TSTP Solution File: RNG020-7 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : RNG020-7 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:12:05 EDT 2022

% Result   : Unsatisfiable 1.72s 1.95s
% Output   : Refutation 1.72s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    7
%            Number of leaves      :   10
% Syntax   : Number of clauses     :   24 (  24 unt;   0 nHn;   3 RR)
%            Number of literals    :   24 (  23 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   5 con; 0-3 aty)
%            Number of variables   :   56 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    associator(x,add(u,v),y) != add(associator(x,u,y),associator(x,v,y)),
    file('RNG020-7.p',unknown),
    [] ).

cnf(2,plain,
    add(associator(x,u,y),associator(x,v,y)) != associator(x,add(u,v),y),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(5,axiom,
    add(additive_identity,A) = A,
    file('RNG020-7.p',unknown),
    [] ).

cnf(14,axiom,
    add(A,additive_inverse(A)) = additive_identity,
    file('RNG020-7.p',unknown),
    [] ).

cnf(17,axiom,
    additive_inverse(additive_inverse(A)) = A,
    file('RNG020-7.p',unknown),
    [] ).

cnf(19,axiom,
    multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)),
    file('RNG020-7.p',unknown),
    [] ).

cnf(21,axiom,
    multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)),
    file('RNG020-7.p',unknown),
    [] ).

cnf(22,axiom,
    add(A,B) = add(B,A),
    file('RNG020-7.p',unknown),
    [] ).

cnf(23,axiom,
    add(A,add(B,C)) = add(add(A,B),C),
    file('RNG020-7.p',unknown),
    [] ).

cnf(25,plain,
    add(add(A,B),C) = add(A,add(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[23])]),
    [iquote('copy,23,flip.1')] ).

cnf(30,axiom,
    associator(A,B,C) = add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C)))),
    file('RNG020-7.p',unknown),
    [] ).

cnf(31,plain,
    add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C)))) = associator(A,B,C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[30])]),
    [iquote('copy,30,flip.1')] ).

cnf(38,axiom,
    multiply(additive_inverse(A),B) = additive_inverse(multiply(A,B)),
    file('RNG020-7.p',unknown),
    [] ).

cnf(40,plain,
    additive_inverse(multiply(A,B)) = multiply(additive_inverse(A),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[38])]),
    [iquote('copy,38,flip.1')] ).

cnf(49,plain,
    add(multiply(multiply(A,B),C),multiply(additive_inverse(A),multiply(B,C))) = associator(A,B,C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[31]),40]),
    [iquote('back_demod,31,demod,40')] ).

cnf(123,plain,
    add(A,add(B,C)) = add(B,add(A,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[25,22]),25]),
    [iquote('para_into,24.1.1.1,22.1.1,demod,25')] ).

cnf(124,plain,
    add(A,add(additive_inverse(A),B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[25,14]),5])]),
    [iquote('para_into,24.1.1.1,14.1.1,demod,5,flip.1')] ).

cnf(136,plain,
    add(additive_inverse(A),add(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[124,22]),25]),
    [iquote('para_into,124.1.1,22.1.1,demod,25')] ).

cnf(366,plain,
    add(multiply(multiply(A,B),C),add(multiply(multiply(A,D),C),add(multiply(additive_inverse(A),multiply(B,C)),multiply(additive_inverse(A),multiply(D,C))))) = associator(A,add(B,D),C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[49,19]),21,21,19,25]),
    [iquote('para_into,49.1.1.1.1,18.1.1,demod,21,21,19,25')] ).

cnf(410,plain,
    multiply(multiply(A,B),C) = add(multiply(A,multiply(B,C)),associator(A,B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[49,136]),40,17])]),
    [iquote('para_from,49.1.1,136.1.1.2,demod,40,17,flip.1')] ).

cnf(412,plain,
    add(multiply(A,multiply(B,C)),add(associator(A,B,C),add(multiply(additive_inverse(A),multiply(B,C)),D))) = add(associator(A,B,C),D),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[49,25]),410,25])]),
    [iquote('para_from,49.1.1,24.1.1.1,demod,410,25,flip.1')] ).

