TSTP Solution File: RNG006-10 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : RNG006-10 : TPTP v8.1.2. Released v7.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:48:23 EDT 2023

% Result   : Unsatisfiable 28.73s 28.93s
% Output   : CNFRefutation 28.73s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   11
%            Number of leaves      :   33
% Syntax   : Number of formulae    :   87 (  71 unt;  16 typ;   0 def)
%            Number of atoms       :   71 (  70 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    2 (   2   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg)
%            Maximal term depth    :    6 (   1 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :   19 (   7   >;  12   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   16 (  16 usr;   9 con; 0-4 aty)
%            Number of variables   :  130 (   4 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    ifeq2: ( $i * $i * $i * $i ) > $i ).

tff(decl_23,type,
    ifeq: ( $i * $i * $i * $i ) > $i ).

tff(decl_24,type,
    additive_identity: $i ).

tff(decl_25,type,
    sum: ( $i * $i * $i ) > $i ).

tff(decl_26,type,
    true: $i ).

tff(decl_27,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_28,type,
    product: ( $i * $i * $i ) > $i ).

tff(decl_29,type,
    add: ( $i * $i ) > $i ).

tff(decl_30,type,
    additive_inverse: $i > $i ).

tff(decl_31,type,
    b: $i ).

tff(decl_32,type,
    c: $i ).

tff(decl_33,type,
    bS_Ic: $i ).

tff(decl_34,type,
    a: $i ).

tff(decl_35,type,
    aPb: $i ).

tff(decl_36,type,
    aPc: $i ).

tff(decl_37,type,
    aPb_S_IaPc: $i ).

cnf(associativity_of_addition2,axiom,
    ifeq(sum(X1,X2,X3),true,ifeq(sum(X4,X3,X5),true,ifeq(sum(X4,X1,X6),true,sum(X6,X2,X5),true),true),true) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',associativity_of_addition2) ).

cnf(additive_identity2,axiom,
    sum(X1,additive_identity,X1) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',additive_identity2) ).

cnf(ifeq_axiom_001,axiom,
    ifeq(X1,X1,X2,X3) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',ifeq_axiom_001) ).

cnf(b_plus_inverse_c,hypothesis,
    sum(b,additive_inverse(c),bS_Ic) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',b_plus_inverse_c) ).

cnf(addition_is_well_defined,axiom,
    ifeq2(sum(X1,X2,X3),true,ifeq2(sum(X1,X2,X4),true,X4,X3),X3) = X3,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',addition_is_well_defined) ).

cnf(additive_identity1,axiom,
    sum(additive_identity,X1,X1) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',additive_identity1) ).

cnf(ifeq_axiom,axiom,
    ifeq2(X1,X1,X2,X3) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',ifeq_axiom) ).

cnf(commutativity_of_addition,axiom,
    ifeq(sum(X1,X2,X3),true,sum(X2,X1,X3),true) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',commutativity_of_addition) ).

cnf(closure_of_addition,axiom,
    sum(X1,X2,add(X1,X2)) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',closure_of_addition) ).

cnf(left_inverse,axiom,
    sum(additive_inverse(X1),X1,additive_identity) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',left_inverse) ).

cnf(aPb_plus_IaPc,hypothesis,
    sum(aPb,additive_inverse(aPc),aPb_S_IaPc) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',aPb_plus_IaPc) ).

cnf(distributivity1,axiom,
    ifeq(product(X1,X2,X3),true,ifeq(product(X1,X4,X5),true,ifeq(product(X1,X6,X7),true,ifeq(sum(X6,X4,X2),true,sum(X7,X5,X3),true),true),true),true) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',distributivity1) ).

cnf(a_times_c,hypothesis,
    product(a,c,aPc) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',a_times_c) ).

cnf(multiplication_is_well_defined,axiom,
    ifeq2(product(X1,X2,X3),true,ifeq2(product(X1,X2,X4),true,X4,X3),X3) = X3,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiplication_is_well_defined) ).

cnf(a_times_b,hypothesis,
    product(a,b,aPb) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',a_times_b) ).

cnf(closure_of_multiplication,axiom,
    product(X1,X2,multiply(X1,X2)) = true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',closure_of_multiplication) ).

cnf(prove_a_times_bS_Ic_is_aPb_S__IaPc,negated_conjecture,
    product(a,bS_Ic,aPb_S_IaPc) != true,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_a_times_bS_Ic_is_aPb_S__IaPc) ).

cnf(c_0_17,axiom,
    ifeq(sum(X1,X2,X3),true,ifeq(sum(X4,X3,X5),true,ifeq(sum(X4,X1,X6),true,sum(X6,X2,X5),true),true),true) = true,
    associativity_of_addition2 ).

cnf(c_0_18,axiom,
    sum(X1,additive_identity,X1) = true,
    additive_identity2 ).

