TSTP Solution File: RNG023-7 by EQP---0.9e

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : EQP---0.9e
% Problem  : RNG023-7 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_eqp %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Mon Jul 18 20:25:32 EDT 2022

% Result   : Unsatisfiable 0.42s 1.08s
% Output   : Refutation 0.42s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    4
%            Number of leaves      :    4
% Syntax   : Number of clauses     :   10 (  10 unt;   0 nHn;   2 RR)
%            Number of literals    :   10 (   0 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   3 con; 0-3 aty)
%            Number of variables   :   16 (   1 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,plain,
    equal(add(additive_identity,A),A),
    file('RNG023-7.p',unknown),
    [] ).

cnf(6,plain,
    equal(add(A,additive_inverse(A)),additive_identity),
    file('RNG023-7.p',unknown),
    [] ).

cnf(13,plain,
    equal(multiply(multiply(A,A),B),multiply(A,multiply(A,B))),
    file('RNG023-7.p',unknown),
    [] ).

cnf(14,plain,
    equal(add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C)))),associator(A,B,C)),
    inference(flip,[status(thm),theory(equality)],[1]),
    [iquote('flip(1)')] ).

cnf(17,plain,
    equal(additive_inverse(multiply(A,B)),multiply(additive_inverse(A),B)),
    inference(flip,[status(thm),theory(equality)],[1]),
    [iquote('flip(1)')] ).

cnf(19,plain,
    equal(add(multiply(multiply(A,B),C),multiply(additive_inverse(A),multiply(B,C))),associator(A,B,C)),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[14]),17]),
    [iquote('back_demod(14),demod([17])')] ).

cnf(24,plain,
    ~ equal(associator(x,x,y),additive_identity),
    file('RNG023-7.p',unknown),
    [] ).

cnf(29,plain,
    equal(add(multiply(A,B),multiply(additive_inverse(A),B)),additive_identity),
    inference(para,[status(thm),theory(equality)],[17,6]),
    [iquote('para(17,6)')] ).

cnf(96,plain,
    equal(associator(A,A,B),additive_identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[13,19]),29]),1]),
    [iquote('para(13,19),demod([29]),flip(1)')] ).

