TSTP Solution File: SET018-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : SET018-1 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:12:48 EDT 2022

% Result   : Unsatisfiable 38.32s 38.55s
% Output   : Refutation 38.32s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   25
%            Number of leaves      :    9
% Syntax   : Number of clauses     :   62 (  22 unt;  16 nHn;  54 RR)
%            Number of literals    :  115 (  57 equ;  48 neg)
%            Maximal clause size   :    4 (   1 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   36 (   3 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ member(A,singleton_set(B))
    | A = B ),
    file('SET018-1.p',unknown),
    [] ).

cnf(2,axiom,
    ( ~ member(A,unordered_pair(B,C))
    | A = B
    | A = C ),
    file('SET018-1.p',unknown),
    [] ).

cnf(3,axiom,
    r1 != r2,
    file('SET018-1.p',unknown),
    [] ).

cnf(4,plain,
    r2 != r1,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[3])]),
    [iquote('copy,3,flip.1')] ).

cnf(5,plain,
    ( ~ member(A,unordered_pair(B,B))
    | A = B ),
    inference(factor,[status(thm)],[2]),
    [iquote('factor,2.2.3')] ).

cnf(6,axiom,
    A = A,
    file('SET018-1.p',unknown),
    [] ).

cnf(7,axiom,
    member(A,singleton_set(A)),
    file('SET018-1.p',unknown),
    [] ).

cnf(8,axiom,
    member(A,unordered_pair(A,B)),
    file('SET018-1.p',unknown),
    [] ).

cnf(9,axiom,
    member(A,unordered_pair(B,A)),
    file('SET018-1.p',unknown),
    [] ).

cnf(10,axiom,
    ordered_pair(A,B) = unordered_pair(singleton_set(A),unordered_pair(A,B)),
    file('SET018-1.p',unknown),
    [] ).

cnf(11,plain,
    unordered_pair(singleton_set(A),unordered_pair(A,B)) = ordered_pair(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(13,axiom,
    ordered_pair(m1,r1) = ordered_pair(m2,r2),
    file('SET018-1.p',unknown),
    [] ).

cnf(14,plain,
    ordered_pair(m2,r2) = ordered_pair(m1,r1),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[13])]),
    [iquote('copy,13,flip.1')] ).

cnf(54,plain,
    member(unordered_pair(A,B),ordered_pair(A,B)),
    inference(para_from,[status(thm),theory(equality)],[11,9]),
    [iquote('para_from,11.1.1,9.1.2')] ).

cnf(55,plain,
    member(singleton_set(A),ordered_pair(A,B)),
    inference(para_from,[status(thm),theory(equality)],[11,8]),
    [iquote('para_from,11.1.1,8.1.2')] ).

cnf(56,plain,
    ( ~ member(A,ordered_pair(B,C))
    | A = singleton_set(B)
    | A = unordered_pair(B,C) ),
    inference(para_from,[status(thm),theory(equality)],[11,2]),
    [iquote('para_from,11.1.1,2.1.2')] ).

cnf(61,plain,
    member(singleton_set(m2),ordered_pair(m1,r1)),
    inference(para_into,[status(thm),theory(equality)],[55,14]),
    [iquote('para_into,55.1.2,14.1.1')] ).

cnf(91,plain,
    member(unordered_pair(m2,r2),ordered_pair(m1,r1)),
    inference(para_into,[status(thm),theory(equality)],[54,14]),
    [iquote('para_into,54.1.2,14.1.1')] ).

cnf(3948,plain,
    ( singleton_set(m1) = unordered_pair(m2,r2)
    | unordered_pair(m2,r2) = unordered_pair(m1,r1) ),
    inference(flip,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[56,91])]),
    [iquote('hyper,56,91,flip.1')] ).

cnf(3949,plain,
    ( singleton_set(m2) = singleton_set(m1)
    | singleton_set(m2) = unordered_pair(m1,r1) ),
    inference(hyper,[status(thm)],[56,61]),
    [iquote('hyper,56,61')] ).

cnf(3961,plain,
    ( member(m2,singleton_set(m1))
    | singleton_set(m2) = unordered_pair(m1,r1) ),
    inference(para_from,[status(thm),theory(equality)],[3949,7]),
    [iquote('para_from,3949.1.1,7.1.2')] ).

cnf(3979,plain,
    ( singleton_set(m2) = unordered_pair(m1,r1)
    | m2 = m1 ),
    inference(hyper,[status(thm)],[3961,1]),
    [iquote('hyper,3961,1')] ).

