TSTP Solution File: RNG071+2 by E---3.1.00

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E---3.1.00
% Problem  : RNG071+2 : TPTP v8.2.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n010.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Tue May 21 02:36:11 EDT 2024

% Result   : Theorem 0.20s 0.50s
% Output   : CNFRefutation 0.20s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    8
%            Number of leaves      :   20
% Syntax   : Number of formulae    :   74 (  33 unt;   0 def)
%            Number of atoms       :  181 (  27 equ)
%            Maximal formula atoms :   10 (   2 avg)
%            Number of connectives :  176 (  69   ~;  61   |;  35   &)
%                                         (   0 <=>;  11  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   12 (   3 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    6 (   4 usr;   1 prp; 0-2 aty)
%            Number of functors    :   23 (  23 usr;  16 con; 0-2 aty)
%            Number of variables   :   48 (   0 sgn  30   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(mScSqPos,axiom,
    ! [X1] :
      ( aVector0(X1)
     => sdtlseqdt0(sz0z00,sdtasasdt0(X1,X1)) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',mScSqPos) ).

fof(m__1726,hypothesis,
    ( aVector0(xq)
    & szszuzczcdt0(aDimensionOf0(xq)) = aDimensionOf0(xt)
    & ! [X1] :
        ( aNaturalNumber0(X1)
       => sdtlbdtrb0(xq,X1) = sdtlbdtrb0(xt,X1) )
    & xq = sziznziztdt0(xt) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1726) ).

fof(mSqPos,axiom,
    ! [X1] :
      ( aScalar0(X1)
     => sdtlseqdt0(sz0z00,sdtasdt0(X1,X1)) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',mSqPos) ).

fof(m__1709,hypothesis,
    ( aVector0(xp)
    & szszuzczcdt0(aDimensionOf0(xp)) = aDimensionOf0(xs)
    & ! [X1] :
        ( aNaturalNumber0(X1)
       => sdtlbdtrb0(xp,X1) = sdtlbdtrb0(xs,X1) )
    & xp = sziznziztdt0(xs) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1709) ).

fof(m__2590,hypothesis,
    ~ sdtlseqdt0(sdtpldt0(xP,xP),sdtpldt0(xR,xS)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__2590) ).

fof(mPosMon,axiom,
    ! [X1,X2] :
      ( ( aScalar0(X1)
        & aScalar0(X2) )
     => ( ( sdtlseqdt0(sz0z00,X1)
          & sdtlseqdt0(sz0z00,X2) )
       => ( sdtlseqdt0(sz0z00,sdtpldt0(X1,X2))
          & sdtlseqdt0(sz0z00,sdtasdt0(X1,X2)) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',mPosMon) ).

fof(m__1800,hypothesis,
    ( aScalar0(xD)
    & xD = sdtasasdt0(xq,xq) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1800) ).

fof(m__1837,hypothesis,
    ( aScalar0(xF)
    & xF = sdtasdt0(xA,xA) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1837) ).

fof(m__1746,hypothesis,
    ( aScalar0(xA)
    & xA = sdtlbdtrb0(xs,aDimensionOf0(xs)) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1746) ).

fof(m__,conjecture,
    ( sdtlseqdt0(sz0z00,sdtpldt0(xR,xS))
    & sdtlseqdt0(sz0z00,sdtpldt0(xP,xP)) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__) ).

fof(m__1854,hypothesis,
    ( aScalar0(xG)
    & xG = sdtasdt0(xB,xB) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1854) ).

fof(m__1766,hypothesis,
    ( aScalar0(xB)
    & xB = sdtlbdtrb0(xt,aDimensionOf0(xt)) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1766) ).

fof(m__1783,hypothesis,
    ( aScalar0(xC)
    & xC = sdtasasdt0(xp,xp) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1783) ).

fof(mLEMon,axiom,
    ! [X1,X2,X3,X4] :
      ( ( aScalar0(X1)
        & aScalar0(X2)
        & aScalar0(X3)
        & aScalar0(X4) )
     => ( ( sdtlseqdt0(X1,X2)
          & sdtlseqdt0(X3,X4) )
       => sdtlseqdt0(sdtpldt0(X1,X3),sdtpldt0(X2,X4)) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',mLEMon) ).

