TSTP Solution File: SET016+4 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SET016+4 : TPTP v8.1.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 00:16:05 EDT 2022

% Result   : Theorem 3.03s 1.37s
% Output   : Proof 4.39s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SET016+4 : TPTP v8.1.0. Released v2.2.0.
% 0.03/0.13  % Command  : ePrincess-casc -timeout=%d %s
% 0.12/0.34  % Computer : n020.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Sun Jul 10 07:01:13 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.55/0.60          ____       _                          
% 0.55/0.60    ___  / __ \_____(_)___  ________  __________
% 0.55/0.60   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.55/0.60  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.55/0.60  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.55/0.60  
% 0.55/0.60  A Theorem Prover for First-Order Logic
% 0.55/0.60  (ePrincess v.1.0)
% 0.55/0.60  
% 0.55/0.60  (c) Philipp Rümmer, 2009-2015
% 0.55/0.60  (c) Peter Backeman, 2014-2015
% 0.55/0.60  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.55/0.60  Free software under GNU Lesser General Public License (LGPL).
% 0.55/0.60  Bug reports to peter@backeman.se
% 0.55/0.60  
% 0.55/0.60  For more information, visit http://user.uu.se/~petba168/breu/
% 0.55/0.60  
% 0.55/0.60  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.71/0.65  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.56/0.94  Prover 0: Preprocessing ...
% 1.96/1.14  Prover 0: Warning: ignoring some quantifiers
% 2.18/1.17  Prover 0: Constructing countermodel ...
% 3.03/1.37  Prover 0: proved (713ms)
% 3.03/1.37  
% 3.03/1.37  No countermodel exists, formula is valid
% 3.03/1.37  % SZS status Theorem for theBenchmark
% 3.03/1.37  
% 3.03/1.37  Generating proof ... Warning: ignoring some quantifiers
% 3.85/1.59  found it (size 52)
% 3.85/1.59  
% 3.85/1.59  % SZS output start Proof for theBenchmark
% 3.85/1.59  Assumed formulas after preprocessing and simplification: 
% 3.85/1.60  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] :  ? [v8] :  ? [v9] : ( ~ (v2 = v0) & unordered_pair(v7, v8) = v9 & unordered_pair(v4, v5) = v6 & unordered_pair(v2, v3) = v8 & unordered_pair(v0, v1) = v5 & singleton(v2) = v7 & singleton(v0) = v4 & equal_set(v6, v9) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v12 = v10 | v11 = v10 |  ~ (unordered_pair(v11, v12) = v13) |  ~ member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (unordered_pair(v13, v12) = v11) |  ~ (unordered_pair(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (difference(v13, v12) = v11) |  ~ (difference(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (union(v13, v12) = v11) |  ~ (union(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (intersection(v13, v12) = v11) |  ~ (intersection(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (product(v11) = v12) |  ~ member(v13, v11) |  ~ member(v10, v12) | member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (sum(v11) = v12) |  ~ member(v13, v11) |  ~ member(v10, v13) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (difference(v12, v11) = v13) |  ~ member(v10, v13) |  ~ member(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (difference(v12, v11) = v13) |  ~ member(v10, v13) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (difference(v12, v11) = v13) |  ~ member(v10, v12) | member(v10, v13) | member(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (union(v11, v12) = v13) |  ~ member(v10, v13) | member(v10, v12) | member(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (union(v11, v12) = v13) |  ~ member(v10, v12) | member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (union(v11, v12) = v13) |  ~ member(v10, v11) | member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (intersection(v11, v12) = v13) |  ~ member(v10, v13) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (intersection(v11, v12) = v13) |  ~ member(v10, v13) | member(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (intersection(v11, v12) = v13) |  ~ member(v10, v12) |  ~ member(v10, v11) | member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (product(v12) = v11) |  ~ (product(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (sum(v12) = v11) |  ~ (sum(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (singleton(v12) = v11) |  ~ (singleton(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (singleton(v11) = v12) |  ~ member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (power_set(v12) = v11) |  ~ (power_set(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (sum(v11) = v12) |  ~ member(v10, v12) |  ? [v13] : (member(v13, v11) & member(v10, v13))) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (unordered_pair(v11, v10) = v12) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (unordered_pair(v10, v11) = v12) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (power_set(v11) = v12) |  ~ member(v10, v12) | subset(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (power_set(v11) = v12) |  ~ subset(v10, v11) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ member(v12, v10) |  ~ subset(v10, v11) | member(v12, v11)) &  ? [v10] :  ! [v11] :  ! [v12] : ( ~ (product(v11) = v12) | member(v10, v12) |  ? [v13] : (member(v13, v11) &  ~ member(v10, v13))) &  ! [v10] :  ! [v11] : ( ~ (singleton(v10) = v11) | member(v10, v11)) &  ! [v10] :  ! [v11] : ( ~ equal_set(v10, v11) | subset(v11, v10)) &  ! [v10] :  ! [v11] : ( ~ equal_set(v10, v11) | subset(v10, v11)) &  ! [v10] :  ! [v11] : ( ~ subset(v11, v10) |  ~ subset(v10, v11) | equal_set(v10, v11)) &  ! [v10] :  ~ member(v10, empty_set) &  ? [v10] :  ? [v11] : (subset(v10, v11) |  ? [v12] : (member(v12, v10) &  ~ member(v12, v11))))
% 4.18/1.64  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9 yields:
% 4.18/1.64  | (1)  ~ (all_0_7_7 = all_0_9_9) & unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0 & unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3 & unordered_pair(all_0_7_7, all_0_6_6) = all_0_1_1 & unordered_pair(all_0_9_9, all_0_8_8) = all_0_4_4 & singleton(all_0_7_7) = all_0_2_2 & singleton(all_0_9_9) = all_0_5_5 & equal_set(all_0_3_3, all_0_0_0) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (product(v1) = v2) |  ~ member(v3, v1) |  ~ member(v0, v2) | member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (sum(v1) = v2) |  ~ member(v3, v1) |  ~ member(v0, v3) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v3) |  ~ member(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v3) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v2) | member(v0, v3) | member(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v2) | member(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v2) | member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v1) | member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v2) |  ~ member(v0, v1) | member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ member(v0, v2) |  ? [v3] : (member(v3, v1) & member(v0, v3))) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ member(v0, v2) | subset(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ subset(v0, v1) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ member(v2, v0) |  ~ subset(v0, v1) | member(v2, v1)) &  ? [v0] :  ! [v1] :  ! [v2] : ( ~ (product(v1) = v2) | member(v0, v2) |  ? [v3] : (member(v3, v1) &  ~ member(v0, v3))) &  ! [v0] :  ! [v1] : ( ~ (singleton(v0) = v1) | member(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ equal_set(v0, v1) | subset(v1, v0)) &  ! [v0] :  ! [v1] : ( ~ equal_set(v0, v1) | subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ subset(v1, v0) |  ~ subset(v0, v1) | equal_set(v0, v1)) &  ! [v0] :  ~ member(v0, empty_set) &  ? [v0] :  ? [v1] : (subset(v0, v1) |  ? [v2] : (member(v2, v0) &  ~ member(v2, v1)))