cnf(97,plain,
    $false,
    inference(conflict,[status(thm)],[96,24]),
    [iquote('conflict(96,24)')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : RNG023-7 : TPTP v8.1.0. Released v1.0.0.
% 0.11/0.12  % Command  : tptp2X_and_run_eqp %s
% 0.12/0.33  % Computer : n023.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Mon May 30 22:44:41 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.42/1.07  ----- EQP 0.9e, May 2009 -----
% 0.42/1.07  The job began on n023.cluster.edu, Mon May 30 22:44:42 2022
% 0.42/1.07  The command was "./eqp09e".
% 0.42/1.07  
% 0.42/1.07  set(prolog_style_variables).
% 0.42/1.07  set(lrpo).
% 0.42/1.07  set(basic_paramod).
% 0.42/1.07  set(functional_subsume).
% 0.42/1.07  set(ordered_paramod).
% 0.42/1.07  set(prime_paramod).
% 0.42/1.07  set(para_pairs).
% 0.42/1.07  assign(pick_given_ratio,4).
% 0.42/1.07  clear(print_kept).
% 0.42/1.07  clear(print_new_demod).
% 0.42/1.07  clear(print_back_demod).
% 0.42/1.07  clear(print_given).
% 0.42/1.07  assign(max_mem,64000).
% 0.42/1.07  end_of_commands.
% 0.42/1.07  
% 0.42/1.07  Usable:
% 0.42/1.07  end_of_list.
% 0.42/1.07  
% 0.42/1.07  Sos:
% 0.42/1.07  0 (wt=-1) [] add(additive_identity,A) = A.
% 0.42/1.07  0 (wt=-1) [] add(A,additive_identity) = A.
% 0.42/1.07  0 (wt=-1) [] multiply(additive_identity,A) = additive_identity.
% 0.42/1.07  0 (wt=-1) [] multiply(A,additive_identity) = additive_identity.
% 0.42/1.07  0 (wt=-1) [] add(additive_inverse(A),A) = additive_identity.
% 0.42/1.07  0 (wt=-1) [] add(A,additive_inverse(A)) = additive_identity.
% 0.42/1.07  0 (wt=-1) [] additive_inverse(additive_inverse(A)) = A.
% 0.42/1.07  0 (wt=-1) [] multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)).
% 0.42/1.07  0 (wt=-1) [] multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)).
% 0.42/1.07  0 (wt=-1) [] add(A,B) = add(B,A).
% 0.42/1.07  0 (wt=-1) [] add(A,add(B,C)) = add(add(A,B),C).
% 0.42/1.07  0 (wt=-1) [] multiply(multiply(A,B),B) = multiply(A,multiply(B,B)).
% 0.42/1.07  0 (wt=-1) [] multiply(multiply(A,A),B) = multiply(A,multiply(A,B)).
% 0.42/1.07  0 (wt=-1) [] associator(A,B,C) = add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C)))).
% 0.42/1.07  0 (wt=-1) [] commutator(A,B) = add(multiply(B,A),additive_inverse(multiply(A,B))).
% 0.42/1.07  0 (wt=-1) [] multiply(additive_inverse(A),additive_inverse(B)) = multiply(A,B).
% 0.42/1.07  0 (wt=-1) [] multiply(additive_inverse(A),B) = additive_inverse(multiply(A,B)).
% 0.42/1.07  0 (wt=-1) [] multiply(A,additive_inverse(B)) = additive_inverse(multiply(A,B)).
% 0.42/1.07  0 (wt=-1) [] multiply(A,add(B,additive_inverse(C))) = add(multiply(A,B),additive_inverse(multiply(A,C))).
% 0.42/1.07  0 (wt=-1) [] multiply(add(A,additive_inverse(B)),C) = add(multiply(A,C),additive_inverse(multiply(B,C))).
% 0.42/1.07  0 (wt=-1) [] multiply(additive_inverse(A),add(B,C)) = add(additive_inverse(multiply(A,B)),additive_inverse(multiply(A,C))).
% 0.42/1.07  0 (wt=-1) [] multiply(add(A,B),additive_inverse(C)) = add(additive_inverse(multiply(A,C)),additive_inverse(multiply(B,C))).
% 0.42/1.07  0 (wt=-1) [] -(associator(x,x,y) = additive_identity).
% 0.42/1.07  end_of_list.
% 0.42/1.07  
% 0.42/1.07  Demodulators:
% 0.42/1.07  end_of_list.
% 0.42/1.07  
% 0.42/1.07  Passive:
% 0.42/1.07  end_of_list.
% 0.42/1.07  
% 0.42/1.07  Starting to process input.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 1 (wt=5) [] add(additive_identity,A) = A.
% 0.42/1.07  1 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 2 (wt=5) [] add(A,additive_identity) = A.
% 0.42/1.07  2 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 3 (wt=5) [] multiply(additive_identity,A) = additive_identity.
% 0.42/1.07  3 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 4 (wt=5) [] multiply(A,additive_identity) = additive_identity.
% 0.42/1.07  4 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 5 (wt=6) [] add(additive_inverse(A),A) = additive_identity.
% 0.42/1.07  5 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 6 (wt=6) [] add(A,additive_inverse(A)) = additive_identity.
