TSTP Solution File: RNG116+4 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : RNG116+4 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:59:23 EDT 2023

% Result   : Theorem 63.81s 8.65s
% Output   : Proof 63.81s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : RNG116+4 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.12/0.34  % Computer : n027.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Sun Aug 27 02:41:20 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 63.81/8.65  Command-line arguments: --flip-ordering --lhs-weight 1 --depth-weight 60 --distributivity-heuristic
% 63.81/8.65  
% 63.81/8.65  % SZS status Theorem
% 63.81/8.65  
% 63.81/8.65  % SZS output start Proof
% 63.81/8.65  Take the following subset of the input axioms:
% 63.81/8.66    fof(m__, conjecture, ?[W0, W1]: (aElement0(W0) & (aElement0(W1) & xu=sdtpldt0(sdtasdt0(xa, W0), sdtasdt0(xb, W1))))).
% 63.81/8.66    fof(m__2129, hypothesis, aElement0(xc) & (?[W0_2]: (aElement0(W0_2) & sdtasdt0(xc, W0_2)=xa) & (doDivides0(xc, xa) & (aDivisorOf0(xc, xa) & (aElement0(xc) & (?[W0_2]: (aElement0(W0_2) & sdtasdt0(xc, W0_2)=xb) & (doDivides0(xc, xb) & (aDivisorOf0(xc, xb) & (![W0_2]: ((((aElement0(W0_2) & (?[W1_2]: (aElement0(W1_2) & sdtasdt0(W0_2, W1_2)=xa) | doDivides0(W0_2, xa))) | aDivisorOf0(W0_2, xa)) & (?[W1_2]: (aElement0(W1_2) & sdtasdt0(W0_2, W1_2)=xb) | (doDivides0(W0_2, xb) | aDivisorOf0(W0_2, xb)))) => (?[W1_2]: (aElement0(W1_2) & sdtasdt0(W0_2, W1_2)=xc) & doDivides0(W0_2, xc))) & aGcdOfAnd0(xc, xa, xb)))))))))).
% 63.81/8.66    fof(m__2383, hypothesis, ~((?[W0_2]: (aElement0(W0_2) & sdtasdt0(xu, W0_2)=xa) | (doDivides0(xu, xa) | aDivisorOf0(xu, xa))) & (?[W0_2]: (aElement0(W0_2) & sdtasdt0(xu, W0_2)=xb) | (doDivides0(xu, xb) | aDivisorOf0(xu, xb))))).
% 63.81/8.66    fof(m__2456, hypothesis, ?[W0_2]: (aElement0(W0_2) & sdtasdt0(xa, W0_2)=xk) & (aElementOf0(xk, slsdtgt0(xa)) & (?[W0_2]: (aElement0(W0_2) & sdtasdt0(xb, W0_2)=xl) & (aElementOf0(xl, slsdtgt0(xb)) & xu=sdtpldt0(xk, xl))))).
% 63.81/8.66  
% 63.81/8.66  Now clausify the problem and encode Horn clauses using encoding 3 of
% 63.81/8.66  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 63.81/8.66  We repeatedly replace C & s=t => u=v by the two clauses:
% 63.81/8.66    fresh(y, y, x1...xn) = u
% 63.81/8.66    C => fresh(s, t, x1...xn) = v
% 63.81/8.66  where fresh is a fresh function symbol and x1..xn are the free
% 63.81/8.66  variables of u and v.
% 63.81/8.66  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 63.81/8.66  input problem has no model of domain size 1).
% 63.81/8.66  
% 63.81/8.66  The encoding turns the above axioms into the following unit equations and goals:
% 63.81/8.66  
% 63.81/8.66  Axiom 1 (m__2456_3): aElement0(w0_2) = true2.
% 63.81/8.66  Axiom 2 (m__2456_4): aElement0(w0) = true2.
% 63.81/8.66  Axiom 3 (m__2456_2): sdtasdt0(xb, w0) = xl.
% 63.81/8.66  Axiom 4 (m__2456_1): sdtasdt0(xa, w0_2) = xk.
% 63.81/8.66  Axiom 5 (m__2456): xu = sdtpldt0(xk, xl).
% 63.81/8.66  
% 63.81/8.66  Goal 1 (m__): tuple4(xu, aElement0(X), aElement0(Y)) = tuple4(sdtpldt0(sdtasdt0(xa, X), sdtasdt0(xb, Y)), true2, true2).
% 63.81/8.66  The goal is true when:
% 63.81/8.66    X = w0_2
% 63.81/8.66    Y = w0
% 63.81/8.66  
% 63.81/8.66  Proof:
% 63.81/8.66    tuple4(xu, aElement0(w0_2), aElement0(w0))
% 63.81/8.66  = { by axiom 1 (m__2456_3) }
% 63.81/8.66    tuple4(xu, true2, aElement0(w0))
% 63.81/8.66  = { by axiom 2 (m__2456_4) }
% 63.81/8.66    tuple4(xu, true2, true2)
% 63.81/8.66  = { by axiom 5 (m__2456) }
% 63.81/8.66    tuple4(sdtpldt0(xk, xl), true2, true2)
% 63.81/8.66  = { by axiom 3 (m__2456_2) R->L }
% 63.81/8.66    tuple4(sdtpldt0(xk, sdtasdt0(xb, w0)), true2, true2)
% 63.81/8.66  = { by axiom 4 (m__2456_1) R->L }
% 63.81/8.66    tuple4(sdtpldt0(sdtasdt0(xa, w0_2), sdtasdt0(xb, w0)), true2, true2)
% 63.81/8.66  % SZS output end Proof
% 63.81/8.66  
% 63.81/8.66  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------