TSTP Solution File: RNG025-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : RNG025-1 : TPTP v8.1.2. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:48:32 EDT 2023

% Result   : Unsatisfiable 10.69s 10.71s
% Output   : CNFRefutation 10.69s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    7
%            Number of leaves      :   20
% Syntax   : Number of formulae    :   49 (  40 unt;   6 typ;   0 def)
%            Number of atoms       :   46 (  45 equ)
%            Maximal formula atoms :    2 (   1 avg)
%            Number of connectives :    8 (   5   ~;   3   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    3 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    5 (   3   >;   2   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :   86 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    additive_identity: $i ).

tff(decl_23,type,
    add: ( $i * $i ) > $i ).

tff(decl_24,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_25,type,
    additive_inverse: $i > $i ).

tff(decl_26,type,
    cy: $i ).

tff(decl_27,type,
    cx: $i ).

cnf(multiply_over_add2,axiom,
    multiply(add(X1,X2),X3) = add(multiply(X1,X3),multiply(X2,X3)),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',multiply_over_add2) ).

cnf(right_alternative,axiom,
    multiply(multiply(X1,X2),X2) = multiply(X1,multiply(X2,X2)),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',right_alternative) ).

cnf(add_inverse,axiom,
    add(additive_inverse(X1),X1) = additive_identity,
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',add_inverse) ).

cnf(commutativity_for_addition,axiom,
    add(X1,X2) = add(X2,X1),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',commutativity_for_addition) ).

cnf(left_alternative,axiom,
    multiply(multiply(X1,X1),X2) = multiply(X1,multiply(X1,X2)),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',left_alternative) ).

cnf(associativity_for_addition,axiom,
    add(X1,add(X2,X3)) = add(add(X1,X2),X3),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',associativity_for_addition) ).

cnf(left_additive_identity,axiom,
    add(additive_identity,X1) = X1,
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',left_additive_identity) ).

cnf(inverse_product1,axiom,
    multiply(additive_inverse(X1),X2) = additive_inverse(multiply(X1,X2)),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',inverse_product1) ).

cnf(inverse_product2,axiom,
    multiply(X1,additive_inverse(X2)) = additive_inverse(multiply(X1,X2)),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',inverse_product2) ).

cnf(multiply_over_add1,axiom,
    multiply(X1,add(X2,X3)) = add(multiply(X1,X2),multiply(X1,X3)),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',multiply_over_add1) ).

cnf(sum_of_inverses,axiom,
    additive_inverse(add(X1,X2)) = add(additive_inverse(X1),additive_inverse(X2)),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',sum_of_inverses) ).

cnf(right_cancellation_for_addition,axiom,
    ( X2 = X3
    | add(X1,X2) != add(X1,X3) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',right_cancellation_for_addition) ).

cnf(additive_inverse_additive_inverse,axiom,
    additive_inverse(additive_inverse(X1)) = X1,
    file('/export/starexec/sandbox2/benchmark/Axioms/RNG004-0.ax',additive_inverse_additive_inverse) ).

cnf(prove_middle_law,negated_conjecture,
    multiply(multiply(cy,cx),cy) != multiply(cy,multiply(cx,cy)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_middle_law) ).

cnf(c_0_14,axiom,
    multiply(add(X1,X2),X3) = add(multiply(X1,X3),multiply(X2,X3)),
    multiply_over_add2 ).

cnf(c_0_15,axiom,
    multiply(multiply(X1,X2),X2) = multiply(X1,multiply(X2,X2)),
    right_alternative ).

cnf(c_0_16,axiom,
    add(additive_inverse(X1),X1) = additive_identity,
    add_inverse ).

cnf(c_0_17,axiom,
    add(X1,X2) = add(X2,X1),
    commutativity_for_addition ).

cnf(c_0_18,plain,
    add(multiply(X1,X2),multiply(X3,multiply(X2,X2))) = multiply(add(X1,multiply(X3,X2)),X2),
    inference(spm,[status(thm)],[c_0_14,c_0_15]) ).

cnf(c_0_19,axiom,
    multiply(multiply(X1,X1),X2) = multiply(X1,multiply(X1,X2)),
    left_alternative ).

cnf(c_0_20,axiom,
    add(X1,add(X2,X3)) = add(add(X1,X2),X3),
    associativity_for_addition ).

cnf(c_0_21,plain,
    add(X1,additive_inverse(X1)) = additive_identity,
    inference(rw,[status(thm)],[c_0_16,c_0_17]) ).

cnf(c_0_22,axiom,
    add(additive_identity,X1) = X1,
    left_additive_identity ).

cnf(c_0_23,axiom,
    multiply(additive_inverse(X1),X2) = additive_inverse(multiply(X1,X2)),
    inverse_product1 ).