cnf(4055,plain,
    ( member(m2,unordered_pair(m1,r1))
    | m2 = m1 ),
    inference(para_from,[status(thm),theory(equality)],[3979,7]),
    [iquote('para_from,3979.1.1,7.1.2')] ).

cnf(4066,plain,
    ( ~ member(A,unordered_pair(m1,r1))
    | A = m2
    | m2 = m1 ),
    inference(para_from,[status(thm),theory(equality)],[3979,1]),
    [iquote('para_from,3979.1.1,1.1.2')] ).

cnf(4069,plain,
    ( m2 = m1
    | r1 = m2 ),
    inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[4055,2])]),
    [iquote('hyper,4055,2,factor_simp')] ).

cnf(4095,plain,
    ( m2 = m1
    | A = m2
    | ~ member(r1,singleton_set(A)) ),
    inference(para_into,[status(thm),theory(equality)],[4069,1]),
    [iquote('para_into,4069.2.1,1.2.1')] ).

cnf(4337,plain,
    ( m2 = m1
    | A = m2
    | ~ member(m2,singleton_set(A)) ),
    inference(factor_simp,[status(thm)],[inference(unit_del,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[4095,4095]),7])]),
    [iquote('para_into,4095.3.1,4095.2.1,unit_del,7,factor_simp')] ).

cnf(4382,plain,
    ( r1 != m2
    | m2 = m1
    | ~ member(r1,singleton_set(r2)) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[4095,4])]),
    [iquote('para_from,4095.2.1,4.1.1,flip.1')] ).

cnf(4490,plain,
    ( A = m1
    | B = m2
    | ~ member(m2,singleton_set(B))
    | ~ member(m2,singleton_set(A)) ),
    inference(para_into,[status(thm),theory(equality)],[4337,1]),
    [iquote('para_into,4337.1.1,1.2.1')] ).

cnf(4495,plain,
    ( A = m1
    | A = m2
    | ~ member(m2,singleton_set(A)) ),
    inference(factor,[status(thm)],[4490]),
    [iquote('factor,4490.3.4')] ).

cnf(4547,plain,
    ( m2 = m1
    | ~ member(r1,singleton_set(r2)) ),
    inference(factor_simp,[status(thm)],[inference(unit_del,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[4382,4095]),6,7])]),
    [iquote('para_into,4382.1.1,4095.2.1,unit_del,6,7,factor_simp')] ).

cnf(4561,plain,
    ( m2 = m1
    | ~ member(m2,singleton_set(r2)) ),
    inference(factor_simp,[status(thm)],[inference(unit_del,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[4547,4095]),7])]),
    [iquote('para_into,4547.2.1,4095.2.1,unit_del,7,factor_simp')] ).

cnf(4579,plain,
    ( A = m1
    | ~ member(m2,singleton_set(r2))
    | ~ member(m2,singleton_set(A)) ),
    inference(para_into,[status(thm),theory(equality)],[4561,1]),
    [iquote('para_into,4561.1.1,1.2.1')] ).

cnf(4588,plain,
    ( r2 = m1
    | ~ member(m2,singleton_set(r2)) ),
    inference(factor,[status(thm)],[4579]),
    [iquote('factor,4579.2.3')] ).

cnf(4615,plain,
    ( r2 = m1
    | ~ member(m2,singleton_set(A))
    | ~ member(r2,singleton_set(A)) ),
    inference(para_into,[status(thm),theory(equality)],[4588,1]),
    [iquote('para_into,4588.2.2.1,1.2.1')] ).

cnf(4620,plain,
    ( ordered_pair(m2,m1) = ordered_pair(m1,r1)
    | ~ member(m2,singleton_set(r2)) ),
    inference(para_from,[status(thm),theory(equality)],[4588,14]),
    [iquote('para_from,4588.1.1,14.1.1.2')] ).

cnf(4621,plain,
    ( r1 != m1
    | ~ member(m2,singleton_set(r2)) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[4588,4])]),
    [iquote('para_from,4588.1.1,4.1.1,flip.1')] ).

cnf(4724,plain,
    m2 = m1,
    inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[4066,8])]),
    [iquote('hyper,4066,8,factor_simp')] ).

cnf(4759,plain,
    ( r1 != m1
    | ~ member(m1,singleton_set(r2)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4621]),4724]),
    [iquote('back_demod,4621,demod,4724')] ).

cnf(4760,plain,
    ( ordered_pair(m1,r1) = ordered_pair(m1,m1)
    | ~ member(m1,singleton_set(r2)) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4620]),4724,4724])]),
    [iquote('back_demod,4620,demod,4724,4724,flip.1')] ).