cnf(c_0_19,axiom,
    ifeq(X1,X1,X2,X3) = X2,
    ifeq_axiom_001 ).

cnf(c_0_20,hypothesis,
    sum(b,additive_inverse(c),bS_Ic) = true,
    b_plus_inverse_c ).

cnf(c_0_21,axiom,
    ifeq2(sum(X1,X2,X3),true,ifeq2(sum(X1,X2,X4),true,X4,X3),X3) = X3,
    addition_is_well_defined ).

cnf(c_0_22,axiom,
    sum(additive_identity,X1,X1) = true,
    additive_identity1 ).

cnf(c_0_23,axiom,
    ifeq2(X1,X1,X2,X3) = X2,
    ifeq_axiom ).

cnf(c_0_24,axiom,
    ifeq(sum(X1,X2,X3),true,sum(X2,X1,X3),true) = true,
    commutativity_of_addition ).

cnf(c_0_25,axiom,
    sum(X1,X2,add(X1,X2)) = true,
    closure_of_addition ).

cnf(c_0_26,plain,
    ifeq(sum(X1,X2,additive_identity),true,ifeq(sum(X3,X1,X4),true,sum(X4,X2,X3),true),true) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_18]),c_0_19]) ).

cnf(c_0_27,axiom,
    sum(additive_inverse(X1),X1,additive_identity) = true,
    left_inverse ).

cnf(c_0_28,hypothesis,
    ifeq(sum(additive_inverse(c),X1,X2),true,ifeq(sum(b,X2,X3),true,sum(bS_Ic,X1,X3),true),true) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_20]),c_0_19]) ).

cnf(c_0_29,plain,
    ifeq2(sum(additive_identity,X1,X2),true,X1,X2) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_22]),c_0_23]) ).

cnf(c_0_30,plain,
    sum(X1,X2,add(X2,X1)) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_25]),c_0_19]) ).

cnf(c_0_31,hypothesis,
    sum(aPb,additive_inverse(aPc),aPb_S_IaPc) = true,
    aPb_plus_IaPc ).

cnf(c_0_32,plain,
    ifeq(sum(X1,additive_inverse(X2),X3),true,sum(X3,X2,X1),true) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_26,c_0_27]),c_0_19]) ).

cnf(c_0_33,hypothesis,
    ifeq(sum(b,additive_identity,X1),true,sum(bS_Ic,c,X1),true) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_28,c_0_27]),c_0_19]) ).

cnf(c_0_34,plain,
    add(X1,additive_identity) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_30]),c_0_23]) ).

cnf(c_0_35,plain,
    ifeq2(sum(X1,X2,X3),true,add(X1,X2),X3) = X3,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_25]),c_0_23]) ).

cnf(c_0_36,hypothesis,
    ifeq(sum(additive_inverse(aPc),X1,X2),true,ifeq(sum(aPb,X2,X3),true,sum(aPb_S_IaPc,X1,X3),true),true) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_31]),c_0_19]) ).

cnf(c_0_37,plain,
    sum(add(additive_inverse(X1),X2),X1,X2) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_30]),c_0_19]) ).

cnf(c_0_38,plain,
    sum(additive_identity,X1,additive_inverse(additive_inverse(X1))) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_27]),c_0_19]) ).

cnf(c_0_39,plain,
    add(additive_identity,X1) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_25]),c_0_23]) ).

cnf(c_0_40,axiom,
    ifeq(product(X1,X2,X3),true,ifeq(product(X1,X4,X5),true,ifeq(product(X1,X6,X7),true,ifeq(sum(X6,X4,X2),true,sum(X7,X5,X3),true),true),true),true) = true,
    distributivity1 ).

cnf(c_0_41,hypothesis,
    product(a,c,aPc) = true,
    a_times_c ).

cnf(c_0_42,hypothesis,
    sum(bS_Ic,c,b) = true,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_33,c_0_25]),c_0_34]),c_0_19]) ).

cnf(c_0_43,axiom,
    ifeq2(product(X1,X2,X3),true,ifeq2(product(X1,X2,X4),true,X4,X3),X3) = X3,
    multiplication_is_well_defined ).

cnf(c_0_44,hypothesis,
    product(a,b,aPb) = true,
    a_times_b ).

cnf(c_0_45,plain,
    sum(add(X1,additive_inverse(X2)),X2,X1) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_25]),c_0_19]) ).

cnf(c_0_46,plain,
    add(X1,X2) = add(X2,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_35,c_0_30]),c_0_23]) ).

cnf(c_0_47,hypothesis,
    ifeq(sum(additive_inverse(aPc),X1,X2),true,sum(aPb_S_IaPc,X1,add(aPb,X2)),true) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_36,c_0_25]),c_0_19]) ).

cnf(c_0_48,plain,
    sum(X1,add(additive_inverse(X1),X2),X2) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_37]),c_0_19]) ).

