1.10  Bliksem 1.12
% 0.72/1.10  
% 0.72/1.10  
% 0.72/1.10  Automatic Strategy Selection
% 0.72/1.10  
% 0.72/1.10  
% 0.72/1.10  Clauses:
% 0.72/1.10  
% 0.72/1.10  { ! subclass( X, Y ), ! member( Z, X ), member( Z, Y ) }.
% 0.72/1.10  { ! member( skol1( Z, Y ), Y ), subclass( X, Y ) }.
% 0.72/1.10  { member( skol1( X, Y ), X ), subclass( X, Y ) }.
% 0.72/1.10  { subclass( X, universal_class ) }.
% 0.72/1.10  { ! X = Y, subclass( X, Y ) }.
% 0.72/1.10  { ! X = Y, subclass( Y, X ) }.
% 0.72/1.10  { ! subclass( X, Y ), ! subclass( Y, X ), X = Y }.
% 0.72/1.10  { ! member( X, unordered_pair( Y, Z ) ), member( X, universal_class ) }.
% 0.72/1.10  { ! member( X, unordered_pair( Y, Z ) ), alpha1( X, Y, Z ) }.
% 0.72/1.10  { ! member( X, universal_class ), ! alpha1( X, Y, Z ), member( X, 
% 0.72/1.10    unordered_pair( Y, Z ) ) }.
% 0.72/1.10  { ! alpha1( X, Y, Z ), X = Y, X = Z }.
% 0.72/1.10  { ! X = Y, alpha1( X, Y, Z ) }.
% 0.72/1.10  { ! X = Z, alpha1( X, Y, Z ) }.
% 0.72/1.10  { member( unordered_pair( X, Y ), universal_class ) }.
% 0.72/1.10  { singleton( X ) = unordered_pair( X, X ) }.
% 0.72/1.10  { ordered_pair( X, Y ) = unordered_pair( singleton( X ), unordered_pair( X
% 0.72/1.10    , singleton( Y ) ) ) }.
% 0.72/1.10  { ! member( ordered_pair( X, Y ), cross_product( Z, T ) ), member( X, Z ) }
% 0.72/1.10    .
% 0.72/1.10  { ! member( ordered_pair( X, Y ), cross_product( Z, T ) ), member( Y, T ) }
% 0.72/1.10    .
% 0.72/1.10  { ! member( X, Z ), ! member( Y, T ), member( ordered_pair( X, Y ), 
% 0.72/1.10    cross_product( Z, T ) ) }.
% 0.72/1.10  { ! member( X, universal_class ), ! member( Y, universal_class ), first( 
% 0.72/1.10    ordered_pair( X, Y ) ) = X }.
% 0.72/1.10  { ! member( X, universal_class ), ! member( Y, universal_class ), second( 
% 0.72/1.10    ordered_pair( X, Y ) ) = Y }.
% 0.72/1.10  { ! member( X, cross_product( Y, Z ) ), X = ordered_pair( first( X ), 
% 0.72/1.10    second( X ) ) }.
% 0.72/1.10  { ! member( ordered_pair( X, Y ), element_relation ), member( Y, 
% 0.72/1.10    universal_class ) }.
% 0.72/1.10  { ! member( ordered_pair( X, Y ), element_relation ), member( X, Y ) }.
% 0.72/1.10  { ! member( Y, universal_class ), ! member( X, Y ), member( ordered_pair( X
% 0.72/1.10    , Y ), element_relation ) }.
% 0.72/1.10  { subclass( element_relation, cross_product( universal_class, 
% 0.72/1.10    universal_class ) ) }.
% 0.72/1.10  { ! member( Z, intersection( X, Y ) ), member( Z, X ) }.
% 0.72/1.10  { ! member( Z, intersection( X, Y ) ), member( Z, Y ) }.
% 0.72/1.10  { ! member( Z, X ), ! member( Z, Y ), member( Z, intersection( X, Y ) ) }.
% 0.72/1.10  { ! member( Y, complement( X ) ), member( Y, universal_class ) }.
% 0.72/1.10  { ! member( Y, complement( X ) ), ! member( Y, X ) }.
% 0.72/1.10  { ! member( Y, universal_class ), member( Y, X ), member( Y, complement( X
% 0.72/1.10     ) ) }.
% 0.72/1.10  { restrict( Y, X, Z ) = intersection( Y, cross_product( X, Z ) ) }.
% 0.72/1.10  { ! member( X, null_class ) }.
% 0.72/1.10  { ! member( Y, domain_of( X ) ), member( Y, universal_class ) }.
% 0.72/1.10  { ! member( Y, domain_of( X ) ), ! restrict( X, singleton( Y ), 
% 0.72/1.10    universal_class ) = null_class }.
% 0.72/1.10  { ! member( Y, universal_class ), restrict( X, singleton( Y ), 
% 0.72/1.10    universal_class ) = null_class, member( Y, domain_of( X ) ) }.
% 0.72/1.10  { ! member( ordered_pair( ordered_pair( Y, Z ), T ), rotate( X ) ), member
% 0.72/1.10    ( ordered_pair( ordered_pair( Y, Z ), T ), cross_product( cross_product( 
% 0.72/1.10    universal_class, universal_class ), universal_class ) ) }.
% 0.72/1.10  { ! member( ordered_pair( ordered_pair( Y, Z ), T ), rotate( X ) ), member
% 0.72/1.10    ( ordered_pair( ordered_pair( Z, T ), Y ), X ) }.
% 0.72/1.10  { ! member( ordered_pair( ordered_pair( Y, Z ), T ), cross_product( 
% 0.72/1.10    cross_product( universal_class, universal_class ), universal_class ) ), !
% 0.72/1.10     member( ordered_pair( ordered_pair( Z, T ), Y ), X ), member( 
% 0.72/1.10    ordered_pair( ordered_pair( Y, Z ), T ), rotate( X ) ) }.
% 0.72/1.10  { subclass( rotate( X ), cross_product( cross_product( universal_class, 
% 0.72/1.10    universal_class ), universal_class ) ) }.