fof(mLETrn,axiom,
    ! [X1,X2,X3] :
      ( ( aScalar0(X1)
        & aScalar0(X2)
        & aScalar0(X3) )
     => ( ( sdtlseqdt0(X1,X2)
          & sdtlseqdt0(X2,X3) )
       => sdtlseqdt0(X1,X3) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',mLETrn) ).

fof(m__1930,hypothesis,
    ( aScalar0(xS)
    & xS = sdtasdt0(xF,xD) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1930) ).

fof(m__1892,hypothesis,
    ( aScalar0(xR)
    & xR = sdtasdt0(xC,xG) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1892) ).

fof(m__1911,hypothesis,
    ( aScalar0(xP)
    & xP = sdtasdt0(xE,xH) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',m__1911) ).

fof(mSZeroSc,axiom,
    aScalar0(sz0z00),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',mSZeroSc) ).

fof(mLETot,axiom,
    ! [X1,X2] :
      ( ( aScalar0(X1)
        & aScalar0(X2) )
     => ( sdtlseqdt0(X1,X2)
        | sdtlseqdt0(X2,X1) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',mLETot) ).

fof(c_0_20,plain,
    ! [X75] :
      ( ~ aVector0(X75)
      | sdtlseqdt0(sz0z00,sdtasasdt0(X75,X75)) ),
    inference(fof_nnf,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mScSqPos])])]) ).

fof(c_0_21,hypothesis,
    ! [X79] :
      ( aVector0(xq)
      & szszuzczcdt0(aDimensionOf0(xq)) = aDimensionOf0(xt)
      & ( ~ aNaturalNumber0(X79)
        | sdtlbdtrb0(xq,X79) = sdtlbdtrb0(xt,X79) )
      & xq = sziznziztdt0(xt) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[m__1726])])])]) ).

fof(c_0_22,plain,
    ! [X55] :
      ( ~ aScalar0(X55)
      | sdtlseqdt0(sz0z00,sdtasdt0(X55,X55)) ),
    inference(fof_nnf,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mSqPos])])]) ).

fof(c_0_23,hypothesis,
    ! [X78] :
      ( aVector0(xp)
      & szszuzczcdt0(aDimensionOf0(xp)) = aDimensionOf0(xs)
      & ( ~ aNaturalNumber0(X78)
        | sdtlbdtrb0(xp,X78) = sdtlbdtrb0(xs,X78) )
      & xp = sziznziztdt0(xs) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[m__1709])])])]) ).

fof(c_0_24,hypothesis,
    ~ sdtlseqdt0(sdtpldt0(xP,xP),sdtpldt0(xR,xS)),
    inference(fof_simplification,[status(thm)],[m__2590]) ).

fof(c_0_25,plain,
    ! [X53,X54] :
      ( ( sdtlseqdt0(sz0z00,sdtpldt0(X53,X54))
        | ~ sdtlseqdt0(sz0z00,X53)
        | ~ sdtlseqdt0(sz0z00,X54)
        | ~ aScalar0(X53)
        | ~ aScalar0(X54) )
      & ( sdtlseqdt0(sz0z00,sdtasdt0(X53,X54))
        | ~ sdtlseqdt0(sz0z00,X53)
        | ~ sdtlseqdt0(sz0z00,X54)
        | ~ aScalar0(X53)
        | ~ aScalar0(X54) ) ),
    inference(distribute,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mPosMon])])])]) ).

cnf(c_0_26,plain,
    ( sdtlseqdt0(sz0z00,sdtasasdt0(X1,X1))
    | ~ aVector0(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

cnf(c_0_27,hypothesis,
    xD = sdtasasdt0(xq,xq),
    inference(split_conjunct,[status(thm)],[m__1800]) ).

cnf(c_0_28,hypothesis,
    aVector0(xq),
    inference(split_conjunct,[status(thm)],[c_0_21]) ).

cnf(c_0_29,plain,
    ( sdtlseqdt0(sz0z00,sdtasdt0(X1,X1))
    | ~ aScalar0(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_30,hypothesis,
    xF = sdtasdt0(xA,xA),
    inference(split_conjunct,[status(thm)],[m__1837]) ).