cnf(c_0_49,plain,
    additive_inverse(additive_inverse(X1)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_35,c_0_38]),c_0_39]),c_0_23]) ).

cnf(c_0_50,hypothesis,
    ifeq(product(a,X1,X2),true,ifeq(product(a,X3,X4),true,ifeq(sum(c,X3,X1),true,sum(aPc,X4,X2),true),true),true) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40,c_0_41]),c_0_19]) ).

cnf(c_0_51,hypothesis,
    sum(c,bS_Ic,b) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_42]),c_0_19]) ).

cnf(c_0_52,hypothesis,
    ifeq2(product(a,b,X1),true,X1,aPb) = aPb,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43,c_0_44]),c_0_23]) ).

cnf(c_0_53,axiom,
    product(X1,X2,multiply(X1,X2)) = true,
    closure_of_multiplication ).

cnf(c_0_54,plain,
    add(X1,add(X2,additive_inverse(X1))) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_35,c_0_45]),c_0_23]),c_0_46]) ).

cnf(c_0_55,hypothesis,
    sum(aPb_S_IaPc,add(aPc,X1),add(aPb,X1)) = true,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47,c_0_48]),c_0_49]),c_0_19]) ).

cnf(c_0_56,hypothesis,
    ifeq(product(a,b,X1),true,ifeq(product(a,bS_Ic,X2),true,sum(aPc,X2,X1),true),true) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50,c_0_51]),c_0_19]) ).

cnf(c_0_57,hypothesis,
    multiply(a,b) = aPb,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52,c_0_53]),c_0_23]) ).

cnf(c_0_58,plain,
    add(additive_inverse(X1),add(X2,X1)) = X2,
    inference(spm,[status(thm)],[c_0_54,c_0_49]) ).

cnf(c_0_59,hypothesis,
    add(aPb_S_IaPc,add(aPc,X1)) = add(aPb,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_35,c_0_55]),c_0_23]) ).

cnf(c_0_60,hypothesis,
    ifeq(product(a,bS_Ic,X1),true,sum(aPc,X1,aPb),true) = true,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_53]),c_0_57]),c_0_19]) ).

cnf(c_0_61,hypothesis,
    add(add(aPb,X1),additive_inverse(add(aPc,X1))) = aPb_S_IaPc,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_58,c_0_59]),c_0_46]) ).

cnf(c_0_62,plain,
    add(X1,additive_inverse(add(X1,X2))) = additive_inverse(X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_58,c_0_58]),c_0_46]) ).

cnf(c_0_63,hypothesis,
    sum(aPc,multiply(a,bS_Ic),aPb) = true,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60,c_0_53]),c_0_19]) ).

cnf(c_0_64,plain,
    ifeq2(sum(additive_inverse(X1),X1,X2),true,additive_identity,X2) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_27]),c_0_23]) ).

cnf(c_0_65,hypothesis,
    add(X1,add(aPb,additive_inverse(add(aPc,X1)))) = aPb_S_IaPc,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61,c_0_62]),c_0_49]),c_0_46]) ).

cnf(c_0_66,hypothesis,
    add(aPc,multiply(a,bS_Ic)) = aPb,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_35,c_0_63]),c_0_23]) ).

cnf(c_0_67,plain,
    add(X1,additive_inverse(X1)) = additive_identity,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64,c_0_30]),c_0_23]) ).

cnf(c_0_68,hypothesis,
    multiply(a,bS_Ic) = aPb_S_IaPc,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_66]),c_0_67]),c_0_34]) ).

cnf(c_0_69,negated_conjecture,
    product(a,bS_Ic,aPb_S_IaPc) != true,
    prove_a_times_bS_Ic_is_aPb_S__IaPc ).

cnf(c_0_70,hypothesis,
    $false,
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_53,c_0_68]),c_0_69]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem    : RNG006-10 : TPTP v8.1.2. Released v7.3.0.
% 0.00/0.12  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.13/0.32  % Computer : n013.cluster.edu
% 0.13/0.32  % Model    : x86_64 x86_64
% 0.13/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.32  % Memory   : 8042.1875MB
% 0.13/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.32  % CPULimit   : 300
% 0.13/0.32  % WCLimit    : 300
% 0.13/0.32  % DateTime   : Sun Aug 27 01:44:17 EDT 2023
% 0.13/0.32  % CPUTime  : 
% 0.16/0.54  start to proof: theBenchmark
% 28.73/28.93  % Version  : CSE_E---1.5
% 28.73/28.93  % Problem  : theBenchmark.p
% 28.73/28.93  % Proof found
% 28.73/28.93  % SZS status Theorem for theBenchmark.p
% 28.73/28.93  % SZS output start Proof
% See solution above
% 28.73/28.94  % Total time : 28.392000 s
% 28.73/28.94  % SZS output end Proof
% 28.73/28.94  % Total time : 28.396000 s
%------------------------------------------------------------------------------