% 0.72/1.10  { ! member( ordered_pair( ordered_pair( X, Y ), Z ), flip( T ) ), member( 
% 0.72/1.10    ordered_pair( ordered_pair( X, Y ), Z ), cross_product( cross_product( 
% 0.72/1.10    universal_class, universal_class ), universal_class ) ) }.
% 0.72/1.10  { ! member( ordered_pair( ordered_pair( X, Y ), Z ), flip( T ) ), member( 
% 0.72/1.10    ordered_pair( ordered_pair( Y, X ), Z ), T ) }.
% 0.72/1.10  { ! member( ordered_pair( ordered_pair( X, Y ), Z ), cross_product( 
% 0.72/1.10    cross_product( universal_class, universal_class ), universal_class ) ), !
% 0.72/1.10     member( ordered_pair( ordered_pair( Y, X ), Z ), T ), member( 
% 0.72/1.10    ordered_pair( ordered_pair( X, Y ), Z ), flip( T ) ) }.
% 0.72/1.10  { subclass( flip( X ), cross_product( cross_product( universal_class, 
% 0.72/1.10    universal_class ), universal_class ) ) }.
% 0.72/1.10  { ! member( Z, union( X, Y ) ), member( Z, X ), member( Z, Y ) }.
% 0.72/1.10  { ! member( Z, X ), member( Z, union( X, Y ) ) }.
% 0.72/1.10  { ! member( Z, Y ), member( Z, union( X, Y ) ) }.
% 0.72/1.10  { successor( X ) = union( X, singleton( X ) ) }.
% 0.72/1.10  { subclass( successor_relation, cross_product( universal_class, 
% 0.72/1.10    universal_class ) ) }.
% 0.72/1.10  { ! member( ordered_pair( X, Y ), successor_relation ), member( X, 
% 0.72/1.10    universal_class ) }.
% 0.72/1.10  { ! member( ordered_pair( X, Y ), successor_relation ), alpha2( X, Y ) }.
% 0.72/1.10  { ! member( X, universal_class ), ! alpha2( X, Y ), member( ordered_pair( X
% 0.72/1.10    , Y ), successor_relation ) }.
% 0.72/1.10  { ! alpha2( X, Y ), member( Y, universal_class ) }.
% 0.72/1.10  { ! alpha2( X, Y ), successor( X ) = Y }.
% 0.72/1.10  { ! member( Y, universal_class ), ! successor( X ) = Y, alpha2( X, Y ) }.
% 0.72/1.10  { inverse( X ) = domain_of( flip( cross_product( X, universal_class ) ) ) }
% 0.72/1.10    .
% 0.72/1.10  { range_of( X ) = domain_of( inverse( X ) ) }.
% 0.72/1.10  { image( Y, X ) = range_of( restrict( Y, X, universal_class ) ) }.
% 0.72/1.10  { ! inductive( X ), member( null_class, X ) }.
% 0.72/1.10  { ! inductive( X ), subclass( image( successor_relation, X ), X ) }.
% 0.72/1.10  { ! member( null_class, X ), ! subclass( image( successor_relation, X ), X
% 0.72/1.10     ), inductive( X ) }.
% 0.72/1.10  { member( skol2, universal_class ) }.
% 0.72/1.10  { inductive( skol2 ) }.
% 0.72/1.10  { ! inductive( X ), subclass( skol2, X ) }.
% 0.72/1.10  { ! member( X, sum_class( Y ) ), member( skol3( Z, Y ), Y ) }.
% 0.72/1.10  { ! member( X, sum_class( Y ) ), member( X, skol3( X, Y ) ) }.
% 0.72/1.10  { ! member( X, Z ), ! member( Z, Y ), member( X, sum_class( Y ) ) }.
% 0.72/1.10  { ! member( X, universal_class ), member( sum_class( X ), universal_class )
% 0.72/1.10     }.
% 0.72/1.10  { ! member( X, power_class( Y ) ), member( X, universal_class ) }.
% 0.72/1.10  { ! member( X, power_class( Y ) ), subclass( X, Y ) }.
% 0.72/1.10  { ! member( X, universal_class ), ! subclass( X, Y ), member( X, 
% 0.72/1.10    power_class( Y ) ) }.
% 0.72/1.10  { ! member( X, universal_class ), member( power_class( X ), universal_class
% 0.72/1.10     ) }.
% 0.72/1.10  { subclass( compose( Y, X ), cross_product( universal_class, 
% 0.72/1.10    universal_class ) ) }.
% 0.72/1.10  { ! member( ordered_pair( Z, T ), compose( Y, X ) ), member( Z, 
% 0.72/1.10    universal_class ) }.
% 0.72/1.10  { ! member( ordered_pair( Z, T ), compose( Y, X ) ), member( T, image( Y, 
% 0.72/1.10    image( X, singleton( Z ) ) ) ) }.
% 0.72/1.10  { ! member( Z, universal_class ), ! member( T, image( Y, image( X, 
% 0.72/1.10    singleton( Z ) ) ) ), member( ordered_pair( Z, T ), compose( Y, X ) ) }.
% 0.72/1.10  { ! member( X, identity_relation ), member( skol4( Y ), universal_class ) }
% 0.72/1.10    .
% 0.72/1.10  { ! member( X, identity_relation ), X = ordered_pair( skol4( X ), skol4( X
% 0.72/1.10     ) ) }.
% 0.72/1.10  { ! member( Y, universal_class ), ! X = ordered_pair( Y, Y ), member( X, 
% 0.72/1.10    identity_relation ) }.
% 0.72/1.10  { ! function( X ), subclass( X, cross_product( universal_class, 
% 0.72/1.10    universal_class ) ) }.
% 0.72/1.10  { ! function( X ), subclass( compose( X, inverse( X ) ), identity_relation
% 0.72/1.10     ) }.
% 0.72/1.10  { ! subclass( X, cross_product( universal_class, universal_class ) ), ! 
% 0.72/1.10    subclass( compose( X, inverse( X ) ), identity_relation ), function( X )
% 0.72/1.10     }.