% 0.42/1.07  6 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 7 (wt=5) [] additive_inverse(additive_inverse(A)) = A.
% 0.42/1.07  7 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 8 (wt=13) [] multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)).
% 0.42/1.07  8 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 9 (wt=13) [] multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)).
% 0.42/1.07  9 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 10 (wt=7) [] add(A,B) = add(B,A).
% 0.42/1.07  clause forward subsumed: 0 (wt=7) [flip(10)] add(B,A) = add(A,B).
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 11 (wt=11) [flip(1)] add(add(A,B),C) = add(A,add(B,C)).
% 0.42/1.07  11 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 12 (wt=11) [] multiply(multiply(A,B),B) = multiply(A,multiply(B,B)).
% 0.42/1.07  12 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 13 (wt=11) [] multiply(multiply(A,A),B) = multiply(A,multiply(A,B)).
% 0.42/1.07  13 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 14 (wt=17) [flip(1)] add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C)))) = associator(A,B,C).
% 0.42/1.07  14 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 15 (wt=12) [flip(1)] add(multiply(A,B),additive_inverse(multiply(B,A))) = commutator(B,A).
% 0.42/1.07  15 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 16 (wt=9) [] multiply(additive_inverse(A),additive_inverse(B)) = multiply(A,B).
% 0.42/1.07  16 is a new demodulator.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 17 (wt=9) [flip(1)] additive_inverse(multiply(A,B)) = multiply(additive_inverse(A),B).
% 0.42/1.07  17 is a new demodulator.
% 0.42/1.07      -> 17 back demodulating 15.
% 0.42/1.07  
% 0.42/1.07  ** KEPT: 18 (wt=12) [back_demod(15),demod([17])] add(multiply(A,B),multiply(additive_inverse(B),A)) = commutator(B,A).
% 0.42/1.08  18 is a new demodulator.
% 0.42/1.08      -> 17 back demodulating 14.
% 0.42/1.08  
% 0.42/1.08  ** KEPT: 19 (wt=17) [back_demod(14),demod([17])] add(multiply(multiply(A,B),C),multiply(additive_inverse(A),multiply(B,C))) = associator(A,B,C).
% 0.42/1.08  19 is a new demodulator.
% 0.42/1.08  
% 0.42/1.08  ** KEPT: 20 (wt=9) [demod([17])] multiply(A,additive_inverse(B)) = multiply(additive_inverse(A),B).
% 0.42/1.08  
% 0.42/1.08  ** KEPT: 21 (wt=9) [flip(20)] multiply(additive_inverse(A),B) = multiply(A,additive_inverse(B)).
% 0.42/1.08  clause forward subsumed: 0 (wt=9) [flip(21)] multiply(A,additive_inverse(B)) = multiply(additive_inverse(A),B).
% 0.42/1.08  clause forward subsumed: 0 (wt=17) [demod([8,17])] add(multiply(A,B),multiply(A,additive_inverse(C))) = add(multiply(A,B),multiply(additive_inverse(A),C)).
% 0.42/1.08  clause forward subsumed: 0 (wt=17) [demod([9,17])] add(multiply(A,C),multiply(additive_inverse(B),C)) = add(multiply(A,C),multiply(additive_inverse(B),C)).
% 0.42/1.08  clause forward subsumed: 0 (wt=19) [demod([8,17,17])] add(multiply(additive_inverse(A),B),multiply(additive_inverse(A),C)) = add(multiply(additive_inverse(A),B),multiply(additive_inverse(A),C)).
% 0.42/1.08  
% 0.42/1.08  ** KEPT: 22 (wt=19) [demod([9,17,17])] add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B))) = add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B)).
% 0.42/1.08  
% 0.42/1.08  ** KEPT: 23 (wt=19) [flip(22)] add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B)) = add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B))).
% 0.42/1.08  clause forward subsumed: 0 (wt=19) [flip(23)] add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B))) = add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B)).
% 0.42/1.08  
% 0.42/1.08  ** KEPT: 24 (wt=6) [] -(associator(x,x,y) = additive_identity).
% 0.42/1.08  ---------------- PROOF FOUND ----------------
% 0.42/1.08  % SZS status Unsatisfiable
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  After processing input:
% 0.42/1.08  
% 0.42/1.08  Usable:
% 0.42/1.08  end_of_list.
% 0.42/1.08  
% 0.42/1.08  Sos:
% 0.42/1.08  1 (wt=5) [] add(additive_identity,A) = A.
% 0.42/1.08  2 (wt=5) [] add(A,additive_identity) = A.
% 0.42/1.08  3 (wt=5) [] multiply(additive_identity,A) = additive_identity.