cnf(4764,plain,
    ( r2 = m1
    | ~ member(m1,singleton_set(A))
    | ~ member(r2,singleton_set(A)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4615]),4724]),
    [iquote('back_demod,4615,demod,4724')] ).

cnf(4779,plain,
    ( A = m1
    | ~ member(m1,singleton_set(A)) ),
    inference(factor_simp,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4495]),4724,4724])]),
    [iquote('back_demod,4495,demod,4724,4724,factor_simp')] ).

cnf(4836,plain,
    ( singleton_set(m1) = unordered_pair(m1,r2)
    | unordered_pair(m1,r2) = unordered_pair(m1,r1) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[3948]),4724,4724]),
    [iquote('back_demod,3948,demod,4724,4724')] ).

cnf(4901,plain,
    ( A = m1
    | ~ member(m1,unordered_pair(A,A)) ),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[4724,5]),4724]),
    [iquote('para_into,4723.1.1,5.2.1,demod,4724')] ).

cnf(4937,plain,
    ( ~ member(m1,singleton_set(r2))
    | ~ member(m1,singleton_set(r1)) ),
    inference(unit_del,[status(thm)],[inference(para_from,[status(thm),theory(equality)],[4779,4759]),6]),
    [iquote('para_from,4779.1.1,4759.1.1,unit_del,6')] ).

cnf(4990,plain,
    ( ~ member(m1,singleton_set(r2))
    | ~ member(m1,singleton_set(A))
    | ~ member(r1,unordered_pair(A,A)) ),
    inference(para_into,[status(thm),theory(equality)],[4937,5]),
    [iquote('para_into,4937.2.2.1,5.2.1')] ).

cnf(5002,plain,
    ( ~ member(m1,singleton_set(r2))
    | ~ member(r1,unordered_pair(r2,r2)) ),
    inference(factor,[status(thm)],[4990]),
    [iquote('factor,4990.1.2')] ).

cnf(5158,plain,
    ( ~ member(m1,singleton_set(r2))
    | ~ member(r1,unordered_pair(m1,r2)) ),
    inference(factor_simp,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[5002,4779])]),
    [iquote('para_into,5002.2.2.1,4779.1.1,factor_simp')] ).

cnf(5160,plain,
    ( ~ member(m1,singleton_set(r2))
    | ~ member(r1,unordered_pair(r2,m1)) ),
    inference(factor_simp,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[5002,4779])]),
    [iquote('para_into,5002.2.2.2,4779.1.1,factor_simp')] ).

cnf(5201,plain,
    ( ~ member(r1,unordered_pair(r2,m1))
    | ~ member(m1,unordered_pair(r2,r2)) ),
    inference(unit_del,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[5160,4901]),7]),
    [iquote('para_into,5160.1.2.1,4901.1.1,unit_del,7')] ).

cnf(5208,plain,
    ( member(unordered_pair(m1,r1),ordered_pair(m1,m1))
    | ~ member(m1,singleton_set(r2)) ),
    inference(para_from,[status(thm),theory(equality)],[4760,54]),
    [iquote('para_from,4760.1.1,54.1.2')] ).

cnf(5237,plain,
    ( member(unordered_pair(m1,r1),ordered_pair(m1,m1))
    | ~ member(m1,unordered_pair(r2,r2)) ),
    inference(unit_del,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[5208,4901]),7]),
    [iquote('para_into,5208.2.2.1,4901.1.1,unit_del,7')] ).

cnf(5275,plain,
    ( r2 = m1
    | unordered_pair(m1,r2) = unordered_pair(m1,r1) ),
    inference(unit_del,[status(thm)],[inference(para_from,[status(thm),theory(equality)],[4836,4764]),7,9]),
    [iquote('para_from,4836.1.1,4764.3.2,unit_del,7,9')] ).

cnf(5277,plain,
    ( ~ member(m1,singleton_set(r2))
    | singleton_set(m1) = unordered_pair(m1,r2) ),
    inference(unit_del,[status(thm)],[inference(para_from,[status(thm),theory(equality)],[4836,5158]),9]),
    [iquote('para_from,4836.2.1,5158.2.2,unit_del,9')] ).

cnf(5307,plain,
    ( member(r2,unordered_pair(m1,r1))
    | r2 = m1 ),
    inference(para_from,[status(thm),theory(equality)],[5275,9]),
    [iquote('para_from,5275.2.1,9.1.2')] ).

cnf(5309,plain,
    r2 = m1,
    inference(factor_simp,[status(thm)],[inference(unit_del,[status(thm)],[inference(hyper,[status(thm)],[5307,2]),4])]),
    [iquote('hyper,5307,2,unit_del,4,factor_simp')] ).

