TSTP Solution File: RNG023-7 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : RNG023-7 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:12:05 EDT 2022

% Result   : Unsatisfiable 1.60s 1.85s
% Output   : Refutation 1.60s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    4
%            Number of leaves      :    5
% Syntax   : Number of clauses     :   11 (  11 unt;   0 nHn;   2 RR)
%            Number of literals    :   11 (  10 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   3 con; 0-3 aty)
%            Number of variables   :   20 (   1 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    associator(x,x,y) != additive_identity,
    file('RNG023-7.p',unknown),
    [] ).

cnf(13,axiom,
    add(A,additive_inverse(A)) = additive_identity,
    file('RNG023-7.p',unknown),
    [] ).

cnf(27,axiom,
    multiply(multiply(A,A),B) = multiply(A,multiply(A,B)),
    file('RNG023-7.p',unknown),
    [] ).

cnf(29,axiom,
    associator(A,B,C) = add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C)))),
    file('RNG023-7.p',unknown),
    [] ).

cnf(30,plain,
    add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C)))) = associator(A,B,C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[29])]),
    [iquote('copy,29,flip.1')] ).

cnf(37,axiom,
    multiply(additive_inverse(A),B) = additive_inverse(multiply(A,B)),
    file('RNG023-7.p',unknown),
    [] ).

cnf(39,plain,
    additive_inverse(multiply(A,B)) = multiply(additive_inverse(A),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[37])]),
    [iquote('copy,37,flip.1')] ).

cnf(48,plain,
    add(multiply(multiply(A,B),C),multiply(additive_inverse(A),multiply(B,C))) = associator(A,B,C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[30]),39]),
    [iquote('back_demod,30,demod,39')] ).

cnf(66,plain,
    add(multiply(A,B),multiply(additive_inverse(A),B)) = additive_identity,
    inference(para_from,[status(thm),theory(equality)],[39,13]),
    [iquote('para_from,38.1.1,13.1.1.2')] ).

cnf(372,plain,
    associator(A,A,B) = additive_identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[48,27]),66])]),
    [iquote('para_into,48.1.1.1,27.1.1,demod,66,flip.1')] ).