% 0.42/1.08  4 (wt=5) [] multiply(A,additive_identity) = additive_identity.
% 0.42/1.08  7 (wt=5) [] additive_inverse(additive_inverse(A)) = A.
% 0.42/1.08  5 (wt=6) [] add(additive_inverse(A),A) = additive_identity.
% 0.42/1.08  6 (wt=6) [] add(A,additive_inverse(A)) = additive_identity.
% 0.42/1.08  24 (wt=6) [] -(associator(x,x,y) = additive_identity).
% 0.42/1.08  10 (wt=7) [] add(A,B) = add(B,A).
% 0.42/1.08  16 (wt=9) [] multiply(additive_inverse(A),additive_inverse(B)) = multiply(A,B).
% 0.42/1.08  17 (wt=9) [flip(1)] additive_inverse(multiply(A,B)) = multiply(additive_inverse(A),B).
% 0.42/1.08  20 (wt=9) [demod([17])] multiply(A,additive_inverse(B)) = multiply(additive_inverse(A),B).
% 0.42/1.08  21 (wt=9) [flip(20)] multiply(additive_inverse(A),B) = multiply(A,additive_inverse(B)).
% 0.42/1.08  11 (wt=11) [flip(1)] add(add(A,B),C) = add(A,add(B,C)).
% 0.42/1.08  12 (wt=11) [] multiply(multiply(A,B),B) = multiply(A,multiply(B,B)).
% 0.42/1.08  13 (wt=11) [] multiply(multiply(A,A),B) = multiply(A,multiply(A,B)).
% 0.42/1.08  18 (wt=12) [back_demod(15),demod([17])] add(multiply(A,B),multiply(additive_inverse(B),A)) = commutator(B,A).
% 0.42/1.08  8 (wt=13) [] multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)).
% 0.42/1.08  9 (wt=13) [] multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)).
% 0.42/1.08  19 (wt=17) [back_demod(14),demod([17])] add(multiply(multiply(A,B),C),multiply(additive_inverse(A),multiply(B,C))) = associator(A,B,C).
% 0.42/1.08  22 (wt=19) [demod([9,17,17])] add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B))) = add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B)).
% 0.42/1.08  23 (wt=19) [flip(22)] add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B)) = add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B))).
% 0.42/1.08  end_of_list.
% 0.42/1.08  
% 0.42/1.08  Demodulators:
% 0.42/1.08  1 (wt=5) [] add(additive_identity,A) = A.
% 0.42/1.08  2 (wt=5) [] add(A,additive_identity) = A.
% 0.42/1.08  3 (wt=5) [] multiply(additive_identity,A) = additive_identity.
% 0.42/1.08  4 (wt=5) [] multiply(A,additive_identity) = additive_identity.
% 0.42/1.08  5 (wt=6) [] add(additive_inverse(A),A) = additive_identity.
% 0.42/1.08  6 (wt=6) [] add(A,additive_inverse(A)) = additive_identity.
% 0.42/1.08  7 (wt=5) [] additive_inverse(additive_inverse(A)) = A.
% 0.42/1.08  8 (wt=13) [] multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)).
% 0.42/1.08  9 (wt=13) [] multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)).
% 0.42/1.08  11 (wt=11) [flip(1)] add(add(A,B),C) = add(A,add(B,C)).
% 0.42/1.08  12 (wt=11) [] multiply(multiply(A,B),B) = multiply(A,multiply(B,B)).
% 0.42/1.08  13 (wt=11) [] multiply(multiply(A,A),B) = multiply(A,multiply(A,B)).
% 0.42/1.08  16 (wt=9) [] multiply(additive_inverse(A),additive_inverse(B)) = multiply(A,B).
% 0.42/1.08  17 (wt=9) [flip(1)] additive_inverse(multiply(A,B)) = multiply(additive_inverse(A),B).
% 0.42/1.08  18 (wt=12) [back_demod(15),demod([17])] add(multiply(A,B),multiply(additive_inverse(B),A)) = commutator(B,A).
% 0.42/1.08  19 (wt=17) [back_demod(14),demod([17])] add(multiply(multiply(A,B),C),multiply(additive_inverse(A),multiply(B,C))) = associator(A,B,C).
% 0.42/1.08  end_of_list.
% 0.42/1.08  
% 0.42/1.08  Passive:
% 0.42/1.08  end_of_list.
% 0.42/1.08  
% 0.42/1.08  UNIT CONFLICT from 96 and 24 at   0.00 seconds.
% 0.42/1.08  
% 0.42/1.08  ---------------- PROOF ----------------
% 0.42/1.08  % SZS output start Refutation
% See solution above
% 0.42/1.08  ------------ end of proof -------------
% 0.42/1.08  
% 0.42/1.08  
% 0.42/1.08  ------------- memory usage ------------
% 0.42/1.08  Memory dynamically allocated (tp_alloc): 488.
% 0.42/1.08    type (bytes each)        gets      frees     in use      avail      bytes
% 0.42/1.08  sym_ent (  96)               59          0         59          0      5.5 K
% 0.42/1.08  term (  16)                7736       6317       1419         18     27.7 K
% 0.42/1.08  gen_ptr (   8)             6839       1555       5284          9     41.4 K
% 0.42/1.08  context ( 808)             5791       5789          2          5      5.5 K