% 0.72/1.10  { ! member( X, universal_class ), ! function( Y ), member( image( Y, X ), 
% 0.72/1.10    universal_class ) }.
% 0.72/1.10  { ! disjoint( X, Y ), ! member( Z, X ), ! member( Z, Y ) }.
% 0.72/1.10  { member( skol5( Z, Y ), Y ), disjoint( X, Y ) }.
% 0.72/1.10  { member( skol5( X, Y ), X ), disjoint( X, Y ) }.
% 0.72/1.10  { X = null_class, member( skol6( Y ), universal_class ) }.
% 0.72/1.10  { X = null_class, member( skol6( X ), X ) }.
% 0.72/1.10  { X = null_class, disjoint( skol6( X ), X ) }.
% 0.72/1.10  { apply( X, Y ) = sum_class( image( X, singleton( Y ) ) ) }.
% 0.72/1.10  { function( skol7 ) }.
% 0.72/1.10  { ! member( X, universal_class ), X = null_class, member( apply( skol7, X )
% 0.72/1.10    , X ) }.
% 0.72/1.10  { ! skol8 = null_class }.
% 0.72/1.10  { ! member( X, skol8 ) }.
% 0.72/1.10  
% 0.72/1.10  percentage equality = 0.149485, percentage horn = 0.884211
% 0.72/1.10  This is a problem with some equality
% 0.72/1.10  
% 0.72/1.10  
% 0.72/1.10  
% 0.72/1.10  Options Used:
% 0.72/1.10  
% 0.72/1.10  useres =            1
% 0.72/1.10  useparamod =        1
% 0.72/1.10  useeqrefl =         1
% 0.72/1.10  useeqfact =         1
% 0.72/1.10  usefactor =         1
% 0.72/1.10  usesimpsplitting =  0
% 0.72/1.10  usesimpdemod =      5
% 0.72/1.10  usesimpres =        3
% 0.72/1.10  
% 0.72/1.10  resimpinuse      =  1000
% 0.72/1.10  resimpclauses =     20000
% 0.72/1.10  substype =          eqrewr
% 0.72/1.10  backwardsubs =      1
% 0.72/1.10  selectoldest =      5
% 0.72/1.10  
% 0.72/1.10  litorderings [0] =  split
% 0.72/1.10  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.72/1.10  
% 0.72/1.10  termordering =      kbo
% 0.72/1.10  
% 0.72/1.10  litapriori =        0
% 0.72/1.10  termapriori =       1
% 0.72/1.10  litaposteriori =    0
% 0.72/1.10  termaposteriori =   0
% 0.72/1.10  demodaposteriori =  0
% 0.72/1.10  ordereqreflfact =   0
% 0.72/1.10  
% 0.72/1.10  litselect =         negord
% 0.72/1.10  
% 0.72/1.10  maxweight =         15
% 0.72/1.10  maxdepth =          30000
% 0.72/1.10  maxlength =         115
% 0.72/1.10  maxnrvars =         195
% 0.72/1.10  excuselevel =       1
% 0.72/1.10  increasemaxweight = 1
% 0.72/1.10  
% 0.72/1.10  maxselected =       10000000
% 0.72/1.10  maxnrclauses =      10000000
% 0.72/1.10  
% 0.72/1.10  showgenerated =    0
% 0.72/1.10  showkept =         0
% 0.72/1.10  showselected =     0
% 0.72/1.10  showdeleted =      0
% 0.72/1.10  showresimp =       1
% 0.72/1.10  showstatus =       2000
% 0.72/1.10  
% 0.72/1.10  prologoutput =     0
% 0.72/1.10  nrgoals =          5000000
% 0.72/1.10  totalproof =       1
% 0.72/1.10  
% 0.72/1.10  Symbols occurring in the translation:
% 0.72/1.10  
% 0.72/1.10  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.72/1.10  .  [1, 2]      (w:1, o:44, a:1, s:1, b:0), 
% 0.72/1.10  !  [4, 1]      (w:0, o:23, a:1, s:1, b:0), 
% 0.72/1.10  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.10  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.72/1.10  subclass  [37, 2]      (w:1, o:68, a:1, s:1, b:0), 
% 0.72/1.10  member  [39, 2]      (w:1, o:69, a:1, s:1, b:0), 
% 0.72/1.10  universal_class  [40, 0]      (w:1, o:12, a:1, s:1, b:0), 
% 0.72/1.10  unordered_pair  [41, 2]      (w:1, o:70, a:1, s:1, b:0), 
% 0.72/1.10  singleton  [42, 1]      (w:1, o:30, a:1, s:1, b:0), 
% 0.72/1.10  ordered_pair  [43, 2]      (w:1, o:71, a:1, s:1, b:0), 
% 0.72/1.10  cross_product  [45, 2]      (w:1, o:72, a:1, s:1, b:0), 
% 0.72/1.10  first  [46, 1]      (w:1, o:31, a:1, s:1, b:0), 
% 0.72/1.10  second  [47, 1]      (w:1, o:32, a:1, s:1, b:0), 
% 0.72/1.10  element_relation  [49, 0]      (w:1, o:16, a:1, s:1, b:0), 
% 0.72/1.10  intersection  [50, 2]      (w:1, o:74, a:1, s:1, b:0), 
% 0.72/1.10  complement  [51, 1]      (w:1, o:33, a:1, s:1, b:0), 
% 0.72/1.10  restrict  [53, 3]      (w:1, o:83, a:1, s:1, b:0), 