cnf(374,plain,
    $false,
    inference(binary,[status(thm)],[372,1]),
    [iquote('binary,372.1,1.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : RNG023-7 : TPTP v8.1.0. Released v1.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n005.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 02:17:50 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.60/1.84  ----- Otter 3.3f, August 2004 -----
% 1.60/1.84  The process was started by sandbox on n005.cluster.edu,
% 1.60/1.84  Wed Jul 27 02:17:50 2022
% 1.60/1.84  The command was "./otter".  The process ID is 6365.
% 1.60/1.84  
% 1.60/1.84  set(prolog_style_variables).
% 1.60/1.84  set(auto).
% 1.60/1.84     dependent: set(auto1).
% 1.60/1.84     dependent: set(process_input).
% 1.60/1.84     dependent: clear(print_kept).
% 1.60/1.84     dependent: clear(print_new_demod).
% 1.60/1.84     dependent: clear(print_back_demod).
% 1.60/1.84     dependent: clear(print_back_sub).
% 1.60/1.84     dependent: set(control_memory).
% 1.60/1.84     dependent: assign(max_mem, 12000).
% 1.60/1.84     dependent: assign(pick_given_ratio, 4).
% 1.60/1.84     dependent: assign(stats_level, 1).
% 1.60/1.84     dependent: assign(max_seconds, 10800).
% 1.60/1.84  clear(print_given).
% 1.60/1.84  
% 1.60/1.84  list(usable).
% 1.60/1.84  0 [] A=A.
% 1.60/1.84  0 [] add(additive_identity,X)=X.
% 1.60/1.84  0 [] add(X,additive_identity)=X.
% 1.60/1.84  0 [] multiply(additive_identity,X)=additive_identity.
% 1.60/1.84  0 [] multiply(X,additive_identity)=additive_identity.
% 1.60/1.84  0 [] add(additive_inverse(X),X)=additive_identity.
% 1.60/1.84  0 [] add(X,additive_inverse(X))=additive_identity.
% 1.60/1.84  0 [] additive_inverse(additive_inverse(X))=X.
% 1.60/1.84  0 [] multiply(X,add(Y,Z))=add(multiply(X,Y),multiply(X,Z)).
% 1.60/1.84  0 [] multiply(add(X,Y),Z)=add(multiply(X,Z),multiply(Y,Z)).
% 1.60/1.84  0 [] add(X,Y)=add(Y,X).
% 1.60/1.84  0 [] add(X,add(Y,Z))=add(add(X,Y),Z).
% 1.60/1.84  0 [] multiply(multiply(X,Y),Y)=multiply(X,multiply(Y,Y)).
% 1.60/1.84  0 [] multiply(multiply(X,X),Y)=multiply(X,multiply(X,Y)).
% 1.60/1.84  0 [] associator(X,Y,Z)=add(multiply(multiply(X,Y),Z),additive_inverse(multiply(X,multiply(Y,Z)))).
% 1.60/1.84  0 [] commutator(X,Y)=add(multiply(Y,X),additive_inverse(multiply(X,Y))).
% 1.60/1.84  0 [] multiply(additive_inverse(X),additive_inverse(Y))=multiply(X,Y).
% 1.60/1.84  0 [] multiply(additive_inverse(X),Y)=additive_inverse(multiply(X,Y)).
% 1.60/1.84  0 [] multiply(X,additive_inverse(Y))=additive_inverse(multiply(X,Y)).
% 1.60/1.84  0 [] multiply(X,add(Y,additive_inverse(Z)))=add(multiply(X,Y),additive_inverse(multiply(X,Z))).
% 1.60/1.84  0 [] multiply(add(X,additive_inverse(Y)),Z)=add(multiply(X,Z),additive_inverse(multiply(Y,Z))).
% 1.60/1.84  0 [] multiply(additive_inverse(X),add(Y,Z))=add(additive_inverse(multiply(X,Y)),additive_inverse(multiply(X,Z))).
% 1.60/1.84  0 [] multiply(add(X,Y),additive_inverse(Z))=add(additive_inverse(multiply(X,Z)),additive_inverse(multiply(Y,Z))).
% 1.60/1.84  0 [] associator(x,x,y)!=additive_identity.
% 1.60/1.84  end_of_list.
% 1.60/1.84  
% 1.60/1.84  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.60/1.84  
% 1.60/1.84  All clauses are units, and equality is present; the
% 1.60/1.84  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.60/1.84  
% 1.60/1.84     dependent: set(knuth_bendix).
% 1.60/1.84     dependent: set(anl_eq).
% 1.60/1.84     dependent: set(para_from).
% 1.60/1.84     dependent: set(para_into).
% 1.60/1.84     dependent: clear(para_from_right).
% 1.60/1.84     dependent: clear(para_into_right).
% 1.60/1.84     dependent: set(para_from_vars).
% 1.60/1.84     dependent: set(eq_units_both_ways).
% 1.60/1.84     dependent: set(dynamic_demod_all).
% 1.60/1.84     dependent: set(dynamic_demod).
% 1.60/1.84     dependent: set(order_eq).
% 1.60/1.84     dependent: set(back_demod).
% 1.60/1.84     dependent: set(lrpo).
% 1.60/1.84  
% 1.60/1.84  ------------> process usable:
% 1.60/1.84  ** KEPT (pick-wt=6): 1 [] associator(x,x,y)!=additive_identity.
% 1.60/1.84  