cnf(418,plain,
    add(multiply(A,multiply(B,C)),add(associator(A,B,C),add(D,multiply(additive_inverse(A),multiply(B,C))))) = add(D,associator(A,B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[49,123]),410,25])]),
    [iquote('para_from,49.1.1,123.1.1.2,demod,410,25,flip.1')] ).

cnf(434,plain,
    add(associator(A,B,C),associator(A,D,C)) = associator(A,add(B,D),C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[366]),410,410,25,418,25,412]),
    [iquote('back_demod,366,demod,410,410,25,418,25,412')] ).

cnf(436,plain,
    $false,
    inference(binary,[status(thm)],[434,2]),
    [iquote('binary,434.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : RNG020-7 : TPTP v8.1.0. Released v1.0.0.
% 0.12/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n003.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 02:08:26 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.72/1.94  ----- Otter 3.3f, August 2004 -----
% 1.72/1.94  The process was started by sandbox2 on n003.cluster.edu,
% 1.72/1.94  Wed Jul 27 02:08:26 2022
% 1.72/1.94  The command was "./otter".  The process ID is 1072.
% 1.72/1.94  
% 1.72/1.94  set(prolog_style_variables).
% 1.72/1.94  set(auto).
% 1.72/1.94     dependent: set(auto1).
% 1.72/1.94     dependent: set(process_input).
% 1.72/1.94     dependent: clear(print_kept).
% 1.72/1.94     dependent: clear(print_new_demod).
% 1.72/1.94     dependent: clear(print_back_demod).
% 1.72/1.94     dependent: clear(print_back_sub).
% 1.72/1.94     dependent: set(control_memory).
% 1.72/1.94     dependent: assign(max_mem, 12000).
% 1.72/1.94     dependent: assign(pick_given_ratio, 4).
% 1.72/1.94     dependent: assign(stats_level, 1).
% 1.72/1.94     dependent: assign(max_seconds, 10800).
% 1.72/1.94  clear(print_given).
% 1.72/1.94  
% 1.72/1.94  list(usable).
% 1.72/1.94  0 [] A=A.
% 1.72/1.94  0 [] add(additive_identity,X)=X.
% 1.72/1.94  0 [] add(X,additive_identity)=X.
% 1.72/1.94  0 [] multiply(additive_identity,X)=additive_identity.
% 1.72/1.94  0 [] multiply(X,additive_identity)=additive_identity.
% 1.72/1.94  0 [] add(additive_inverse(X),X)=additive_identity.
% 1.72/1.94  0 [] add(X,additive_inverse(X))=additive_identity.
% 1.72/1.94  0 [] additive_inverse(additive_inverse(X))=X.
% 1.72/1.94  0 [] multiply(X,add(Y,Z))=add(multiply(X,Y),multiply(X,Z)).
% 1.72/1.94  0 [] multiply(add(X,Y),Z)=add(multiply(X,Z),multiply(Y,Z)).
% 1.72/1.94  0 [] add(X,Y)=add(Y,X).
% 1.72/1.94  0 [] add(X,add(Y,Z))=add(add(X,Y),Z).
% 1.72/1.94  0 [] multiply(multiply(X,Y),Y)=multiply(X,multiply(Y,Y)).
% 1.72/1.94  0 [] multiply(multiply(X,X),Y)=multiply(X,multiply(X,Y)).
% 1.72/1.94  0 [] associator(X,Y,Z)=add(multiply(multiply(X,Y),Z),additive_inverse(multiply(X,multiply(Y,Z)))).
% 1.72/1.94  0 [] commutator(X,Y)=add(multiply(Y,X),additive_inverse(multiply(X,Y))).
% 1.72/1.94  0 [] multiply(additive_inverse(X),additive_inverse(Y))=multiply(X,Y).
% 1.72/1.94  0 [] multiply(additive_inverse(X),Y)=additive_inverse(multiply(X,Y)).
% 1.72/1.94  0 [] multiply(X,additive_inverse(Y))=additive_inverse(multiply(X,Y)).
% 1.72/1.94  0 [] multiply(X,add(Y,additive_inverse(Z)))=add(multiply(X,Y),additive_inverse(multiply(X,Z))).