cnf(c_0_31,hypothesis,
    aScalar0(xA),
    inference(split_conjunct,[status(thm)],[m__1746]) ).

fof(c_0_32,negated_conjecture,
    ~ ( sdtlseqdt0(sz0z00,sdtpldt0(xR,xS))
      & sdtlseqdt0(sz0z00,sdtpldt0(xP,xP)) ),
    inference(assume_negation,[status(cth)],[m__]) ).

cnf(c_0_33,hypothesis,
    xG = sdtasdt0(xB,xB),
    inference(split_conjunct,[status(thm)],[m__1854]) ).

cnf(c_0_34,hypothesis,
    aScalar0(xB),
    inference(split_conjunct,[status(thm)],[m__1766]) ).

cnf(c_0_35,hypothesis,
    xC = sdtasasdt0(xp,xp),
    inference(split_conjunct,[status(thm)],[m__1783]) ).

cnf(c_0_36,hypothesis,
    aVector0(xp),
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

fof(c_0_37,hypothesis,
    ~ sdtlseqdt0(sdtpldt0(xP,xP),sdtpldt0(xR,xS)),
    inference(fof_nnf,[status(thm)],[c_0_24]) ).

fof(c_0_38,plain,
    ! [X43,X44,X45,X46] :
      ( ~ aScalar0(X43)
      | ~ aScalar0(X44)
      | ~ aScalar0(X45)
      | ~ aScalar0(X46)
      | ~ sdtlseqdt0(X43,X44)
      | ~ sdtlseqdt0(X45,X46)
      | sdtlseqdt0(sdtpldt0(X43,X45),sdtpldt0(X44,X46)) ),
    inference(fof_nnf,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mLEMon])])]) ).

fof(c_0_39,plain,
    ! [X40,X41,X42] :
      ( ~ aScalar0(X40)
      | ~ aScalar0(X41)
      | ~ aScalar0(X42)
      | ~ sdtlseqdt0(X40,X41)
      | ~ sdtlseqdt0(X41,X42)
      | sdtlseqdt0(X40,X42) ),
    inference(fof_nnf,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mLETrn])])]) ).

cnf(c_0_40,plain,
    ( sdtlseqdt0(sz0z00,sdtasdt0(X1,X2))
    | ~ sdtlseqdt0(sz0z00,X1)
    | ~ sdtlseqdt0(sz0z00,X2)
    | ~ aScalar0(X1)
    | ~ aScalar0(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_41,hypothesis,
    xS = sdtasdt0(xF,xD),
    inference(split_conjunct,[status(thm)],[m__1930]) ).

cnf(c_0_42,hypothesis,
    sdtlseqdt0(sz0z00,xD),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_26,c_0_27]),c_0_28])]) ).

cnf(c_0_43,hypothesis,
    sdtlseqdt0(sz0z00,xF),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_30]),c_0_31])]) ).

cnf(c_0_44,hypothesis,
    aScalar0(xD),
    inference(split_conjunct,[status(thm)],[m__1800]) ).

cnf(c_0_45,hypothesis,
    aScalar0(xF),
    inference(split_conjunct,[status(thm)],[m__1837]) ).

fof(c_0_46,negated_conjecture,
    ( ~ sdtlseqdt0(sz0z00,sdtpldt0(xR,xS))
    | ~ sdtlseqdt0(sz0z00,sdtpldt0(xP,xP)) ),
    inference(fof_nnf,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_32])]) ).

cnf(c_0_47,hypothesis,
    xR = sdtasdt0(xC,xG),
    inference(split_conjunct,[status(thm)],[m__1892]) ).

cnf(c_0_48,hypothesis,
    sdtlseqdt0(sz0z00,xG),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_33]),c_0_34])]) ).

cnf(c_0_49,hypothesis,
    sdtlseqdt0(sz0z00,xC),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_26,c_0_35]),c_0_36])]) ).

cnf(c_0_50,hypothesis,
    aScalar0(xG),
    inference(split_conjunct,[status(thm)],[m__1854]) ).

cnf(c_0_51,hypothesis,
    aScalar0(xC),
    inference(split_conjunct,[status(thm)],[m__1783]) ).