% 0.72/1.10  null_class  [54, 0]      (w:1, o:17, a:1, s:1, b:0), 
% 0.72/1.10  domain_of  [55, 1]      (w:1, o:34, a:1, s:1, b:0), 
% 0.72/1.10  rotate  [57, 1]      (w:1, o:28, a:1, s:1, b:0), 
% 0.72/1.10  flip  [58, 1]      (w:1, o:35, a:1, s:1, b:0), 
% 0.72/1.10  union  [59, 2]      (w:1, o:75, a:1, s:1, b:0), 
% 0.72/1.10  successor  [60, 1]      (w:1, o:36, a:1, s:1, b:0), 
% 0.72/1.10  successor_relation  [61, 0]      (w:1, o:18, a:1, s:1, b:0), 
% 0.72/1.10  inverse  [62, 1]      (w:1, o:37, a:1, s:1, b:0), 
% 0.72/1.10  range_of  [63, 1]      (w:1, o:29, a:1, s:1, b:0), 
% 0.72/1.10  image  [64, 2]      (w:1, o:73, a:1, s:1, b:0), 
% 0.72/1.10  inductive  [65, 1]      (w:1, o:38, a:1, s:1, b:0), 
% 0.72/1.10  sum_class  [66, 1]      (w:1, o:39, a:1, s:1, b:0), 
% 0.72/1.10  power_class  [67, 1]      (w:1, o:40, a:1, s:1, b:0), 
% 0.72/1.10  compose  [69, 2]      (w:1, o:76, a:1, s:1, b:0), 
% 0.72/1.10  identity_relation  [70, 0]      (w:1, o:19, a:1, s:1, b:0), 
% 0.72/1.10  function  [72, 1]      (w:1, o:41, a:1, s:1, b:0), 
% 0.72/1.10  disjoint  [73, 2]      (w:1, o:77, a:1, s:1, b:0), 
% 0.72/1.10  apply  [74, 2]      (w:1, o:78, a:1, s:1, b:0), 
% 0.72/1.10  alpha1  [75, 3]      (w:1, o:84, a:1, s:1, b:1), 
% 0.72/1.10  alpha2  [76, 2]      (w:1, o:79, a:1, s:1, b:1), 
% 0.72/1.10  skol1  [77, 2]      (w:1, o:80, a:1, s:1, b:1), 
% 0.72/1.10  skol2  [78, 0]      (w:1, o:20, a:1, s:1, b:1), 
% 0.72/1.10  skol3  [79, 2]      (w:1, o:81, a:1, s:1, b:1), 
% 0.72/1.10  skol4  [80, 1]      (w:1, o:42, a:1, s:1, b:1), 
% 0.72/1.10  skol5  [81, 2]      (w:1, o:82, a:1, s:1, b:1), 
% 0.72/1.10  skol6  [82, 1]      (w:1, o:43, a:1, s:1, b:1), 
% 0.72/1.10  skol7  [83, 0]      (w:1, o:21, a:1, s:1, b:1), 
% 0.72/1.10  skol8  [84, 0]      (w:1, o:22, a:1, s:1, b:1).
% 0.72/1.10  
% 0.72/1.10  
% 0.72/1.10  Starting Search:
% 0.72/1.10  
% 0.72/1.10  *** allocated 15000 integers for clauses
% 0.72/1.10  
% 0.72/1.10  Bliksems!, er is een bewijs:
% 0.72/1.10  % SZS status Theorem
% 0.72/1.10  % SZS output start Refutation
% 0.72/1.10  
% 0.72/1.10  (2) {G0,W8,D3,L2,V2,M2} I { member( skol1( X, Y ), X ), subclass( X, Y )
% 0.72/1.10     }.
% 0.72/1.10  (5) {G0,W9,D2,L3,V2,M3} I { ! subclass( X, Y ), ! subclass( Y, X ), X = Y
% 0.72/1.10     }.
% 0.72/1.10  (32) {G0,W3,D2,L1,V1,M1} I { ! member( X, null_class ) }.
% 0.72/1.10  (92) {G0,W3,D2,L1,V0,M1} I { ! skol8 ==> null_class }.
% 0.72/1.10  (93) {G0,W3,D2,L1,V1,M1} I { ! member( X, skol8 ) }.
% 0.72/1.10  (126) {G1,W3,D2,L1,V1,M1} R(2,32) { subclass( null_class, X ) }.
% 0.72/1.10  (127) {G1,W3,D2,L1,V1,M1} R(2,93) { subclass( skol8, X ) }.
% 0.72/1.10  (162) {G2,W6,D2,L2,V1,M2} P(5,92);r(127) { ! X = null_class, ! subclass( X
% 0.72/1.10    , skol8 ) }.
% 0.72/1.10  (166) {G3,W0,D0,L0,V0,M0} Q(162);r(126) {  }.
% 0.72/1.10  
% 0.72/1.10  
% 0.72/1.10  % SZS output end Refutation
% 0.72/1.10  found a proof!
% 0.72/1.10  
% 0.72/1.10  
% 0.72/1.10  Unprocessed initial clauses:
% 0.72/1.10  
% 0.72/1.10  (168) {G0,W9,D2,L3,V3,M3}  { ! subclass( X, Y ), ! member( Z, X ), member( 
% 0.72/1.10    Z, Y ) }.
% 0.72/1.10  (169) {G0,W8,D3,L2,V3,M2}  { ! member( skol1( Z, Y ), Y ), subclass( X, Y )
% 0.72/1.10     }.
% 0.72/1.10  (170) {G0,W8,D3,L2,V2,M2}  { member( skol1( X, Y ), X ), subclass( X, Y )
% 0.72/1.10     }.
% 0.72/1.10  (171) {G0,W3,D2,L1,V1,M1}  { subclass( X, universal_class ) }.
% 0.72/1.10  (172) {G0,W6,D2,L2,V2,M2}  { ! X = Y, subclass( X, Y ) }.
% 0.72/1.10  (173) {G0,W6,D2,L2,V2,M2}  { ! X = Y, subclass( Y, X ) }.
% 0.72/1.10  (174) {G0,W9,D2,L3,V2,M3}  { ! subclass( X, Y ), ! subclass( Y, X ), X = Y
% 0.72/1.10     }.
% 0.72/1.10  (175) {G0,W8,D3,L2,V3,M2}  { ! member( X, unordered_pair( Y, Z ) ), member
% 0.72/1.10    ( X, universal_class ) }.
% 0.72/1.10  (176) {G0,W9,D3,L2,V3,M2}  { ! member( X, unordered_pair( Y, Z ) ), alpha1
% 0.72/1.10    ( X, Y, Z ) }.