% 1.60/1.84  ------------> process sos:
% 1.60/1.84  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.60/1.84  ** KEPT (pick-wt=5): 3 [] add(additive_identity,A)=A.
% 1.60/1.84  ---> New Demodulator: 4 [new_demod,3] add(additive_identity,A)=A.
% 1.60/1.84  ** KEPT (pick-wt=5): 5 [] add(A,additive_identity)=A.
% 1.60/1.84  ---> New Demodulator: 6 [new_demod,5] add(A,additive_identity)=A.
% 1.60/1.84  ** KEPT (pick-wt=5): 7 [] multiply(additive_identity,A)=additive_identity.
% 1.60/1.84  ---> New Demodulator: 8 [new_demod,7] multiply(additive_identity,A)=additive_identity.
% 1.60/1.84  ** KEPT (pick-wt=5): 9 [] multiply(A,additive_identity)=additive_identity.
% 1.60/1.84  ---> New Demodulator: 10 [new_demod,9] multiply(A,additive_identity)=additive_identity.
% 1.60/1.84  ** KEPT (pick-wt=6): 11 [] add(additive_inverse(A),A)=additive_identity.
% 1.60/1.84  ---> New Demodulator: 12 [new_demod,11] add(additive_inverse(A),A)=additive_identity.
% 1.60/1.84  ** KEPT (pick-wt=6): 13 [] add(A,additive_inverse(A))=additive_identity.
% 1.60/1.84  ---> New Demodulator: 14 [new_demod,13] add(A,additive_inverse(A))=additive_identity.
% 1.60/1.84  ** KEPT (pick-wt=5): 15 [] additive_inverse(additive_inverse(A))=A.
% 1.60/1.84  ---> New Demodulator: 16 [new_demod,15] additive_inverse(additive_inverse(A))=A.
% 1.60/1.84  ** KEPT (pick-wt=13): 17 [] multiply(A,add(B,C))=add(multiply(A,B),multiply(A,C)).
% 1.60/1.84  ---> New Demodulator: 18 [new_demod,17] multiply(A,add(B,C))=add(multiply(A,B),multiply(A,C)).
% 1.60/1.84  ** KEPT (pick-wt=13): 19 [] multiply(add(A,B),C)=add(multiply(A,C),multiply(B,C)).
% 1.60/1.84  ---> New Demodulator: 20 [new_demod,19] multiply(add(A,B),C)=add(multiply(A,C),multiply(B,C)).
% 1.60/1.84  ** KEPT (pick-wt=7): 21 [] add(A,B)=add(B,A).
% 1.60/1.84  ** KEPT (pick-wt=11): 23 [copy,22,flip.1] add(add(A,B),C)=add(A,add(B,C)).
% 1.60/1.84  ---> New Demodulator: 24 [new_demod,23] add(add(A,B),C)=add(A,add(B,C)).
% 1.60/1.84  ** KEPT (pick-wt=11): 25 [] multiply(multiply(A,B),B)=multiply(A,multiply(B,B)).
% 1.60/1.84  ---> New Demodulator: 26 [new_demod,25] multiply(multiply(A,B),B)=multiply(A,multiply(B,B)).
% 1.60/1.84  ** KEPT (pick-wt=11): 27 [] multiply(multiply(A,A),B)=multiply(A,multiply(A,B)).
% 1.60/1.84  ---> New Demodulator: 28 [new_demod,27] multiply(multiply(A,A),B)=multiply(A,multiply(A,B)).
% 1.60/1.84  ** KEPT (pick-wt=17): 30 [copy,29,flip.1] add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C))))=associator(A,B,C).
% 1.60/1.84  ---> New Demodulator: 31 [new_demod,30] add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C))))=associator(A,B,C).
% 1.60/1.84  ** KEPT (pick-wt=12): 33 [copy,32,flip.1] add(multiply(A,B),additive_inverse(multiply(B,A)))=commutator(B,A).
% 1.60/1.84  ---> New Demodulator: 34 [new_demod,33] add(multiply(A,B),additive_inverse(multiply(B,A)))=commutator(B,A).
% 1.60/1.84  ** KEPT (pick-wt=9): 35 [] multiply(additive_inverse(A),additive_inverse(B))=multiply(A,B).
% 1.60/1.84  ---> New Demodulator: 36 [new_demod,35] multiply(additive_inverse(A),additive_inverse(B))=multiply(A,B).
% 1.60/1.84  ** KEPT (pick-wt=9): 38 [copy,37,flip.1] additive_inverse(multiply(A,B))=multiply(additive_inverse(A),B).
% 1.60/1.84  ---> New Demodulator: 39 [new_demod,38] additive_inverse(multiply(A,B))=multiply(additive_inverse(A),B).
% 1.60/1.84  ** KEPT (pick-wt=9): 41 [copy,40,demod,39] multiply(A,additive_inverse(B))=multiply(additive_inverse(A),B).
% 1.60/1.84  ** KEPT (pick-wt=17): 43 [copy,42,demod,18,39] add(multiply(A,B),multiply(A,additive_inverse(C)))=add(multiply(A,B),multiply(additive_inverse(A),C)).
% 1.60/1.84    Following clause subsumed by 2 during input processing: 0 [demod,20,39] add(multiply(A,C),multiply(additive_inverse(B),C))=add(multiply(A,C),multiply(additive_inverse(B),C)).
% 1.60/1.84    Following clause subsumed by 2 during input processing: 0 [demod,18,39,39] add(multiply(additive_inverse(A),B),multiply(additive_inverse(A),C))=add(multiply(additive_inverse(A),B),multiply(additive_inverse(A),C)).