% 1.72/1.94  0 [] multiply(add(X,additive_inverse(Y)),Z)=add(multiply(X,Z),additive_inverse(multiply(Y,Z))).
% 1.72/1.94  0 [] multiply(additive_inverse(X),add(Y,Z))=add(additive_inverse(multiply(X,Y)),additive_inverse(multiply(X,Z))).
% 1.72/1.94  0 [] multiply(add(X,Y),additive_inverse(Z))=add(additive_inverse(multiply(X,Z)),additive_inverse(multiply(Y,Z))).
% 1.72/1.94  0 [] associator(x,add(u,v),y)!=add(associator(x,u,y),associator(x,v,y)).
% 1.72/1.94  end_of_list.
% 1.72/1.94  
% 1.72/1.94  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.72/1.94  
% 1.72/1.94  All clauses are units, and equality is present; the
% 1.72/1.94  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.72/1.94  
% 1.72/1.94     dependent: set(knuth_bendix).
% 1.72/1.94     dependent: set(anl_eq).
% 1.72/1.94     dependent: set(para_from).
% 1.72/1.94     dependent: set(para_into).
% 1.72/1.94     dependent: clear(para_from_right).
% 1.72/1.94     dependent: clear(para_into_right).
% 1.72/1.94     dependent: set(para_from_vars).
% 1.72/1.94     dependent: set(eq_units_both_ways).
% 1.72/1.94     dependent: set(dynamic_demod_all).
% 1.72/1.94     dependent: set(dynamic_demod).
% 1.72/1.94     dependent: set(order_eq).
% 1.72/1.94     dependent: set(back_demod).
% 1.72/1.94     dependent: set(lrpo).
% 1.72/1.94  
% 1.72/1.94  ------------> process usable:
% 1.72/1.94  ** KEPT (pick-wt=16): 2 [copy,1,flip.1] add(associator(x,u,y),associator(x,v,y))!=associator(x,add(u,v),y).
% 1.72/1.94  
% 1.72/1.94  ------------> process sos:
% 1.72/1.94  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.72/1.94  ** KEPT (pick-wt=5): 4 [] add(additive_identity,A)=A.
% 1.72/1.94  ---> New Demodulator: 5 [new_demod,4] add(additive_identity,A)=A.
% 1.72/1.94  ** KEPT (pick-wt=5): 6 [] add(A,additive_identity)=A.
% 1.72/1.94  ---> New Demodulator: 7 [new_demod,6] add(A,additive_identity)=A.
% 1.72/1.94  ** KEPT (pick-wt=5): 8 [] multiply(additive_identity,A)=additive_identity.
% 1.72/1.94  ---> New Demodulator: 9 [new_demod,8] multiply(additive_identity,A)=additive_identity.
% 1.72/1.94  ** KEPT (pick-wt=5): 10 [] multiply(A,additive_identity)=additive_identity.
% 1.72/1.94  ---> New Demodulator: 11 [new_demod,10] multiply(A,additive_identity)=additive_identity.
% 1.72/1.94  ** KEPT (pick-wt=6): 12 [] add(additive_inverse(A),A)=additive_identity.
% 1.72/1.94  ---> New Demodulator: 13 [new_demod,12] add(additive_inverse(A),A)=additive_identity.
% 1.72/1.94  ** KEPT (pick-wt=6): 14 [] add(A,additive_inverse(A))=additive_identity.
% 1.72/1.94  ---> New Demodulator: 15 [new_demod,14] add(A,additive_inverse(A))=additive_identity.
% 1.72/1.94  ** KEPT (pick-wt=5): 16 [] additive_inverse(additive_inverse(A))=A.
% 1.72/1.94  ---> New Demodulator: 17 [new_demod,16] additive_inverse(additive_inverse(A))=A.
% 1.72/1.94  ** KEPT (pick-wt=13): 18 [] multiply(A,add(B,C))=add(multiply(A,B),multiply(A,C)).
% 1.72/1.94  ---> New Demodulator: 19 [new_demod,18] multiply(A,add(B,C))=add(multiply(A,B),multiply(A,C)).
% 1.72/1.94  ** KEPT (pick-wt=13): 20 [] multiply(add(A,B),C)=add(multiply(A,C),multiply(B,C)).
% 1.72/1.94  ---> New Demodulator: 21 [new_demod,20] multiply(add(A,B),C)=add(multiply(A,C),multiply(B,C)).