% 0.72/1.10  (177) {G0,W12,D3,L3,V3,M3}  { ! member( X, universal_class ), ! alpha1( X, 
% 0.72/1.10    Y, Z ), member( X, unordered_pair( Y, Z ) ) }.
% 0.72/1.10  (178) {G0,W10,D2,L3,V3,M3}  { ! alpha1( X, Y, Z ), X = Y, X = Z }.
% 0.72/1.10  (179) {G0,W7,D2,L2,V3,M2}  { ! X = Y, alpha1( X, Y, Z ) }.
% 0.72/1.10  (180) {G0,W7,D2,L2,V3,M2}  { ! X = Z, alpha1( X, Y, Z ) }.
% 0.72/1.10  (181) {G0,W5,D3,L1,V2,M1}  { member( unordered_pair( X, Y ), 
% 0.72/1.10    universal_class ) }.
% 0.72/1.10  (182) {G0,W6,D3,L1,V1,M1}  { singleton( X ) = unordered_pair( X, X ) }.
% 0.72/1.10  (183) {G0,W11,D5,L1,V2,M1}  { ordered_pair( X, Y ) = unordered_pair( 
% 0.72/1.10    singleton( X ), unordered_pair( X, singleton( Y ) ) ) }.
% 0.72/1.10  (184) {G0,W10,D3,L2,V4,M2}  { ! member( ordered_pair( X, Y ), cross_product
% 0.72/1.10    ( Z, T ) ), member( X, Z ) }.
% 0.72/1.10  (185) {G0,W10,D3,L2,V4,M2}  { ! member( ordered_pair( X, Y ), cross_product
% 0.72/1.10    ( Z, T ) ), member( Y, T ) }.
% 0.72/1.10  (186) {G0,W13,D3,L3,V4,M3}  { ! member( X, Z ), ! member( Y, T ), member( 
% 0.72/1.10    ordered_pair( X, Y ), cross_product( Z, T ) ) }.
% 0.72/1.10  (187) {G0,W12,D4,L3,V2,M3}  { ! member( X, universal_class ), ! member( Y, 
% 0.72/1.10    universal_class ), first( ordered_pair( X, Y ) ) = X }.
% 0.72/1.10  (188) {G0,W12,D4,L3,V2,M3}  { ! member( X, universal_class ), ! member( Y, 
% 0.72/1.10    universal_class ), second( ordered_pair( X, Y ) ) = Y }.
% 0.72/1.10  (189) {G0,W12,D4,L2,V3,M2}  { ! member( X, cross_product( Y, Z ) ), X = 
% 0.72/1.10    ordered_pair( first( X ), second( X ) ) }.
% 0.72/1.10  (190) {G0,W8,D3,L2,V2,M2}  { ! member( ordered_pair( X, Y ), 
% 0.72/1.10    element_relation ), member( Y, universal_class ) }.
% 0.72/1.10  (191) {G0,W8,D3,L2,V2,M2}  { ! member( ordered_pair( X, Y ), 
% 0.72/1.10    element_relation ), member( X, Y ) }.
% 0.72/1.10  (192) {G0,W11,D3,L3,V2,M3}  { ! member( Y, universal_class ), ! member( X, 
% 0.72/1.10    Y ), member( ordered_pair( X, Y ), element_relation ) }.
% 0.72/1.10  (193) {G0,W5,D3,L1,V0,M1}  { subclass( element_relation, cross_product( 
% 0.72/1.10    universal_class, universal_class ) ) }.
% 0.72/1.10  (194) {G0,W8,D3,L2,V3,M2}  { ! member( Z, intersection( X, Y ) ), member( Z
% 0.72/1.10    , X ) }.
% 0.72/1.10  (195) {G0,W8,D3,L2,V3,M2}  { ! member( Z, intersection( X, Y ) ), member( Z
% 0.72/1.10    , Y ) }.
% 0.72/1.10  (196) {G0,W11,D3,L3,V3,M3}  { ! member( Z, X ), ! member( Z, Y ), member( Z
% 0.72/1.10    , intersection( X, Y ) ) }.
% 0.72/1.10  (197) {G0,W7,D3,L2,V2,M2}  { ! member( Y, complement( X ) ), member( Y, 
% 0.72/1.10    universal_class ) }.
% 0.72/1.10  (198) {G0,W7,D3,L2,V2,M2}  { ! member( Y, complement( X ) ), ! member( Y, X
% 0.72/1.10     ) }.
% 0.72/1.10  (199) {G0,W10,D3,L3,V2,M3}  { ! member( Y, universal_class ), member( Y, X
% 0.72/1.10     ), member( Y, complement( X ) ) }.
% 0.72/1.10  (200) {G0,W10,D4,L1,V3,M1}  { restrict( Y, X, Z ) = intersection( Y, 
% 0.72/1.10    cross_product( X, Z ) ) }.
% 0.72/1.10  (201) {G0,W3,D2,L1,V1,M1}  { ! member( X, null_class ) }.
% 0.72/1.10  (202) {G0,W7,D3,L2,V2,M2}  { ! member( Y, domain_of( X ) ), member( Y, 
% 0.72/1.10    universal_class ) }.
% 0.72/1.10  (203) {G0,W11,D4,L2,V2,M2}  { ! member( Y, domain_of( X ) ), ! restrict( X
% 0.72/1.10    , singleton( Y ), universal_class ) = null_class }.
% 0.72/1.10  (204) {G0,W14,D4,L3,V2,M3}  { ! member( Y, universal_class ), restrict( X, 
% 0.72/1.10    singleton( Y ), universal_class ) = null_class, member( Y, domain_of( X )
% 0.72/1.10     ) }.
% 0.72/1.10  (205) {G0,W19,D4,L2,V4,M2}  { ! member( ordered_pair( ordered_pair( Y, Z )
% 0.72/1.10    , T ), rotate( X ) ), member( ordered_pair( ordered_pair( Y, Z ), T ), 
% 0.72/1.10    cross_product( cross_product( universal_class, universal_class ), 
% 0.72/1.10    universal_class ) ) }.