% 4.18/1.65  |
% 4.18/1.65  | Applying alpha-rule on (1) yields:
% 4.18/1.65  | (2)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v1))
% 4.18/1.65  | (3) unordered_pair(all_0_7_7, all_0_6_6) = all_0_1_1
% 4.18/1.65  | (4)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0))
% 4.18/1.65  | (5)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (product(v1) = v2) |  ~ member(v3, v1) |  ~ member(v0, v2) | member(v0, v3))
% 4.18/1.65  | (6)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ member(v2, v0) |  ~ subset(v0, v1) | member(v2, v1))
% 4.18/1.65  | (7)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0))
% 4.18/1.65  | (8) singleton(all_0_9_9) = all_0_5_5
% 4.18/1.65  | (9)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0))
% 4.18/1.65  | (10)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0))
% 4.18/1.65  | (11)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v2))
% 4.18/1.65  | (12) equal_set(all_0_3_3, all_0_0_0)
% 4.18/1.65  | (13)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v1) | member(v0, v3))
% 4.18/1.65  | (14)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (sum(v1) = v2) |  ~ member(v3, v1) |  ~ member(v0, v3) | member(v0, v2))
% 4.18/1.65  | (15)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v2) | member(v0, v3))
% 4.18/1.65  | (16)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v2) | member(v0, v1))
% 4.18/1.65  | (17)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0))
% 4.18/1.65  | (18)  ? [v0] :  ? [v1] : (subset(v0, v1) |  ? [v2] : (member(v2, v0) &  ~ member(v2, v1)))
% 4.18/1.65  | (19)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ member(v0, v2))
% 4.18/1.65  | (20) singleton(all_0_7_7) = all_0_2_2
% 4.18/1.65  | (21)  ! [v0] :  ! [v1] : ( ~ (singleton(v0) = v1) | member(v0, v1))
% 4.18/1.65  | (22)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v3) | member(v0, v2))
% 4.18/1.65  | (23)  ? [v0] :  ! [v1] :  ! [v2] : ( ~ (product(v1) = v2) | member(v0, v2) |  ? [v3] : (member(v3, v1) &  ~ member(v0, v3)))
% 4.18/1.66  | (24)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ member(v0, v2) |  ? [v3] : (member(v3, v1) & member(v0, v3)))
% 4.18/1.66  | (25)  ! [v0] :  ! [v1] : ( ~ equal_set(v0, v1) | subset(v0, v1))
% 4.18/1.66  | (26)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 4.18/1.66  | (27)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v2) |  ~ member(v0, v1) | member(v0, v3))
% 4.18/1.66  | (28) unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0
% 4.18/1.66  | (29)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | member(v0, v2))
% 4.18/1.66  | (30)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0))
% 4.18/1.66  | (31) unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3
% 4.18/1.66  | (32) unordered_pair(all_0_9_9, all_0_8_8) = all_0_4_4
% 4.18/1.66  | (33)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ subset(v0, v1) | member(v0, v2))
% 4.18/1.66  | (34)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ member(v0, v2) | subset(v0, v1))
% 4.18/1.66  | (35)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v2) | member(v0, v3) | member(v0, v1))
% 4.18/1.66  | (36)  ~ (all_0_7_7 = all_0_9_9)
% 4.18/1.66  | (37)  ! [v0] :  ~ member(v0, empty_set)
% 4.18/1.66  | (38)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | member(v0, v2))
% 4.18/1.66  | (39)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ member(v0, v3))
% 4.18/1.66  | (40)  ! [v0] :  ! [v1] : ( ~ subset(v1, v0) |  ~ subset(v0, v1) | equal_set(v0, v1))
% 4.18/1.66  | (41)  ! [v0] :  ! [v1] : ( ~ equal_set(v0, v1) | subset(v1, v0))
% 4.18/1.66  | (42)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v3) |  ~ member(v0, v1))
% 4.18/1.66  | (43)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0))
