TSTP Solution File: SET018-1 by Gandalf---c-2.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Gandalf---c-2.6
% Problem  : SET018-1 : TPTP v3.4.2. Released v1.0.0.
% Transfm  : add_equality:r
% Format   : otter:hypothesis:set(auto),clear(print_given)
% Command  : gandalf-wrapper -time %d %s

% Computer : art02.cs.miami.edu
% Model    : i686 unknown
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1000MB
% OS       : Linux 2.4.22-21mdk-i686-up-4GB
% CPULimit : 600s

% Result   : Unsatisfiable 0.0s
% Output   : Assurance 0.0s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 
% Gandalf c-2.6 r1 starting to prove: /home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/SET/SET018-1+eq_r.in
% Using automatic strategy selection.
% Time limit in seconds: 600
% 
% prove-all-passes started
% 
% detected problem class: neq
% detected subclass: small
% 
% strategies selected: 
% (hyper 27 #f 3 5)
% (binary-unit 10 #f 3 5)
% (binary-double 10 #f 3 5)
% (binary-double 16 #f)
% (binary-double 10 #t)
% (binary 16 #t 3 5)
% (binary-order 27 #f 3 5)
% (binary-posweight-order 125 #f)
% (binary-posweight-lex-big-order 43 #f)
% (binary-posweight-lex-small-order 16 #f)
% (binary-order-sos 54 #t)
% (binary-unit-uniteq 54 #f)
% (binary-weightorder 65 #f)
% (binary-order 27 #f)
% (hyper-order 37 #f)
% (binary 63 #t)
% 
% 
% ********* EMPTY CLAUSE DERIVED *********
% 
% 
% timer checkpoints: c(9,40,0,18,0,0,26,50,0,35,0,0,47,50,0,56,0,0,70,50,0,79,0,0,95,50,0,104,0,0,122,50,0,131,0,0,151,50,0,160,0,0,182,50,0,191,0,0,215,50,1,224,0,1,250,50,1,259,0,1,287,50,1,296,0,1,326,50,1,335,0,1,367,50,2,376,0,2,410,50,3,419,0,3,455,50,3,464,0,3,502,50,4,511,0,4,551,50,5,560,0,5,602,50,6,611,0,6,655,50,7,664,0,7,710,50,9,710,40,9,719,0,9)
% 
% 
% START OF PROOF
% 712 [] member(X,singleton_set(X)).
% 713 [] -member(X,singleton_set(Y)) | equal(X,Y).
% 714 [] member(X,unordered_pair(X,Y)).
% 715 [] member(X,unordered_pair(Y,X)).
% 716 [] -member(X,unordered_pair(Y,Z)) | equal(X,Y) | equal(X,Z).
% 717 [] equal(ordered_pair(X,Y),unordered_pair(singleton_set(X),unordered_pair(X,Y))).
% 718 [] equal(ordered_pair(m1,r1),ordered_pair(m2,r2)).
% 719 [] -equal(r1,r2).
% 720 [input:716,factor] -member(X,unordered_pair(Y,Y)) | equal(X,Y).
% 722 [binary:719,713.2] -member(r1,singleton_set(r2)).
% 724 [binary:719,720.2] -member(r1,unordered_pair(r2,r2)).
% 725 [para:717.1.2,714.1.2] member(singleton_set(X),ordered_pair(X,Y)).
% 726 [para:717.1.2,715.1.2] member(unordered_pair(X,Y),ordered_pair(X,Y)).
% 730 [para:717.1.2,716.1.2] -member(X,ordered_pair(Y,Z)) | equal(X,unordered_pair(Y,Z)) | equal(X,singleton_set(Y)).
% 731 [para:718.1.2,725.1.2] member(singleton_set(m2),ordered_pair(m1,r1)).
% 732 [para:718.1.2,726.1.2] member(unordered_pair(m2,r2),ordered_pair(m1,r1)).
% 752 [para:730.3.2,712.1.2] -member(X,ordered_pair(Y,Z)) | equal(X,unordered_pair(Y,Z)) | member(Y,X).
% 754 [para:730.2.2,715.1.2] -member(X,ordered_pair(Y,Z)) | equal(X,singleton_set(Y)) | member(Z,X).
% 756 [para:730.3.2,722.1.2] -member(X,ordered_pair(r2,Y)) | equal(X,unordered_pair(r2,Y)) | -member(r1,X).
% 758 [para:730.2.2,717.1.2] -member(X,ordered_pair(singleton_set(Y),unordered_pair(Y,Z))) | equal(X,singleton_set(singleton_set(Y))) | equal(ordered_pair(Y,Z),X).
% 765 [binary:732,730] equal(unordered_pair(m2,r2),unordered_pair(m1,r1)) | equal(unordered_pair(m2,r2),singleton_set(m1)).
% 808 [para:752.2.2,714.1.2] -member(X,ordered_pair(Y,Z)) | member(Y,X).
% 819 [binary:731,808] member(m1,singleton_set(m2)).