% 0.72/1.10  (206) {G0,W15,D4,L2,V4,M2}  { ! member( ordered_pair( ordered_pair( Y, Z )
% 0.72/1.10    , T ), rotate( X ) ), member( ordered_pair( ordered_pair( Z, T ), Y ), X
% 0.72/1.10     ) }.
% 0.72/1.10  (207) {G0,W26,D4,L3,V4,M3}  { ! member( ordered_pair( ordered_pair( Y, Z )
% 0.72/1.10    , T ), cross_product( cross_product( universal_class, universal_class ), 
% 0.72/1.10    universal_class ) ), ! member( ordered_pair( ordered_pair( Z, T ), Y ), X
% 0.72/1.10     ), member( ordered_pair( ordered_pair( Y, Z ), T ), rotate( X ) ) }.
% 0.72/1.10  (208) {G0,W8,D4,L1,V1,M1}  { subclass( rotate( X ), cross_product( 
% 0.72/1.10    cross_product( universal_class, universal_class ), universal_class ) )
% 0.72/1.10     }.
% 0.72/1.10  (209) {G0,W19,D4,L2,V4,M2}  { ! member( ordered_pair( ordered_pair( X, Y )
% 0.72/1.10    , Z ), flip( T ) ), member( ordered_pair( ordered_pair( X, Y ), Z ), 
% 0.72/1.10    cross_product( cross_product( universal_class, universal_class ), 
% 0.72/1.10    universal_class ) ) }.
% 0.72/1.10  (210) {G0,W15,D4,L2,V4,M2}  { ! member( ordered_pair( ordered_pair( X, Y )
% 0.72/1.10    , Z ), flip( T ) ), member( ordered_pair( ordered_pair( Y, X ), Z ), T )
% 0.72/1.10     }.
% 0.72/1.10  (211) {G0,W26,D4,L3,V4,M3}  { ! member( ordered_pair( ordered_pair( X, Y )
% 0.72/1.10    , Z ), cross_product( cross_product( universal_class, universal_class ), 
% 0.72/1.10    universal_class ) ), ! member( ordered_pair( ordered_pair( Y, X ), Z ), T
% 0.72/1.10     ), member( ordered_pair( ordered_pair( X, Y ), Z ), flip( T ) ) }.
% 0.72/1.10  (212) {G0,W8,D4,L1,V1,M1}  { subclass( flip( X ), cross_product( 
% 0.72/1.10    cross_product( universal_class, universal_class ), universal_class ) )
% 0.72/1.10     }.
% 0.72/1.10  (213) {G0,W11,D3,L3,V3,M3}  { ! member( Z, union( X, Y ) ), member( Z, X )
% 0.72/1.10    , member( Z, Y ) }.
% 0.72/1.10  (214) {G0,W8,D3,L2,V3,M2}  { ! member( Z, X ), member( Z, union( X, Y ) )
% 0.72/1.10     }.
% 0.72/1.10  (215) {G0,W8,D3,L2,V3,M2}  { ! member( Z, Y ), member( Z, union( X, Y ) )
% 0.72/1.10     }.
% 0.72/1.10  (216) {G0,W7,D4,L1,V1,M1}  { successor( X ) = union( X, singleton( X ) )
% 0.72/1.10     }.
% 0.72/1.10  (217) {G0,W5,D3,L1,V0,M1}  { subclass( successor_relation, cross_product( 
% 0.72/1.10    universal_class, universal_class ) ) }.
% 0.72/1.10  (218) {G0,W8,D3,L2,V2,M2}  { ! member( ordered_pair( X, Y ), 
% 0.72/1.10    successor_relation ), member( X, universal_class ) }.
% 0.72/1.10  (219) {G0,W8,D3,L2,V2,M2}  { ! member( ordered_pair( X, Y ), 
% 0.72/1.10    successor_relation ), alpha2( X, Y ) }.
% 0.72/1.10  (220) {G0,W11,D3,L3,V2,M3}  { ! member( X, universal_class ), ! alpha2( X, 
% 0.72/1.10    Y ), member( ordered_pair( X, Y ), successor_relation ) }.
% 0.72/1.10  (221) {G0,W6,D2,L2,V2,M2}  { ! alpha2( X, Y ), member( Y, universal_class )
% 0.72/1.10     }.
% 0.72/1.10  (222) {G0,W7,D3,L2,V2,M2}  { ! alpha2( X, Y ), successor( X ) = Y }.
% 0.72/1.10  (223) {G0,W10,D3,L3,V2,M3}  { ! member( Y, universal_class ), ! successor( 
% 0.72/1.10    X ) = Y, alpha2( X, Y ) }.
% 0.72/1.10  (224) {G0,W8,D5,L1,V1,M1}  { inverse( X ) = domain_of( flip( cross_product
% 0.72/1.10    ( X, universal_class ) ) ) }.
% 0.72/1.10  (225) {G0,W6,D4,L1,V1,M1}  { range_of( X ) = domain_of( inverse( X ) ) }.
% 0.72/1.10  (226) {G0,W9,D4,L1,V2,M1}  { image( Y, X ) = range_of( restrict( Y, X, 
% 0.72/1.10    universal_class ) ) }.
% 0.72/1.10  (227) {G0,W5,D2,L2,V1,M2}  { ! inductive( X ), member( null_class, X ) }.
% 0.72/1.10  (228) {G0,W7,D3,L2,V1,M2}  { ! inductive( X ), subclass( image( 
% 0.72/1.10    successor_relation, X ), X ) }.
% 0.72/1.10  (229) {G0,W10,D3,L3,V1,M3}  { ! member( null_class, X ), ! subclass( image
% 0.72/1.10    ( successor_relation, X ), X ), inductive( X ) }.
% 0.72/1.10  (230) {G0,W3,D2,L1,V0,M1}  { member( skol2, universal_class ) }.
% 0.72/1.10  (231) {G0,W2,D2,L1,V0,M1}  { inductive( skol2 ) }.
% 0.72/1.10  (232) {G0,W5,D2,L2,V1,M2}  { ! inductive( X ), subclass( skol2, X ) }.