cnf(c_0_52,hypothesis,
    ~ sdtlseqdt0(sdtpldt0(xP,xP),sdtpldt0(xR,xS)),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_53,plain,
    ( sdtlseqdt0(sdtpldt0(X1,X3),sdtpldt0(X2,X4))
    | ~ aScalar0(X1)
    | ~ aScalar0(X2)
    | ~ aScalar0(X3)
    | ~ aScalar0(X4)
    | ~ sdtlseqdt0(X1,X2)
    | ~ sdtlseqdt0(X3,X4) ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_54,hypothesis,
    aScalar0(xS),
    inference(split_conjunct,[status(thm)],[m__1930]) ).

cnf(c_0_55,hypothesis,
    aScalar0(xP),
    inference(split_conjunct,[status(thm)],[m__1911]) ).

cnf(c_0_56,hypothesis,
    aScalar0(xR),
    inference(split_conjunct,[status(thm)],[m__1892]) ).

cnf(c_0_57,plain,
    ( sdtlseqdt0(X1,X3)
    | ~ aScalar0(X1)
    | ~ aScalar0(X2)
    | ~ aScalar0(X3)
    | ~ sdtlseqdt0(X1,X2)
    | ~ sdtlseqdt0(X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_58,hypothesis,
    sdtlseqdt0(sz0z00,xS),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40,c_0_41]),c_0_42]),c_0_43]),c_0_44]),c_0_45])]) ).

cnf(c_0_59,plain,
    aScalar0(sz0z00),
    inference(split_conjunct,[status(thm)],[mSZeroSc]) ).

fof(c_0_60,plain,
    ! [X51,X52] :
      ( ~ aScalar0(X51)
      | ~ aScalar0(X52)
      | sdtlseqdt0(X51,X52)
      | sdtlseqdt0(X52,X51) ),
    inference(fof_nnf,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mLETot])])]) ).

cnf(c_0_61,negated_conjecture,
    ( ~ sdtlseqdt0(sz0z00,sdtpldt0(xR,xS))
    | ~ sdtlseqdt0(sz0z00,sdtpldt0(xP,xP)) ),
    inference(split_conjunct,[status(thm)],[c_0_46]) ).

cnf(c_0_62,plain,
    ( sdtlseqdt0(sz0z00,sdtpldt0(X1,X2))
    | ~ sdtlseqdt0(sz0z00,X1)
    | ~ sdtlseqdt0(sz0z00,X2)
    | ~ aScalar0(X1)
    | ~ aScalar0(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_63,hypothesis,
    sdtlseqdt0(sz0z00,xR),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40,c_0_47]),c_0_48]),c_0_49]),c_0_50]),c_0_51])]) ).

cnf(c_0_64,hypothesis,
    ( ~ sdtlseqdt0(xP,xS)
    | ~ sdtlseqdt0(xP,xR) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52,c_0_53]),c_0_54]),c_0_55]),c_0_56])]) ).

cnf(c_0_65,hypothesis,
    ( sdtlseqdt0(X1,xS)
    | ~ sdtlseqdt0(X1,sz0z00)
    | ~ aScalar0(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57,c_0_58]),c_0_54]),c_0_59])]) ).

cnf(c_0_66,plain,
    ( sdtlseqdt0(X1,X2)
    | sdtlseqdt0(X2,X1)
    | ~ aScalar0(X1)
    | ~ aScalar0(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_60]) ).

cnf(c_0_67,negated_conjecture,
    ~ sdtlseqdt0(sz0z00,sdtpldt0(xP,xP)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61,c_0_62]),c_0_54]),c_0_56])]),c_0_58]),c_0_63])]) ).

cnf(c_0_68,hypothesis,
    ( ~ sdtlseqdt0(xP,xR)
    | ~ sdtlseqdt0(xP,sz0z00) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64,c_0_65]),c_0_55])]) ).

cnf(c_0_69,hypothesis,
    ( sdtlseqdt0(X1,xR)
    | ~ sdtlseqdt0(X1,sz0z00)
    | ~ aScalar0(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57,c_0_63]),c_0_56]),c_0_59])]) ).