cnf(c_0_24,axiom,
    multiply(X1,additive_inverse(X2)) = additive_inverse(multiply(X1,X2)),
    inverse_product2 ).

cnf(c_0_25,axiom,
    multiply(X1,add(X2,X3)) = add(multiply(X1,X2),multiply(X1,X3)),
    multiply_over_add1 ).

cnf(c_0_26,plain,
    add(multiply(X1,multiply(X1,X2)),multiply(X3,multiply(X2,X2))) = multiply(add(multiply(X1,X1),multiply(X3,X2)),X2),
    inference(spm,[status(thm)],[c_0_18,c_0_19]) ).

cnf(c_0_27,plain,
    add(X1,add(additive_inverse(X1),X2)) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_20,c_0_21]),c_0_22]) ).

cnf(c_0_28,axiom,
    additive_inverse(add(X1,X2)) = add(additive_inverse(X1),additive_inverse(X2)),
    sum_of_inverses ).

cnf(c_0_29,plain,
    multiply(additive_inverse(X1),X2) = multiply(X1,additive_inverse(X2)),
    inference(rw,[status(thm)],[c_0_23,c_0_24]) ).

cnf(c_0_30,axiom,
    ( X2 = X3
    | add(X1,X2) != add(X1,X3) ),
    right_cancellation_for_addition ).

cnf(c_0_31,plain,
    multiply(multiply(X1,X2),additive_inverse(X2)) = multiply(X1,multiply(X2,additive_inverse(X2))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_15]),c_0_24]),c_0_24]) ).

cnf(c_0_32,plain,
    multiply(multiply(X1,add(X1,X2)),X2) = multiply(X1,multiply(add(X1,X2),X2)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_25,c_0_26]),c_0_25]),c_0_14]) ).

cnf(c_0_33,plain,
    add(X1,additive_inverse(add(X1,X2))) = additive_inverse(X2),
    inference(spm,[status(thm)],[c_0_27,c_0_28]) ).

cnf(c_0_34,plain,
    multiply(multiply(X1,additive_inverse(X2)),X3) = multiply(multiply(X1,X2),additive_inverse(X3)),
    inference(spm,[status(thm)],[c_0_29,c_0_24]) ).

cnf(c_0_35,axiom,
    additive_inverse(additive_inverse(X1)) = X1,
    additive_inverse_additive_inverse ).

cnf(c_0_36,plain,
    ( X1 = X2
    | add(X3,X1) != add(X2,X3) ),
    inference(spm,[status(thm)],[c_0_30,c_0_17]) ).

cnf(c_0_37,plain,
    add(multiply(X1,multiply(X2,additive_inverse(X2))),multiply(multiply(X1,X2),X3)) = multiply(multiply(X1,X2),add(additive_inverse(X2),X3)),
    inference(spm,[status(thm)],[c_0_25,c_0_31]) ).

cnf(c_0_38,plain,
    multiply(multiply(X1,X2),add(X1,X2)) = multiply(X1,multiply(X2,add(X1,X2))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_33]),c_0_34]),c_0_35]),c_0_29]),c_0_35]) ).

cnf(c_0_39,plain,
    add(additive_inverse(X1),add(X2,X1)) = X2,
    inference(er,[status(thm)],[inference(spm,[status(thm)],[c_0_36,c_0_27])]) ).

cnf(c_0_40,negated_conjecture,
    multiply(multiply(cy,cx),cy) != multiply(cy,multiply(cx,cy)),
    prove_middle_law ).

cnf(c_0_41,plain,
    multiply(multiply(X1,X2),X1) = multiply(X1,multiply(X2,X1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_37,c_0_38]),c_0_25]),c_0_25]),c_0_39]),c_0_39]) ).

cnf(c_0_42,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_40,c_0_41])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : RNG025-1 : TPTP v8.1.2. Released v1.0.0.
% 0.00/0.13  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.13/0.34  % Computer : n027.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit   : 300
% 0.13/0.34  % WCLimit    : 300
% 0.13/0.34  % DateTime   : Sun Aug 27 02:16:20 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.20/0.59  start to proof: theBenchmark
% 10.69/10.71  % Version  : CSE_E---1.5
% 10.69/10.71  % Problem  : theBenchmark.p
% 10.69/10.71  % Proof found
% 10.69/10.71  % SZS status Theorem for theBenchmark.p
% 10.69/10.71  % SZS output start Proof
% See solution above
% 10.69/10.71  % Total time : 10.113000 s
% 10.69/10.71  % SZS output end Proof
% 10.69/10.71  % Total time : 10.117000 s
%------------------------------------------------------------------------------