% 1.60/1.84  ** KEPT (pick-wt=19): 45 [copy,44,demod,20,39,39] add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B)))=add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B)).
% 1.60/1.84    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.60/1.84  >>>> Starting back demodulation with 4.
% 1.60/1.84  >>>> Starting back demodulation with 6.
% 1.60/1.84  >>>> Starting back demodulation with 8.
% 1.60/1.84  >>>> Starting back demodulation with 10.
% 1.60/1.84  >>>> Starting back demodulation with 12.
% 1.60/1.84  >>>> Starting back demodulation with 14.
% 1.60/1.84  >>>> Starting back demodulation with 16.
% 1.60/1.84  >>>> Starting back demodulation with 18.
% 1.60/1.84  >>>> Starting back demodulation with 20.
% 1.60/1.84    Following clause subsumed by 21 during input processing: 0 [copy,21,flip.1] add(A,B)=add(B,A).
% 1.60/1.84  >>>> Starting back demodulation with 24.
% 1.60/1.84  >>>> Starting back demodulation with 26.
% 1.60/1.84  >>>> Starting back demodulation with 28.
% 1.60/1.84  >>>> Starting back demodulation with 31.
% 1.60/1.84  >>>> Starting back demodulation with 34.
% 1.60/1.84  >>>> Starting back demodulation with 36.
% 1.60/1.84  >>>> Starting back demodulation with 39.
% 1.60/1.84      >> back demodulating 33 with 39.
% 1.60/1.84      >> back demodulating 30 with 39.
% 1.60/1.84  ** KEPT (pick-wt=9): 50 [copy,41,flip.1] multiply(additive_inverse(A),B)=multiply(A,additive_inverse(B)).
% 1.60/1.84  ** KEPT (pick-wt=17): 51 [copy,43,flip.1] add(multiply(A,B),multiply(additive_inverse(A),C))=add(multiply(A,B),multiply(A,additive_inverse(C))).
% 1.60/1.84  ** KEPT (pick-wt=19): 52 [copy,45,flip.1] add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B))=add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B))).
% 1.60/1.84  >>>> Starting back demodulation with 47.
% 1.60/1.84  >>>> Starting back demodulation with 49.
% 1.60/1.84    Following clause subsumed by 41 during input processing: 0 [copy,50,flip.1] multiply(A,additive_inverse(B))=multiply(additive_inverse(A),B).
% 1.60/1.84    Following clause subsumed by 43 during input processing: 0 [copy,51,flip.1] add(multiply(A,B),multiply(A,additive_inverse(C)))=add(multiply(A,B),multiply(additive_inverse(A),C)).
% 1.60/1.85    Following clause subsumed by 45 during input processing: 0 [copy,52,flip.1] add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B)))=add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B)).
% 1.60/1.85  
% 1.60/1.85  ======= end of input processing =======
% 1.60/1.85  
% 1.60/1.85  =========== start of search ===========
% 1.60/1.85  
% 1.60/1.85  -------- PROOF -------- 
% 1.60/1.85  
% 1.60/1.85  ----> UNIT CONFLICT at   0.01 sec ----> 374 [binary,372.1,1.1] $F.
% 1.60/1.85  
% 1.60/1.85  Length of proof is 5.  Level of proof is 3.
% 1.60/1.85  
% 1.60/1.85  ---------------- PROOF ----------------
% 1.60/1.85  % SZS status Unsatisfiable
% 1.60/1.85  % SZS output start Refutation
% See solution above
% 1.60/1.85  ------------ end of proof -------------
% 1.60/1.85  
% 1.60/1.85  
% 1.60/1.85  Search stopped by max_proofs option.
% 1.60/1.85  
% 1.60/1.85  
% 1.60/1.85  Search stopped by max_proofs option.
% 1.60/1.85  
% 1.60/1.85  ============ end of search ============
% 1.60/1.85  
% 1.60/1.85  -------------- statistics -------------
% 1.60/1.85  clauses given                 41
% 1.60/1.85  clauses generated            801
% 1.60/1.85  clauses kept                 257
% 1.60/1.85  clauses forward subsumed     748
% 1.60/1.85  clauses back subsumed          2
% 1.60/1.85  Kbytes malloced             1953
% 1.60/1.85  
% 1.60/1.85  ----------- times (seconds) -----------
% 1.60/1.85  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.60/1.85  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.60/1.85  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.60/1.85  
% 1.60/1.85  That finishes the proof of the theorem.
% 1.60/1.85  
% 1.60/1.85  Process 6365 finished Wed Jul 27 02:17:52 2022
% 1.60/1.85  Otter interrupted
% 1.60/1.85  PROOF FOUND
%------------------------------------------------------------------------------