cnf(c_0_70,hypothesis,
    ( sdtlseqdt0(X1,xP)
    | sdtlseqdt0(xP,X1)
    | ~ aScalar0(X1) ),
    inference(spm,[status(thm)],[c_0_66,c_0_55]) ).

cnf(c_0_71,negated_conjecture,
    ~ sdtlseqdt0(sz0z00,xP),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67,c_0_62]),c_0_55])]) ).

cnf(c_0_72,hypothesis,
    ~ sdtlseqdt0(xP,sz0z00),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_68,c_0_69]),c_0_55])]) ).

cnf(c_0_73,hypothesis,
    $false,
    inference(sr,[status(thm)],[inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_70,c_0_59]),c_0_71]),c_0_72]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem    : RNG071+2 : TPTP v8.2.0. Released v4.0.0.
% 0.11/0.13  % Command    : run_E %s %d THM
% 0.13/0.34  % Computer : n010.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit   : 300
% 0.13/0.34  % WCLimit    : 300
% 0.13/0.34  % DateTime   : Sat May 18 12:07:38 EDT 2024
% 0.13/0.34  % CPUTime    : 
% 0.20/0.46  Running first-order theorem proving
% 0.20/0.47  Running: /export/starexec/sandbox/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --auto-schedule=8 --cpu-limit=300 /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.20/0.50  # Version: 3.1.0
% 0.20/0.50  # Preprocessing class: FSLSSMSMSSSNFFN.
% 0.20/0.50  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.20/0.50  # Starting C07_19_nc_SOS_SAT001_MinMin_p005000_rr with 1500s (5) cores
% 0.20/0.50  # Starting new_bool_3 with 300s (1) cores
% 0.20/0.50  # Starting new_bool_1 with 300s (1) cores
% 0.20/0.50  # Starting sh5l with 300s (1) cores
% 0.20/0.50  # C07_19_nc_SOS_SAT001_MinMin_p005000_rr with pid 592 completed with status 0
% 0.20/0.50  # Result found by C07_19_nc_SOS_SAT001_MinMin_p005000_rr
% 0.20/0.50  # Preprocessing class: FSLSSMSMSSSNFFN.
% 0.20/0.50  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.20/0.50  # Starting C07_19_nc_SOS_SAT001_MinMin_p005000_rr with 1500s (5) cores
% 0.20/0.50  # No SInE strategy applied
% 0.20/0.50  # Search class: FGHSF-FFMM21-MFFFFFNN
% 0.20/0.50  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 0.20/0.50  # Starting G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN with 811s (1) cores
% 0.20/0.50  # Starting C07_19_nc_SOS_SAT001_MinMin_p005000_rr with 151s (1) cores
% 0.20/0.50  # Starting G-E--_208_C18_F1_SE_CS_SP_PI_PS_S5PRR_S032N with 136s (1) cores
% 0.20/0.50  # Starting new_bool_3 with 136s (1) cores
% 0.20/0.50  # Starting new_bool_1 with 136s (1) cores
% 0.20/0.50  # G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN with pid 598 completed with status 0
% 0.20/0.50  # Result found by G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN
% 0.20/0.50  # Preprocessing class: FSLSSMSMSSSNFFN.
% 0.20/0.50  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.20/0.50  # Starting C07_19_nc_SOS_SAT001_MinMin_p005000_rr with 1500s (5) cores
% 0.20/0.50  # No SInE strategy applied
% 0.20/0.50  # Search class: FGHSF-FFMM21-MFFFFFNN
% 0.20/0.50  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 0.20/0.50  # Starting G-E--_208_C18_F1_SE_CS_SOS_SP_PS_S5PRR_RG_S04AN with 811s (1) cores
% 0.20/0.50  # Preprocessing time       : 0.002 s
% 0.20/0.50  # Presaturation interreduction done
% 0.20/0.50  
% 0.20/0.50  # Proof found!
% 0.20/0.50  # SZS status Theorem
% 0.20/0.50  # SZS output start CNFRefutation
% See solution above
% 0.20/0.50  # Parsed axioms                        : 62
% 0.20/0.50  # Removed by relevancy pruning/SinE    : 0
% 0.20/0.50  # Initial clauses                      : 100
% 0.20/0.50  # Removed in clause preprocessing      : 5
% 0.20/0.50  # Initial clauses in saturation        : 95