% 0.42/1.08  trail (  12)                317        317          0          4      0.0 K
% 0.42/1.08  bt_node (  68)             2153       2148          5          3      0.5 K
% 0.42/1.08  ac_position (285432)          0          0          0          0      0.0 K
% 0.42/1.08  ac_match_pos (14044)          0          0          0          0      0.0 K
% 0.42/1.08  ac_match_free_vars_pos (4020)
% 0.42/1.08                                0          0          0          0      0.0 K
% 0.42/1.08  discrim (  12)             1379        185       1194          0     14.0 K
% 0.42/1.08  flat (  40)                9172       9172          0         31      1.2 K
% 0.42/1.08  discrim_pos (  12)          410        410          0          1      0.0 K
% 0.42/1.08  fpa_head (  12)             611          0        611          0      7.2 K
% 0.42/1.08  fpa_tree (  28)             218        218          0         11      0.3 K
% 0.42/1.08  fpa_pos (  36)              168        168          0          1      0.0 K
% 0.42/1.08  literal (  12)              404        308         96          1      1.1 K
% 0.42/1.08  clause (  24)               404        308         96          1      2.3 K
% 0.42/1.08  list (  12)                 131         75         56          4      0.7 K
% 0.42/1.08  list_pos (  20)             406         86        320          0      6.2 K
% 0.42/1.08  pair_index (   40)              2          0          2          0      0.1 K
% 0.42/1.08  
% 0.42/1.08  -------------- statistics -------------
% 0.42/1.08  Clauses input                 23
% 0.42/1.08    Usable input                   0
% 0.42/1.08    Sos input                     23
% 0.42/1.08    Demodulators input             0
% 0.42/1.08    Passive input                  0
% 0.42/1.08  
% 0.42/1.08  Processed BS (before search)  30
% 0.42/1.08  Forward subsumed BS            6
% 0.42/1.08  Kept BS                       24
% 0.42/1.08  New demodulators BS           18
% 0.42/1.08  Back demodulated BS            2
% 0.42/1.08  
% 0.42/1.08  Clauses or pairs given       515
% 0.42/1.08  Clauses generated            246
% 0.42/1.08  Forward subsumed             174
% 0.42/1.08  Deleted by weight              0
% 0.42/1.08  Deleted by variable count      0
% 0.42/1.08  Kept                          72
% 0.42/1.08  New demodulators              54
% 0.42/1.08  Back demodulated              11
% 0.42/1.08  Ordered paramod prunes         0
% 0.42/1.08  Basic paramod prunes         452
% 0.42/1.08  Prime paramod prunes          20
% 0.42/1.08  Semantic prunes                0
% 0.42/1.08  
% 0.42/1.08  Rewrite attmepts            2231
% 0.42/1.08  Rewrites                     363
% 0.42/1.08  
% 0.42/1.08  FPA overloads                  0
% 0.42/1.08  FPA underloads                 0
% 0.42/1.08  
% 0.42/1.08  Usable size                    0
% 0.42/1.08  Sos size                      82
% 0.42/1.08  Demodulators size             61
% 0.42/1.08  Passive size                   0
% 0.42/1.08  Disabled size                 13
% 0.42/1.08  
% 0.42/1.08  Proofs found                   1
% 0.42/1.08  
% 0.42/1.08  ----------- times (seconds) ----------- Mon May 30 22:44:42 2022
% 0.42/1.08  
% 0.42/1.08  user CPU time             0.00   (0 hr, 0 min, 0 sec)
% 0.42/1.08  system CPU time           0.01   (0 hr, 0 min, 0 sec)
% 0.42/1.08  wall-clock time           0      (0 hr, 0 min, 0 sec)
% 0.42/1.08  input time                0.00
% 0.42/1.08  paramodulation time       0.00
% 0.42/1.08  demodulation time         0.00
% 0.42/1.08  orient time               0.00
% 0.42/1.08  weigh time                0.00
% 0.42/1.08  forward subsume time      0.00
% 0.42/1.08  back demod find time      0.00
% 0.42/1.08  conflict time             0.00
% 0.42/1.08  LRPO time                 0.00
% 0.42/1.08  store clause time         0.00
% 0.42/1.08  disable clause time       0.00
% 0.42/1.08  prime paramod time        0.00
% 0.42/1.08  semantics time            0.00
% 0.42/1.08  
% 0.42/1.08  EQP interrupted
%------------------------------------------------------------------------------