% 1.72/1.94  ** KEPT (pick-wt=7): 22 [] add(A,B)=add(B,A).
% 1.72/1.94  ** KEPT (pick-wt=11): 24 [copy,23,flip.1] add(add(A,B),C)=add(A,add(B,C)).
% 1.72/1.94  ---> New Demodulator: 25 [new_demod,24] add(add(A,B),C)=add(A,add(B,C)).
% 1.72/1.94  ** KEPT (pick-wt=11): 26 [] multiply(multiply(A,B),B)=multiply(A,multiply(B,B)).
% 1.72/1.94  ---> New Demodulator: 27 [new_demod,26] multiply(multiply(A,B),B)=multiply(A,multiply(B,B)).
% 1.72/1.94  ** KEPT (pick-wt=11): 28 [] multiply(multiply(A,A),B)=multiply(A,multiply(A,B)).
% 1.72/1.94  ---> New Demodulator: 29 [new_demod,28] multiply(multiply(A,A),B)=multiply(A,multiply(A,B)).
% 1.72/1.94  ** KEPT (pick-wt=17): 31 [copy,30,flip.1] add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C))))=associator(A,B,C).
% 1.72/1.94  ---> New Demodulator: 32 [new_demod,31] add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C))))=associator(A,B,C).
% 1.72/1.94  ** KEPT (pick-wt=12): 34 [copy,33,flip.1] add(multiply(A,B),additive_inverse(multiply(B,A)))=commutator(B,A).
% 1.72/1.94  ---> New Demodulator: 35 [new_demod,34] add(multiply(A,B),additive_inverse(multiply(B,A)))=commutator(B,A).
% 1.72/1.94  ** KEPT (pick-wt=9): 36 [] multiply(additive_inverse(A),additive_inverse(B))=multiply(A,B).
% 1.72/1.94  ---> New Demodulator: 37 [new_demod,36] multiply(additive_inverse(A),additive_inverse(B))=multiply(A,B).
% 1.72/1.94  ** KEPT (pick-wt=9): 39 [copy,38,flip.1] additive_inverse(multiply(A,B))=multiply(additive_inverse(A),B).
% 1.72/1.94  ---> New Demodulator: 40 [new_demod,39] additive_inverse(multiply(A,B))=multiply(additive_inverse(A),B).
% 1.72/1.94  ** KEPT (pick-wt=9): 42 [copy,41,demod,40] multiply(A,additive_inverse(B))=multiply(additive_inverse(A),B).
% 1.72/1.94  ** KEPT (pick-wt=17): 44 [copy,43,demod,19,40] add(multiply(A,B),multiply(A,additive_inverse(C)))=add(multiply(A,B),multiply(additive_inverse(A),C)).
% 1.72/1.94    Following clause subsumed by 3 during input processing: 0 [demod,21,40] add(multiply(A,C),multiply(additive_inverse(B),C))=add(multiply(A,C),multiply(additive_inverse(B),C)).
% 1.72/1.94    Following clause subsumed by 3 during input processing: 0 [demod,19,40,40] add(multiply(additive_inverse(A),B),multiply(additive_inverse(A),C))=add(multiply(additive_inverse(A),B),multiply(additive_inverse(A),C)).
% 1.72/1.94  ** KEPT (pick-wt=19): 46 [copy,45,demod,21,40,40] add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B)))=add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B)).
% 1.72/1.94    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.72/1.94  >>>> Starting back demodulation with 5.
% 1.72/1.94  >>>> Starting back demodulation with 7.
% 1.72/1.94  >>>> Starting back demodulation with 9.
% 1.72/1.94  >>>> Starting back demodulation with 11.
% 1.72/1.94  >>>> Starting back demodulation with 13.
% 1.72/1.94  >>>> Starting back demodulation with 15.
% 1.72/1.94  >>>> Starting back demodulation with 17.
% 1.72/1.94  >>>> Starting back demodulation with 19.
% 1.72/1.94  >>>> Starting back demodulation with 21.
% 1.72/1.94    Following clause subsumed by 22 during input processing: 0 [copy,22,flip.1] add(A,B)=add(B,A).
% 1.72/1.94  >>>> Starting back demodulation with 25.
% 1.72/1.94  >>>> Starting back demodulation with 27.