% 0.20/0.50  # Processed clauses                    : 388
% 0.20/0.50  # ...of these trivial                  : 3
% 0.20/0.50  # ...subsumed                          : 56
% 0.20/0.50  # ...remaining for further processing  : 329
% 0.20/0.50  # Other redundant clauses eliminated   : 3
% 0.20/0.50  # Clauses deleted for lack of memory   : 0
% 0.20/0.50  # Backward-subsumed                    : 3
% 0.20/0.50  # Backward-rewritten                   : 10
% 0.20/0.50  # Generated clauses                    : 799
% 0.20/0.50  # ...of the previous two non-redundant : 730
% 0.20/0.50  # ...aggressively subsumed             : 0
% 0.20/0.50  # Contextual simplify-reflections      : 1
% 0.20/0.50  # Paramodulations                      : 795
% 0.20/0.50  # Factorizations                       : 0
% 0.20/0.50  # NegExts                              : 0
% 0.20/0.50  # Equation resolutions                 : 4
% 0.20/0.50  # Disequality decompositions           : 0
% 0.20/0.50  # Total rewrite steps                  : 837
% 0.20/0.50  # ...of those cached                   : 792
% 0.20/0.50  # Propositional unsat checks           : 0
% 0.20/0.50  #    Propositional check models        : 0
% 0.20/0.50  #    Propositional check unsatisfiable : 0
% 0.20/0.50  #    Propositional clauses             : 0
% 0.20/0.50  #    Propositional clauses after purity: 0
% 0.20/0.50  #    Propositional unsat core size     : 0
% 0.20/0.50  #    Propositional preprocessing time  : 0.000
% 0.20/0.50  #    Propositional encoding time       : 0.000
% 0.20/0.50  #    Propositional solver time         : 0.000
% 0.20/0.50  #    Success case prop preproc time    : 0.000
% 0.20/0.50  #    Success case prop encoding time   : 0.000
% 0.20/0.50  #    Success case prop solver time     : 0.000
% 0.20/0.50  # Current number of processed clauses  : 218
% 0.20/0.50  #    Positive orientable unit clauses  : 65
% 0.20/0.50  #    Positive unorientable unit clauses: 0
% 0.20/0.50  #    Negative unit clauses             : 6
% 0.20/0.50  #    Non-unit-clauses                  : 147
% 0.20/0.50  # Current number of unprocessed clauses: 473
% 0.20/0.50  # ...number of literals in the above   : 1969
% 0.20/0.50  # Current number of archived formulas  : 0
% 0.20/0.50  # Current number of archived clauses   : 108
% 0.20/0.50  # Clause-clause subsumption calls (NU) : 4276
% 0.20/0.50  # Rec. Clause-clause subsumption calls : 2374
% 0.20/0.50  # Non-unit clause-clause subsumptions  : 53
% 0.20/0.50  # Unit Clause-clause subsumption calls : 64
% 0.20/0.50  # Rewrite failures with RHS unbound    : 0
% 0.20/0.50  # BW rewrite match attempts            : 7
% 0.20/0.50  # BW rewrite match successes           : 7
% 0.20/0.50  # Condensation attempts                : 0
% 0.20/0.50  # Condensation successes               : 0
% 0.20/0.50  # Termbank termtop insertions          : 20071
% 0.20/0.50  # Search garbage collected termcells   : 891
% 0.20/0.50  
% 0.20/0.50  # -------------------------------------------------
% 0.20/0.50  # User time                : 0.024 s
% 0.20/0.50  # System time              : 0.004 s
% 0.20/0.50  # Total time               : 0.028 s
% 0.20/0.50  # Maximum resident set size: 1976 pages
% 0.20/0.50  
% 0.20/0.50  # -------------------------------------------------
% 0.20/0.50  # User time                : 0.100 s
% 0.20/0.50  # System time              : 0.013 s
% 0.20/0.50  # Total time               : 0.113 s
% 0.20/0.50  # Maximum resident set size: 1760 pages
% 0.20/0.50  % E---3.1 exiting
% 0.20/0.51  % E exiting
%------------------------------------------------------------------------------