TSTP Solution File: REL046+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : REL046+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:11:58 EDT 2022

% Result   : Theorem 2.07s 2.28s
% Output   : Refutation 2.07s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   29
%            Number of leaves      :   13
% Syntax   : Number of clauses     :   71 (  66 unt;   0 nHn;  17 RR)
%            Number of literals    :   76 (  75 equ;  10 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   6 con; 0-2 aty)
%            Number of variables   :   85 (   9 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( join(dollar_c3,dollar_c2) != dollar_c2
    | join(dollar_c3,dollar_c1) != dollar_c1 ),
    file('REL046+1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('REL046+1.p',unknown),
    [] ).

cnf(3,axiom,
    join(A,B) = join(B,A),
    file('REL046+1.p',unknown),
    [] ).

cnf(4,axiom,
    join(A,join(B,C)) = join(join(A,B),C),
    file('REL046+1.p',unknown),
    [] ).

cnf(6,plain,
    join(join(A,B),C) = join(A,join(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[4])]),
    [iquote('copy,4,flip.1')] ).

cnf(7,axiom,
    A = join(complement(join(complement(A),complement(B))),complement(join(complement(A),B))),
    file('REL046+1.p',unknown),
    [] ).

cnf(8,plain,
    join(complement(join(complement(A),complement(B))),complement(join(complement(A),B))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[7])]),
    [iquote('copy,7,flip.1')] ).

cnf(10,axiom,
    meet(A,B) = complement(join(complement(A),complement(B))),
    file('REL046+1.p',unknown),
    [] ).

cnf(12,plain,
    complement(join(complement(A),complement(B))) = meet(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(16,axiom,
    composition(A,one) = A,
    file('REL046+1.p',unknown),
    [] ).

cnf(22,axiom,
    converse(converse(A)) = A,
    file('REL046+1.p',unknown),
    [] ).

cnf(25,axiom,
    converse(composition(A,B)) = composition(converse(B),converse(A)),
    file('REL046+1.p',unknown),
    [] ).

cnf(27,axiom,
    join(composition(converse(A),complement(composition(A,B))),complement(B)) = complement(B),
    file('REL046+1.p',unknown),
    [] ).

cnf(29,axiom,
    top = join(A,complement(A)),
    file('REL046+1.p',unknown),
    [] ).

cnf(30,plain,
    join(A,complement(A)) = top,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[29])]),
    [iquote('copy,29,flip.1')] ).

cnf(32,axiom,
    zero = meet(A,complement(A)),
    file('REL046+1.p',unknown),
    [] ).

cnf(34,plain,
    meet(A,complement(A)) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[32])]),
    [iquote('copy,32,flip.1')] ).

cnf(35,axiom,
    join(dollar_c3,meet(dollar_c2,dollar_c1)) = meet(dollar_c2,dollar_c1),
    file('REL046+1.p',unknown),
    [] ).

cnf(37,plain,
    join(meet(A,B),complement(join(complement(A),B))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[8]),12]),
    [iquote('back_demod,8,demod,12')] ).

cnf(39,plain,
    join(complement(A),A) = top,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,30])]),
    [iquote('para_into,3.1.1,30.1.1,flip.1')] ).

cnf(41,plain,
    ( join(dollar_c3,dollar_c2) != dollar_c2
    | join(dollar_c1,dollar_c3) != dollar_c1 ),
    inference(para_from,[status(thm),theory(equality)],[3,1]),
    [iquote('para_from,3.1.1,1.2.1')] ).

cnf(43,plain,
    join(meet(dollar_c2,dollar_c1),dollar_c3) = meet(dollar_c2,dollar_c1),
    inference(para_into,[status(thm),theory(equality)],[35,3]),
    [iquote('para_into,35.1.1,3.1.1')] ).

cnf(47,plain,
    complement(join(complement(A),meet(B,C))) = meet(A,join(complement(B),complement(C))),
    inference(para_into,[status(thm),theory(equality)],[12,12]),
    [iquote('para_into,11.1.1.1.2,11.1.1')] ).

cnf(51,plain,
    complement(top) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,30]),34]),
    [iquote('para_into,11.1.1.1,30.1.1,demod,34')] ).

cnf(52,plain,
    meet(A,B) = meet(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,3]),12]),
    [iquote('para_into,11.1.1.1,3.1.1,demod,12')] ).