% 4.18/1.66  |
% 4.18/1.66  | Instantiating formula (29) with all_0_0_0, all_0_2_2, all_0_1_1 and discharging atoms unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0, yields:
% 4.18/1.66  | (44) member(all_0_1_1, all_0_0_0)
% 4.18/1.66  |
% 4.18/1.66  | Instantiating formula (38) with all_0_0_0, all_0_1_1, all_0_2_2 and discharging atoms unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0, yields:
% 4.18/1.66  | (45) member(all_0_2_2, all_0_0_0)
% 4.18/1.66  |
% 4.18/1.66  | Instantiating formula (29) with all_0_3_3, all_0_5_5, all_0_4_4 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, yields:
% 4.18/1.66  | (46) member(all_0_4_4, all_0_3_3)
% 4.18/1.66  |
% 4.18/1.66  | Instantiating formula (38) with all_0_3_3, all_0_4_4, all_0_5_5 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, yields:
% 4.18/1.66  | (47) member(all_0_5_5, all_0_3_3)
% 4.18/1.66  |
% 4.18/1.66  | Instantiating formula (38) with all_0_1_1, all_0_6_6, all_0_7_7 and discharging atoms unordered_pair(all_0_7_7, all_0_6_6) = all_0_1_1, yields:
% 4.18/1.66  | (48) member(all_0_7_7, all_0_1_1)
% 4.18/1.66  |
% 4.18/1.66  | Instantiating formula (21) with all_0_2_2, all_0_7_7 and discharging atoms singleton(all_0_7_7) = all_0_2_2, yields:
% 4.18/1.66  | (49) member(all_0_7_7, all_0_2_2)
% 4.18/1.66  |
% 4.18/1.66  | Instantiating formula (41) with all_0_0_0, all_0_3_3 and discharging atoms equal_set(all_0_3_3, all_0_0_0), yields:
% 4.18/1.66  | (50) subset(all_0_0_0, all_0_3_3)
% 4.18/1.66  |
% 4.18/1.66  | Instantiating formula (25) with all_0_0_0, all_0_3_3 and discharging atoms equal_set(all_0_3_3, all_0_0_0), yields:
% 4.18/1.66  | (51) subset(all_0_3_3, all_0_0_0)
% 4.18/1.66  |
% 4.18/1.66  | Instantiating formula (6) with all_0_1_1, all_0_3_3, all_0_0_0 and discharging atoms member(all_0_1_1, all_0_0_0), subset(all_0_0_0, all_0_3_3), yields:
% 4.18/1.67  | (52) member(all_0_1_1, all_0_3_3)
% 4.18/1.67  |
% 4.18/1.67  | Instantiating formula (6) with all_0_2_2, all_0_3_3, all_0_0_0 and discharging atoms member(all_0_2_2, all_0_0_0), subset(all_0_0_0, all_0_3_3), yields:
% 4.18/1.67  | (53) member(all_0_2_2, all_0_3_3)
% 4.18/1.67  |
% 4.18/1.67  | Instantiating formula (6) with all_0_4_4, all_0_0_0, all_0_3_3 and discharging atoms member(all_0_4_4, all_0_3_3), subset(all_0_3_3, all_0_0_0), yields:
% 4.18/1.67  | (54) member(all_0_4_4, all_0_0_0)
% 4.18/1.67  |
% 4.18/1.67  | Instantiating formula (6) with all_0_5_5, all_0_0_0, all_0_3_3 and discharging atoms member(all_0_5_5, all_0_3_3), subset(all_0_3_3, all_0_0_0), yields:
% 4.18/1.67  | (55) member(all_0_5_5, all_0_0_0)
% 4.18/1.67  |
% 4.18/1.67  | Instantiating formula (39) with all_0_3_3, all_0_4_4, all_0_5_5, all_0_1_1 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, member(all_0_1_1, all_0_3_3), yields:
% 4.18/1.67  | (56) all_0_1_1 = all_0_4_4 | all_0_1_1 = all_0_5_5
% 4.18/1.67  |
% 4.18/1.67  | Instantiating formula (39) with all_0_3_3, all_0_4_4, all_0_5_5, all_0_2_2 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, member(all_0_2_2, all_0_3_3), yields:
% 4.18/1.67  | (57) all_0_2_2 = all_0_4_4 | all_0_2_2 = all_0_5_5
% 4.18/1.67  |
% 4.18/1.67  | Instantiating formula (39) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_4_4 and discharging atoms unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0, member(all_0_4_4, all_0_0_0), yields:
% 4.18/1.67  | (58) all_0_1_1 = all_0_4_4 | all_0_2_2 = all_0_4_4
% 4.18/1.67  |
% 4.18/1.67  | Instantiating formula (39) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_5_5 and discharging atoms unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0, member(all_0_5_5, all_0_0_0), yields:
% 4.18/1.67  | (59) all_0_1_1 = all_0_5_5 | all_0_2_2 = all_0_5_5
% 4.18/1.67  |
% 4.18/1.67  +-Applying beta-rule and splitting (58), into two cases.