% 821 [binary:713,819] equal(m1,m2).
% 823 [para:821.1.2,718.1.2.1] equal(ordered_pair(m1,r1),ordered_pair(m1,r2)).
% 850 [binary:732,754] equal(unordered_pair(m2,r2),singleton_set(m1)) | member(r1,unordered_pair(m2,r2)).
% 899 [para:756.2.2,724.1.2] -member(X,ordered_pair(r2,r2)) | -member(r1,X).
% 907 [binary:715,899.2] -member(unordered_pair(X,r1),ordered_pair(r2,r2)).
% 942 [para:758.3.1,718.1.2] -member(X,ordered_pair(singleton_set(m2),unordered_pair(m2,r2))) | equal(X,singleton_set(singleton_set(m2))) | equal(ordered_pair(m1,r1),X).
% 1154 [para:765.1.1,715.1.2] equal(unordered_pair(m2,r2),singleton_set(m1)) | member(r2,unordered_pair(m1,r1)).
% 1268 [para:850.1.1,715.1.2] member(r1,unordered_pair(m2,r2)) | member(r2,singleton_set(m1)).
% 1286 [para:1154.1.1,715.1.2] member(r2,unordered_pair(m1,r1)) | member(r2,singleton_set(m1)).
% 2104 [para:942.3.1,725.1.2] -member(X,ordered_pair(singleton_set(m2),unordered_pair(m2,r2))) | equal(X,singleton_set(singleton_set(m2))) | member(singleton_set(m1),X).
% 5251 [para:821.1.2,2104.2.2.1.1] -member(X,ordered_pair(singleton_set(m2),unordered_pair(m2,r2))) | equal(X,singleton_set(singleton_set(m1))) | member(singleton_set(m1),X).
% 5337 [para:5251.2.2,712.1.2] -member(X,ordered_pair(singleton_set(m2),unordered_pair(m2,r2))) | member(singleton_set(m1),X).
% 5340 [binary:725,5337] member(singleton_set(m1),singleton_set(singleton_set(m2))).
% 5343 [binary:713,5340] equal(singleton_set(m1),singleton_set(m2)).
% 5400 [para:5343.1.2,713.1.2] -member(X,singleton_set(m1)) | equal(X,m2).
% 5401 [para:5343.1.2,717.1.2.1] equal(ordered_pair(m2,X),unordered_pair(singleton_set(m1),unordered_pair(m2,X))).
% 5660 [para:821.1.2,5401.1.2.2.1,demod:717] equal(ordered_pair(m2,X),ordered_pair(m1,X)).
% 5774 [para:5660.1.1,726.1.2] member(unordered_pair(m2,X),ordered_pair(m1,X)).
% 5883 [para:5400.2.2,5660.1.1.1] equal(ordered_pair(X,Y),ordered_pair(m1,Y)) | -member(X,singleton_set(m1)).
% 5968 [para:5883.1.1,907.1.2,demod:823,slowcut:5774] -member(r2,singleton_set(m1)).
% 5997 [binary:1268.2,5968] member(r1,unordered_pair(m2,r2)).
% 5999 [binary:1286.2,5968] member(r2,unordered_pair(m1,r1)).
% 6108 [binary:716,5997,cut:719] equal(r1,m2).
% 6142 [para:6108.1.2,821.1.2] equal(m1,r1).
% 6143 [para:821.1.2,6108.1.2] equal(r1,m1).
% 7079 [para:6142.1.2,5999.1.2.2] member(r2,unordered_pair(m1,m1)).
% 7110 [binary:720,7079] equal(r2,m1).
% 7115 [para:7110.1.1,719.1.2,cut:6143] contradiction
% END OF PROOF
% 
% Proof found by the following strategy:
% 
% using binary resolution
% not using sos strategy
% using unit strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% clause length limited to 5
% clause depth limited to 3
% seconds given: 10
% 
% 
% ***GANDALF_FOUND_A_REFUTATION***
% 
% Global statistics over all passes: 
% 
%  given clauses:    2405
%  derived clauses:   30071
%  kept clauses:      5217
%  kept size sum:     101309
%  kept mid-nuclei:   0
%  kept new demods:   96
%  forw unit-subs:    11075
%  forw double-subs: 7563
%  forw overdouble-subs: 2783
%  backward subs:     774
%  fast unit cutoff:  22
%  full unit cutoff:  1
%  dbl  unit cutoff:  3
%  real runtime  :  1.51
%  process. runtime:  1.49
% specific non-discr-tree subsumption statistics: 
%  tried:           25152
%  length fails:    2008
%  strength fails:  8
%  predlist fails:  9123
%  aux str. fails:  102
%  by-lit fails:    4
%  full subs tried: 13783
%  full subs fail:  11011
% 
% ; program args: ("/home/graph/tptp/Systems/Gandalf---c-2.6/gandalf" "-time" "600" "/home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/SET/SET018-1+eq_r.in")
% 
%------------------------------------------------------------------------------