cnf(5324,plain,
    singleton_set(m1) = unordered_pair(m1,m1),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[5277]),5309,5309]),7]),
    [iquote('back_demod,5277,demod,5309,5309,unit_del,7')] ).

cnf(5335,plain,
    member(unordered_pair(m1,r1),ordered_pair(m1,m1)),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[5237]),5309,5309]),8]),
    [iquote('back_demod,5237,demod,5309,5309,unit_del,8')] ).

cnf(5340,plain,
    ~ member(r1,unordered_pair(m1,m1)),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[5201]),5309,5309,5309]),8]),
    [iquote('back_demod,5201,demod,5309,5309,5309,unit_del,8')] ).

cnf(5472,plain,
    unordered_pair(m1,r1) = unordered_pair(m1,m1),
    inference(factor_simp,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[5335,56]),5324])]),
    [iquote('hyper,5335,56,demod,5324,factor_simp')] ).

cnf(5494,plain,
    member(r1,unordered_pair(m1,m1)),
    inference(para_from,[status(thm),theory(equality)],[5472,9]),
    [iquote('para_from,5472.1.1,9.1.2')] ).

cnf(5495,plain,
    $false,
    inference(binary,[status(thm)],[5494,5340]),
    [iquote('binary,5494.1,5340.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : SET018-1 : TPTP v8.1.0. Released v1.0.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n020.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 10:55:38 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 38.32/38.55  ----- Otter 3.3f, August 2004 -----
% 38.32/38.55  The process was started by sandbox on n020.cluster.edu,
% 38.32/38.55  Wed Jul 27 10:55:38 2022
% 38.32/38.55  The command was "./otter".  The process ID is 2777.
% 38.32/38.55  
% 38.32/38.55  set(prolog_style_variables).
% 38.32/38.55  set(auto).
% 38.32/38.55     dependent: set(auto1).
% 38.32/38.55     dependent: set(process_input).
% 38.32/38.55     dependent: clear(print_kept).
% 38.32/38.55     dependent: clear(print_new_demod).
% 38.32/38.55     dependent: clear(print_back_demod).
% 38.32/38.55     dependent: clear(print_back_sub).
% 38.32/38.55     dependent: set(control_memory).
% 38.32/38.55     dependent: assign(max_mem, 12000).
% 38.32/38.55     dependent: assign(pick_given_ratio, 4).
% 38.32/38.55     dependent: assign(stats_level, 1).
% 38.32/38.55     dependent: assign(max_seconds, 10800).
% 38.32/38.55  clear(print_given).
% 38.32/38.55  
% 38.32/38.55  list(usable).
% 38.32/38.55  0 [] A=A.
% 38.32/38.55  0 [] member(X,singleton_set(X)).
% 38.32/38.55  0 [] -member(X,singleton_set(Y))|X=Y.
% 38.32/38.55  0 [] member(X,unordered_pair(X,Y)).
% 38.32/38.55  0 [] member(Y,unordered_pair(X,Y)).
% 38.32/38.55  0 [] -member(X,unordered_pair(Y,Z))|X=Y|X=Z.
% 38.32/38.55  0 [] ordered_pair(X,Y)=unordered_pair(singleton_set(X),unordered_pair(X,Y)).
% 38.32/38.55  0 [] ordered_pair(m1,r1)=ordered_pair(m2,r2).
% 38.32/38.55  0 [] r1!=r2.
% 38.32/38.55  end_of_list.
% 38.32/38.55  
% 38.32/38.55  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=3.
% 38.32/38.55  
% 38.32/38.55  This ia a non-Horn set with equality.  The strategy will be
% 38.32/38.55  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 38.32/38.55  deletion, with positive clauses in sos and nonpositive
% 38.32/38.55  clauses in usable.
% 38.32/38.55  
% 38.32/38.55     dependent: set(knuth_bendix).
% 38.32/38.55     dependent: set(anl_eq).
% 38.32/38.55     dependent: set(para_from).
% 38.32/38.55     dependent: set(para_into).
% 38.32/38.55     dependent: clear(para_from_right).
% 38.32/38.55     dependent: clear(para_into_right).
% 38.32/38.55     dependent: set(para_from_vars).
% 38.32/38.55     dependent: set(eq_units_both_ways).
% 38.32/38.55     dependent: set(dynamic_demod_all).
% 38.32/38.55     dependent: set(dynamic_demod).
% 38.32/38.55     dependent: set(order_eq).
% 38.32/38.55     dependent: set(back_demod).
% 38.32/38.55     dependent: set(lrpo).
% 38.32/38.55     dependent: set(hyper_res).
% 38.32/38.55     dependent: set(unit_deletion).