% 4.18/1.67  |-Branch one:
% 4.18/1.67  | (60) all_0_1_1 = all_0_4_4
% 4.18/1.67  |
% 4.18/1.67  	| From (60) and (48) follows:
% 4.18/1.67  	| (61) member(all_0_7_7, all_0_4_4)
% 4.18/1.67  	|
% 4.18/1.67  	| Instantiating formula (39) with all_0_4_4, all_0_8_8, all_0_9_9, all_0_7_7 and discharging atoms unordered_pair(all_0_9_9, all_0_8_8) = all_0_4_4, member(all_0_7_7, all_0_4_4), yields:
% 4.18/1.67  	| (62) all_0_7_7 = all_0_8_8 | all_0_7_7 = all_0_9_9
% 4.18/1.67  	|
% 4.18/1.67  	+-Applying beta-rule and splitting (59), into two cases.
% 4.18/1.67  	|-Branch one:
% 4.18/1.67  	| (63) all_0_1_1 = all_0_5_5
% 4.18/1.67  	|
% 4.18/1.67  		| Combining equations (63,60) yields a new equation:
% 4.18/1.67  		| (64) all_0_4_4 = all_0_5_5
% 4.18/1.67  		|
% 4.18/1.67  		+-Applying beta-rule and splitting (57), into two cases.
% 4.18/1.67  		|-Branch one:
% 4.18/1.67  		| (65) all_0_2_2 = all_0_4_4
% 4.18/1.67  		|
% 4.18/1.67  			| Combining equations (64,65) yields a new equation:
% 4.18/1.67  			| (66) all_0_2_2 = all_0_5_5
% 4.18/1.67  			|
% 4.18/1.67  			| From (66) and (49) follows:
% 4.18/1.67  			| (67) member(all_0_7_7, all_0_5_5)
% 4.18/1.67  			|
% 4.18/1.67  			+-Applying beta-rule and splitting (62), into two cases.
% 4.18/1.67  			|-Branch one:
% 4.18/1.67  			| (68) all_0_7_7 = all_0_8_8
% 4.18/1.67  			|
% 4.18/1.67  				| Equations (68) can reduce 36 to:
% 4.18/1.67  				| (69)  ~ (all_0_8_8 = all_0_9_9)
% 4.18/1.67  				|
% 4.18/1.67  				| From (68) and (67) follows:
% 4.18/1.67  				| (70) member(all_0_8_8, all_0_5_5)
% 4.18/1.67  				|
% 4.18/1.67  				| Instantiating formula (19) with all_0_5_5, all_0_9_9, all_0_8_8 and discharging atoms singleton(all_0_9_9) = all_0_5_5, member(all_0_8_8, all_0_5_5), yields:
% 4.18/1.67  				| (71) all_0_8_8 = all_0_9_9
% 4.18/1.67  				|
% 4.18/1.67  				| Equations (71) can reduce 69 to:
% 4.18/1.67  				| (72) $false
% 4.18/1.67  				|
% 4.18/1.67  				|-The branch is then unsatisfiable
% 4.18/1.67  			|-Branch two:
% 4.18/1.67  			| (73)  ~ (all_0_7_7 = all_0_8_8)
% 4.18/1.67  			| (74) all_0_7_7 = all_0_9_9
% 4.18/1.67  			|
% 4.18/1.67  				| Equations (74) can reduce 36 to:
% 4.18/1.67  				| (72) $false
% 4.18/1.67  				|
% 4.18/1.67  				|-The branch is then unsatisfiable
% 4.18/1.67  		|-Branch two:
% 4.18/1.67  		| (76)  ~ (all_0_2_2 = all_0_4_4)
% 4.18/1.67  		| (66) all_0_2_2 = all_0_5_5
% 4.18/1.67  		|
% 4.18/1.67  			| Equations (66,64) can reduce 76 to:
% 4.18/1.67  			| (72) $false
% 4.18/1.68  			|
% 4.18/1.68  			|-The branch is then unsatisfiable
% 4.18/1.68  	|-Branch two:
% 4.18/1.68  	| (79)  ~ (all_0_1_1 = all_0_5_5)
% 4.18/1.68  	| (66) all_0_2_2 = all_0_5_5
% 4.18/1.68  	|
% 4.18/1.68  		| From (66) and (49) follows:
% 4.18/1.68  		| (67) member(all_0_7_7, all_0_5_5)
% 4.18/1.68  		|
% 4.18/1.68  		+-Applying beta-rule and splitting (62), into two cases.