% 0.72/1.10  (233) {G0,W9,D3,L2,V3,M2}  { ! member( X, sum_class( Y ) ), member( skol3( 
% 0.72/1.10    Z, Y ), Y ) }.
% 0.72/1.10  (234) {G0,W9,D3,L2,V2,M2}  { ! member( X, sum_class( Y ) ), member( X, 
% 0.72/1.10    skol3( X, Y ) ) }.
% 0.72/1.10  (235) {G0,W10,D3,L3,V3,M3}  { ! member( X, Z ), ! member( Z, Y ), member( X
% 0.72/1.10    , sum_class( Y ) ) }.
% 0.72/1.10  (236) {G0,W7,D3,L2,V1,M2}  { ! member( X, universal_class ), member( 
% 0.72/1.10    sum_class( X ), universal_class ) }.
% 0.72/1.10  (237) {G0,W7,D3,L2,V2,M2}  { ! member( X, power_class( Y ) ), member( X, 
% 0.72/1.10    universal_class ) }.
% 0.72/1.10  (238) {G0,W7,D3,L2,V2,M2}  { ! member( X, power_class( Y ) ), subclass( X, 
% 0.72/1.10    Y ) }.
% 0.72/1.10  (239) {G0,W10,D3,L3,V2,M3}  { ! member( X, universal_class ), ! subclass( X
% 0.72/1.10    , Y ), member( X, power_class( Y ) ) }.
% 0.72/1.10  (240) {G0,W7,D3,L2,V1,M2}  { ! member( X, universal_class ), member( 
% 0.72/1.10    power_class( X ), universal_class ) }.
% 0.72/1.10  (241) {G0,W7,D3,L1,V2,M1}  { subclass( compose( Y, X ), cross_product( 
% 0.72/1.10    universal_class, universal_class ) ) }.
% 0.72/1.10  (242) {G0,W10,D3,L2,V4,M2}  { ! member( ordered_pair( Z, T ), compose( Y, X
% 0.72/1.10     ) ), member( Z, universal_class ) }.
% 0.72/1.10  (243) {G0,W15,D5,L2,V4,M2}  { ! member( ordered_pair( Z, T ), compose( Y, X
% 0.72/1.10     ) ), member( T, image( Y, image( X, singleton( Z ) ) ) ) }.
% 0.72/1.10  (244) {G0,W18,D5,L3,V4,M3}  { ! member( Z, universal_class ), ! member( T, 
% 0.72/1.10    image( Y, image( X, singleton( Z ) ) ) ), member( ordered_pair( Z, T ), 
% 0.72/1.10    compose( Y, X ) ) }.
% 0.72/1.10  (245) {G0,W7,D3,L2,V2,M2}  { ! member( X, identity_relation ), member( 
% 0.75/1.32    skol4( Y ), universal_class ) }.
% 0.75/1.32  (246) {G0,W10,D4,L2,V1,M2}  { ! member( X, identity_relation ), X = 
% 0.75/1.32    ordered_pair( skol4( X ), skol4( X ) ) }.
% 0.75/1.32  (247) {G0,W11,D3,L3,V2,M3}  { ! member( Y, universal_class ), ! X = 
% 0.75/1.32    ordered_pair( Y, Y ), member( X, identity_relation ) }.
% 0.75/1.32  (248) {G0,W7,D3,L2,V1,M2}  { ! function( X ), subclass( X, cross_product( 
% 0.75/1.32    universal_class, universal_class ) ) }.
% 0.75/1.32  (249) {G0,W8,D4,L2,V1,M2}  { ! function( X ), subclass( compose( X, inverse
% 0.75/1.32    ( X ) ), identity_relation ) }.
% 0.75/1.32  (250) {G0,W13,D4,L3,V1,M3}  { ! subclass( X, cross_product( universal_class
% 0.75/1.32    , universal_class ) ), ! subclass( compose( X, inverse( X ) ), 
% 0.75/1.32    identity_relation ), function( X ) }.
% 0.75/1.32  (251) {G0,W10,D3,L3,V2,M3}  { ! member( X, universal_class ), ! function( Y
% 0.75/1.32     ), member( image( Y, X ), universal_class ) }.
% 0.75/1.32  (252) {G0,W9,D2,L3,V3,M3}  { ! disjoint( X, Y ), ! member( Z, X ), ! member
% 0.75/1.32    ( Z, Y ) }.
% 0.75/1.32  (253) {G0,W8,D3,L2,V3,M2}  { member( skol5( Z, Y ), Y ), disjoint( X, Y )
% 0.75/1.32     }.
% 0.75/1.32  (254) {G0,W8,D3,L2,V2,M2}  { member( skol5( X, Y ), X ), disjoint( X, Y )
% 0.75/1.32     }.
% 0.75/1.32  (255) {G0,W7,D3,L2,V2,M2}  { X = null_class, member( skol6( Y ), 
% 0.75/1.32    universal_class ) }.
% 0.75/1.32  (256) {G0,W7,D3,L2,V1,M2}  { X = null_class, member( skol6( X ), X ) }.
% 0.75/1.32  (257) {G0,W7,D3,L2,V1,M2}  { X = null_class, disjoint( skol6( X ), X ) }.
% 0.75/1.32  (258) {G0,W9,D5,L1,V2,M1}  { apply( X, Y ) = sum_class( image( X, singleton
% 0.75/1.32    ( Y ) ) ) }.
% 0.75/1.32  (259) {G0,W2,D2,L1,V0,M1}  { function( skol7 ) }.
% 0.75/1.32  (260) {G0,W11,D3,L3,V1,M3}  { ! member( X, universal_class ), X = 
% 0.75/1.32    null_class, member( apply( skol7, X ), X ) }.
% 0.75/1.32  (261) {G0,W3,D2,L1,V0,M1}  { ! skol8 = null_class }.
% 0.75/1.32  (262) {G0,W3,D2,L1,V1,M1}  { ! member( X, skol8 ) }.