cnf(69,plain,
    join(A,join(B,C)) = join(B,join(A,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[6,3]),6]),
    [iquote('para_into,5.1.1.1,3.1.1,demod,6')] ).

cnf(75,plain,
    complement(join(complement(A),zero)) = meet(A,top),
    inference(para_from,[status(thm),theory(equality)],[51,12]),
    [iquote('para_from,50.1.1,11.1.1.1.2')] ).

cnf(83,plain,
    complement(join(zero,complement(A))) = meet(top,A),
    inference(para_from,[status(thm),theory(equality)],[51,12]),
    [iquote('para_from,50.1.1,11.1.1.1.1')] ).

cnf(94,plain,
    meet(dollar_c2,dollar_c1) = join(meet(dollar_c1,dollar_c2),dollar_c3),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[52,43])]),
    [iquote('para_from,52.1.1,43.1.1.1,flip.1')] ).

cnf(183,plain,
    composition(converse(one),converse(A)) = converse(A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[25,16])]),
    [iquote('para_into,25.1.1.1,16.1.1,flip.1')] ).

cnf(189,plain,
    composition(converse(one),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[183,22]),22]),
    [iquote('para_into,183.1.1.2,21.1.1,demod,22')] ).

cnf(192,plain,
    converse(one) = one,
    inference(para_into,[status(thm),theory(equality)],[189,16]),
    [iquote('para_into,189.1.1,16.1.1')] ).

cnf(194,plain,
    composition(one,A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[189]),192]),
    [iquote('back_demod,189,demod,192')] ).

cnf(200,plain,
    join(complement(A),complement(A)) = complement(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,192]),194,194]),
    [iquote('para_into,27.1.1.1.1,191.1.1,demod,194,194')] ).

cnf(260,plain,
    complement(complement(A)) = meet(A,A),
    inference(para_from,[status(thm),theory(equality)],[200,12]),
    [iquote('para_from,199.1.1,11.1.1.1')] ).

cnf(264,plain,
    join(complement(A),join(complement(A),B)) = join(complement(A),B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[200,6])]),
    [iquote('para_from,199.1.1,5.1.1.1,flip.1')] ).

cnf(280,plain,
    join(zero,meet(A,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[37,34]),200,260]),
    [iquote('para_into,37.1.1.1,33.1.1,demod,200,260')] ).

cnf(292,plain,
    join(meet(A,A),zero) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[37,39]),51]),
    [iquote('para_into,37.1.1.2.1,39.1.1,demod,51')] ).

cnf(300,plain,
    join(meet(A,complement(B)),meet(A,B)) = A,
    inference(para_into,[status(thm),theory(equality)],[37,12]),
    [iquote('para_into,37.1.1.2,11.1.1')] ).

cnf(315,plain,
    complement(meet(A,B)) = meet(join(complement(A),complement(B)),join(complement(A),complement(B))),
    inference(para_into,[status(thm),theory(equality)],[260,12]),
    [iquote('para_into,259.1.1.1,11.1.1')] ).

cnf(319,plain,
    meet(top,complement(A)) = complement(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[260,83]),280])]),
    [iquote('para_from,259.1.1,82.1.1.1.2,demod,280,flip.1')] ).

cnf(321,plain,
    meet(complement(A),top) = complement(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[260,75]),292])]),
    [iquote('para_from,259.1.1,74.1.1.1.1,demod,292,flip.1')] ).

cnf(343,plain,
    ( join(dollar_c2,dollar_c3) != dollar_c2
    | join(dollar_c1,dollar_c3) != dollar_c1 ),
    inference(para_into,[status(thm),theory(equality)],[41,3]),
    [iquote('para_into,41.1.1,3.1.1')] ).

cnf(352,plain,
    join(complement(A),meet(top,A)) = top,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[319,37]),51,83]),
    [iquote('para_from,319.1.1,37.1.1.1,demod,51,83')] ).

cnf(477,plain,
    join(complement(A),meet(A,top)) = top,
    inference(para_into,[status(thm),theory(equality)],[352,52]),
    [iquote('para_into,352.1.1.2,52.1.1')] ).

cnf(530,plain,
    meet(A,join(complement(A),zero)) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[477,47]),51,51])]),
    [iquote('para_from,477.1.1,47.1.1.1,demod,51,51,flip.1')] ).