% 38.32/38.55     dependent: set(factor).
% 38.32/38.55  
% 38.32/38.55  ------------> process usable:
% 38.32/38.55  ** KEPT (pick-wt=7): 1 [] -member(A,singleton_set(B))|A=B.
% 38.32/38.55  ** KEPT (pick-wt=11): 2 [] -member(A,unordered_pair(B,C))|A=B|A=C.
% 38.32/38.55  ** KEPT (pick-wt=3): 4 [copy,3,flip.1] r2!=r1.
% 38.32/38.55  
% 38.32/38.55  ------------> process sos:
% 38.32/38.55  ** KEPT (pick-wt=3): 6 [] A=A.
% 38.32/38.55  ** KEPT (pick-wt=4): 7 [] member(A,singleton_set(A)).
% 38.32/38.55  ** KEPT (pick-wt=5): 8 [] member(A,unordered_pair(A,B)).
% 38.32/38.55  ** KEPT (pick-wt=5): 9 [] member(A,unordered_pair(B,A)).
% 38.32/38.55  ** KEPT (pick-wt=10): 11 [copy,10,flip.1] unordered_pair(singleton_set(A),unordered_pair(A,B))=ordered_pair(A,B).
% 38.32/38.55  ---> New Demodulator: 12 [new_demod,11] unordered_pair(singleton_set(A),unordered_pair(A,B))=ordered_pair(A,B).
% 38.32/38.55  ** KEPT (pick-wt=7): 14 [copy,13,flip.1] ordered_pair(m2,r2)=ordered_pair(m1,r1).
% 38.32/38.55  ---> New Demodulator: 15 [new_demod,14] ordered_pair(m2,r2)=ordered_pair(m1,r1).
% 38.32/38.55    Following clause subsumed by 6 during input processing: 0 [copy,6,flip.1] A=A.
% 38.32/38.55  >>>> Starting back demodulation with 12.
% 38.32/38.55  >>>> Starting back demodulation with 15.
% 38.32/38.55  
% 38.32/38.55  ======= end of input processing =======
% 38.32/38.55  
% 38.32/38.55  =========== start of search ===========
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Resetting weight limit to 15.
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Resetting weight limit to 15.
% 38.32/38.55  
% 38.32/38.55  sos_size=3827
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Resetting weight limit to 14.
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Resetting weight limit to 14.
% 38.32/38.55  
% 38.32/38.55  sos_size=4213
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Resetting weight limit to 13.
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Resetting weight limit to 13.
% 38.32/38.55  
% 38.32/38.55  sos_size=2140
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Resetting weight limit to 12.
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Resetting weight limit to 12.
% 38.32/38.55  
% 38.32/38.55  sos_size=2308
% 38.32/38.55  
% 38.32/38.55  -- HEY sandbox, WE HAVE A PROOF!! -- 
% 38.32/38.55  
% 38.32/38.55  ----> UNIT CONFLICT at  36.54 sec ----> 5495 [binary,5494.1,5340.1] $F.
% 38.32/38.55  
% 38.32/38.55  Length of proof is 52.  Level of proof is 24.
% 38.32/38.55  
% 38.32/38.55  ---------------- PROOF ----------------
% 38.32/38.55  % SZS status Unsatisfiable
% 38.32/38.55  % SZS output start Refutation
% See solution above
% 38.32/38.55  ------------ end of proof -------------
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Search stopped by max_proofs option.
% 38.32/38.55  
% 38.32/38.55  
% 38.32/38.55  Search stopped by max_proofs option.
% 38.32/38.55  
% 38.32/38.55  ============ end of search ============
% 38.32/38.55  
% 38.32/38.55  -------------- statistics -------------
% 38.32/38.55  clauses given                515
% 38.32/38.55  clauses generated         145908
% 38.32/38.55  clauses kept                5479
% 38.32/38.55  clauses forward subsumed    6902
% 38.32/38.55  clauses back subsumed        177
% 38.32/38.55  Kbytes malloced             5859
% 38.32/38.55  
% 38.32/38.55  ----------- times (seconds) -----------
% 38.32/38.55  user CPU time         36.54          (0 hr, 0 min, 36 sec)
% 38.32/38.55  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 38.32/38.55  wall-clock time       38             (0 hr, 0 min, 38 sec)
% 38.32/38.55  
% 38.32/38.55  That finishes the proof of the theorem.
% 38.32/38.55  
% 38.32/38.55  Process 2777 finished Wed Jul 27 10:56:16 2022
% 38.32/38.55  Otter interrupted
% 38.32/38.55  PROOF FOUND
%------------------------------------------------------------------------------