% 0.75/1.32  
% 0.75/1.32  
% 0.75/1.32  Total Proof:
% 0.75/1.32  
% 0.75/1.32  subsumption: (2) {G0,W8,D3,L2,V2,M2} I { member( skol1( X, Y ), X ), 
% 0.75/1.32    subclass( X, Y ) }.
% 0.75/1.32  parent0: (170) {G0,W8,D3,L2,V2,M2}  { member( skol1( X, Y ), X ), subclass
% 0.75/1.32    ( X, Y ) }.
% 0.75/1.32  substitution0:
% 0.75/1.32     X := X
% 0.75/1.32     Y := Y
% 0.75/1.32  end
% 0.75/1.32  permutation0:
% 0.75/1.32     0 ==> 0
% 0.75/1.32     1 ==> 1
% 0.75/1.32  end
% 0.75/1.32  
% 0.75/1.32  subsumption: (5) {G0,W9,D2,L3,V2,M3} I { ! subclass( X, Y ), ! subclass( Y
% 0.75/1.32    , X ), X = Y }.
% 0.75/1.32  parent0: (174) {G0,W9,D2,L3,V2,M3}  { ! subclass( X, Y ), ! subclass( Y, X
% 0.75/1.32     ), X = Y }.
% 0.75/1.32  substitution0:
% 0.75/1.32     X := X
% 0.75/1.32     Y := Y
% 0.75/1.32  end
% 0.75/1.32  permutation0:
% 0.75/1.32     0 ==> 0
% 0.75/1.32     1 ==> 1
% 0.75/1.32     2 ==> 2
% 0.75/1.32  end
% 0.75/1.32  
% 0.75/1.32  subsumption: (32) {G0,W3,D2,L1,V1,M1} I { ! member( X, null_class ) }.
% 0.75/1.32  parent0: (201) {G0,W3,D2,L1,V1,M1}  { ! member( X, null_class ) }.
% 0.75/1.32  substitution0:
% 0.75/1.32     X := X
% 0.75/1.32  end
% 0.75/1.32  permutation0:
% 0.75/1.32     0 ==> 0
% 0.75/1.32  end
% 0.75/1.32  
% 0.75/1.32  subsumption: (92) {G0,W3,D2,L1,V0,M1} I { ! skol8 ==> null_class }.
% 0.75/1.32  parent0: (261) {G0,W3,D2,L1,V0,M1}  { ! skol8 = null_class }.
% 0.75/1.32  substitution0:
% 0.75/1.32  end
% 0.75/1.32  permutation0:
% 0.75/1.32     0 ==> 0
% 0.75/1.32  end
% 0.75/1.32  
% 0.75/1.32  subsumption: (93) {G0,W3,D2,L1,V1,M1} I { ! member( X, skol8 ) }.
% 0.75/1.32  parent0: (262) {G0,W3,D2,L1,V1,M1}  { ! member( X, skol8 ) }.
% 0.75/1.32  substitution0:
% 0.75/1.32     X := X
% 0.75/1.32  end
% 0.75/1.32  permutation0:
% 0.75/1.32     0 ==> 0
% 0.75/1.32  end
% 0.75/1.32  
% 0.75/1.32  resolution: (377) {G1,W3,D2,L1,V1,M1}  { subclass( null_class, X ) }.
% 0.75/1.32  parent0[0]: (32) {G0,W3,D2,L1,V1,M1} I { ! member( X, null_class ) }.
% 0.75/1.32  parent1[0]: (2) {G0,W8,D3,L2,V2,M2} I { member( skol1( X, Y ), X ), 
% 0.75/1.32    subclass( X, Y ) }.
% 0.75/1.32  substitution0:
% 0.75/1.32     X := skol1( null_class, X )
% 0.75/1.32  end
% 0.75/1.32  substitution1:
% 0.75/1.32     X := null_class
% 0.75/1.32     Y := X
% 0.75/1.32  end
% 0.75/1.32  
% 0.75/1.32  subsumption: (126) {G1,W3,D2,L1,V1,M1} R(2,32) { subclass( null_class, X )
% 0.75/1.32     }.
% 0.75/1.32  parent0: (377) {G1,W3,D2,L1,V1,M1}  { subclass( null_class, X ) }.
% 0.75/1.32  substitution0:
% 0.75/1.32     X := X
% 0.75/1.32  end
% 0.75/1.32  permutation0:
% 0.75/1.32     0 ==> 0
% 0.75/1.32  end
% 0.75/1.32  
% 0.75/1.32  resolution: (378) {G1,W3,D2,L1,V1,M1}  { subclass( skol8, X ) }.
% 0.75/1.32  parent0[0]: (93) {G0,W3,D2,L1,V1,M1} I { ! member( X, skol8 ) }.
% 0.75/1.32  parent1[0]: (2) {G0,W8,D3,L2,V2,M2} I { member( skol1( X, Y ), X ), 
% 0.75/1.32    subclass( X, Y ) }.
% 0.75/1.32  substitution0:
% 0.75/1.32     X := skol1( skol8, X )
% 0.75/1.32  end
% 0.75/1.32  substitution1:
% 0.75/1.32     X := skol8
% 0.75/1.32     Y := X
% 0.75/1.32  end
% 0.75/1.32  
% 0.75/1.32  subsumption: (127) {G1,W3,D2,L1,V1,M1} R(2,93) { subclass( skol8, X ) }.
% 0.75/1.32  parent0: (378) {G1,W3,D2,L1,V1,M1}  { subclass( skol8, X ) }.
% 0.75/1.32  substitution0:
% 0.75/1.32     X := X
% 0.75/1.32  end
% 0.75/1.32  permutation0:
% 0.75/1.32     0 ==> 0
% 0.75/1.32  end
% 0.75/1.32  
% 0.75/1.32  *** allocated 22500 integers for clauses
% 0.75/1.32  *** allocated 15000 integers for termspace/termends
% 0.75/1.32  *** allocated 22500 integers for termspace/termends
% 0.75/1.32  *** allocated 33750 integers for clauses
% 0.75/1.32  *** allocated 15000 integers for jCputime limit exceeded (core dumped)
%------------------------------------------------------------------------------