% 4.18/1.68  		|-Branch one:
% 4.18/1.68  		| (68) all_0_7_7 = all_0_8_8
% 4.18/1.68  		|
% 4.18/1.68  			| Equations (68) can reduce 36 to:
% 4.18/1.68  			| (69)  ~ (all_0_8_8 = all_0_9_9)
% 4.18/1.68  			|
% 4.18/1.68  			| From (68) and (67) follows:
% 4.18/1.68  			| (70) member(all_0_8_8, all_0_5_5)
% 4.18/1.68  			|
% 4.18/1.68  			| Instantiating formula (19) with all_0_5_5, all_0_9_9, all_0_8_8 and discharging atoms singleton(all_0_9_9) = all_0_5_5, member(all_0_8_8, all_0_5_5), yields:
% 4.18/1.68  			| (71) all_0_8_8 = all_0_9_9
% 4.18/1.68  			|
% 4.18/1.68  			| Equations (71) can reduce 69 to:
% 4.18/1.68  			| (72) $false
% 4.18/1.68  			|
% 4.18/1.68  			|-The branch is then unsatisfiable
% 4.18/1.68  		|-Branch two:
% 4.18/1.68  		| (73)  ~ (all_0_7_7 = all_0_8_8)
% 4.18/1.68  		| (74) all_0_7_7 = all_0_9_9
% 4.18/1.68  		|
% 4.18/1.68  			| Equations (74) can reduce 36 to:
% 4.18/1.68  			| (72) $false
% 4.18/1.68  			|
% 4.18/1.68  			|-The branch is then unsatisfiable
% 4.18/1.68  |-Branch two:
% 4.18/1.68  | (90)  ~ (all_0_1_1 = all_0_4_4)
% 4.18/1.68  | (65) all_0_2_2 = all_0_4_4
% 4.18/1.68  |
% 4.18/1.68  	+-Applying beta-rule and splitting (56), into two cases.
% 4.18/1.68  	|-Branch one:
% 4.18/1.68  	| (60) all_0_1_1 = all_0_4_4
% 4.18/1.68  	|
% 4.18/1.68  		| Equations (60) can reduce 90 to:
% 4.18/1.68  		| (72) $false
% 4.18/1.68  		|
% 4.18/1.68  		|-The branch is then unsatisfiable
% 4.18/1.68  	|-Branch two:
% 4.18/1.68  	| (90)  ~ (all_0_1_1 = all_0_4_4)
% 4.18/1.68  	| (63) all_0_1_1 = all_0_5_5
% 4.39/1.68  	|
% 4.39/1.68  		| From (63) and (48) follows:
% 4.39/1.68  		| (67) member(all_0_7_7, all_0_5_5)
% 4.39/1.68  		|
% 4.39/1.68  		| Instantiating formula (19) with all_0_5_5, all_0_9_9, all_0_7_7 and discharging atoms singleton(all_0_9_9) = all_0_5_5, member(all_0_7_7, all_0_5_5), yields:
% 4.39/1.68  		| (74) all_0_7_7 = all_0_9_9
% 4.39/1.68  		|
% 4.39/1.68  		| Equations (74) can reduce 36 to:
% 4.39/1.68  		| (72) $false
% 4.39/1.68  		|
% 4.39/1.68  		|-The branch is then unsatisfiable
% 4.39/1.68  % SZS output end Proof for theBenchmark
% 4.39/1.68  
% 4.39/1.68  1068ms
%------------------------------------------------------------------------------