% 1.72/1.94  >>>> Starting back demodulation with 29.
% 1.72/1.94  >>>> Starting back demodulation with 32.
% 1.72/1.94  >>>> Starting back demodulation with 35.
% 1.72/1.94  >>>> Starting back demodulation with 37.
% 1.72/1.94  >>>> Starting back demodulation with 40.
% 1.72/1.94      >> back demodulating 34 with 40.
% 1.72/1.94      >> back demodulating 31 with 40.
% 1.72/1.94  ** KEPT (pick-wt=9): 51 [copy,42,flip.1] multiply(additive_inverse(A),B)=multiply(A,additive_inverse(B)).
% 1.72/1.94  ** KEPT (pick-wt=17): 52 [copy,44,flip.1] add(multiply(A,B),multiply(additive_inverse(A),C))=add(multiply(A,B),multiply(A,additive_inverse(C))).
% 1.72/1.94  ** KEPT (pick-wt=19): 53 [copy,46,flip.1] add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B))=add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B))).
% 1.72/1.94  >>>> Starting back demodulation with 48.
% 1.72/1.94  >>>> Starting back demodulation with 50.
% 1.72/1.94    Following clause subsumed by 42 during input processing: 0 [copy,51,flip.1] multiply(A,additive_inverse(B))=multiply(additive_inverse(A),B).
% 1.72/1.95    Following clause subsumed by 44 during input processing: 0 [copy,52,flip.1] add(multiply(A,B),multiply(A,additive_inverse(C)))=add(multiply(A,B),multiply(additive_inverse(A),C)).
% 1.72/1.95    Following clause subsumed by 46 during input processing: 0 [copy,53,flip.1] add(multiply(A,additive_inverse(B)),multiply(C,additive_inverse(B)))=add(multiply(additive_inverse(A),B),multiply(additive_inverse(C),B)).
% 1.72/1.95  
% 1.72/1.95  ======= end of input processing =======
% 1.72/1.95  
% 1.72/1.95  =========== start of search ===========
% 1.72/1.95  
% 1.72/1.95  -------- PROOF -------- 
% 1.72/1.95  
% 1.72/1.95  ----> UNIT CONFLICT at   0.01 sec ----> 436 [binary,434.1,2.1] $F.
% 1.72/1.95  
% 1.72/1.95  Length of proof is 13.  Level of proof is 6.
% 1.72/1.95  
% 1.72/1.95  ---------------- PROOF ----------------
% 1.72/1.95  % SZS status Unsatisfiable
% 1.72/1.95  % SZS output start Refutation
% See solution above
% 1.72/1.95  ------------ end of proof -------------
% 1.72/1.95  
% 1.72/1.95  
% 1.72/1.95  Search stopped by max_proofs option.
% 1.72/1.95  
% 1.72/1.95  
% 1.72/1.95  Search stopped by max_proofs option.
% 1.72/1.95  
% 1.72/1.95  ============ end of search ============
% 1.72/1.95  
% 1.72/1.95  -------------- statistics -------------
% 1.72/1.95  clauses given                 41
% 1.72/1.95  clauses generated            836
% 1.72/1.95  clauses kept                 290
% 1.72/1.95  clauses forward subsumed     772
% 1.72/1.95  clauses back subsumed          2
% 1.72/1.95  Kbytes malloced             2929
% 1.72/1.95  
% 1.72/1.95  ----------- times (seconds) -----------
% 1.72/1.95  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.72/1.95  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.72/1.95  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.72/1.95  
% 1.72/1.95  That finishes the proof of the theorem.
% 1.72/1.95  
% 1.72/1.95  Process 1072 finished Wed Jul 27 02:08:28 2022
% 1.72/1.95  Otter interrupted
% 1.72/1.95  PROOF FOUND
%------------------------------------------------------------------------------