cnf(622,plain,
    join(zero,meet(A,top)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[530,37]),264,75]),
    [iquote('para_from,530.1.1,37.1.1.1,demod,264,75')] ).

cnf(624,plain,
    join(zero,complement(A)) = complement(A),
    inference(para_into,[status(thm),theory(equality)],[622,321]),
    [iquote('para_into,622.1.1.2,321.1.1')] ).

cnf(663,plain,
    meet(A,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[624,260]),280,260])]),
    [iquote('para_into,624.1.1.2,259.1.1,demod,280,260,flip.1')] ).

cnf(693,plain,
    complement(meet(A,B)) = join(complement(A),complement(B)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[315]),663]),
    [iquote('back_demod,315,demod,663')] ).

cnf(697,plain,
    complement(complement(A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[260]),663]),
    [iquote('back_demod,259,demod,663')] ).

cnf(716,plain,
    complement(join(complement(A),B)) = meet(A,complement(B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[663,47]),200]),
    [iquote('para_from,662.1.1,47.1.1.1.2,demod,200')] ).

cnf(754,plain,
    join(A,A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[697,200]),697,697]),
    [iquote('para_from,696.1.1,199.1.1.2,demod,697,697')] ).

cnf(804,plain,
    join(A,join(B,A)) = join(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[69,754])]),
    [iquote('para_into,69.1.1.2,754.1.1,flip.1')] ).

cnf(970,plain,
    join(meet(dollar_c1,dollar_c2),dollar_c3) = meet(dollar_c1,dollar_c2),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[94,52])]),
    [iquote('para_into,94.1.1,52.1.1,flip.1')] ).

cnf(1082,plain,
    join(meet(dollar_c2,dollar_c1),dollar_c3) = meet(dollar_c1,dollar_c2),
    inference(para_into,[status(thm),theory(equality)],[970,52]),
    [iquote('para_into,970.1.1.1,52.1.1')] ).

cnf(1094,plain,
    join(meet(A,B),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[300,804]),300]),
    [iquote('para_from,299.1.1,804.1.1.2,demod,300')] ).

cnf(1096,plain,
    join(meet(A,B),B) = B,
    inference(para_into,[status(thm),theory(equality)],[1094,52]),
    [iquote('para_into,1094.1.1.1,52.1.1')] ).

cnf(1098,plain,
    join(A,meet(A,B)) = A,
    inference(para_into,[status(thm),theory(equality)],[1094,3]),
    [iquote('para_into,1094.1.1,3.1.1')] ).

cnf(1102,plain,
    join(A,meet(B,A)) = A,
    inference(para_into,[status(thm),theory(equality)],[1096,3]),
    [iquote('para_into,1096.1.1,3.1.1')] ).

cnf(1146,plain,
    meet(A,join(complement(B),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[716,1102]),697,693,697])]),
    [iquote('para_into,716.1.1.1,1102.1.1,demod,697,693,697,flip.1')] ).

cnf(1164,plain,
    meet(A,join(B,A)) = A,
    inference(para_into,[status(thm),theory(equality)],[1146,697]),
    [iquote('para_into,1146.1.1.2.1,696.1.1')] ).

cnf(1176,plain,
    meet(A,join(B,join(C,A))) = A,
    inference(para_into,[status(thm),theory(equality)],[1164,6]),
    [iquote('para_into,1164.1.1.2,5.1.1')] ).

cnf(1236,plain,
    meet(dollar_c3,join(A,meet(dollar_c1,dollar_c2))) = dollar_c3,
    inference(para_into,[status(thm),theory(equality)],[1176,1082]),
    [iquote('para_into,1176.1.1.2.2,1082.1.1')] ).

cnf(1254,plain,
    meet(dollar_c3,dollar_c2) = dollar_c3,
    inference(para_into,[status(thm),theory(equality)],[1236,1102]),
    [iquote('para_into,1236.1.1.2,1102.1.1')] ).

cnf(1256,plain,
    meet(dollar_c3,dollar_c1) = dollar_c3,
    inference(para_into,[status(thm),theory(equality)],[1236,1098]),
    [iquote('para_into,1236.1.1.2,1098.1.1')] ).

cnf(1265,plain,
    join(dollar_c2,dollar_c3) = dollar_c2,
    inference(para_from,[status(thm),theory(equality)],[1254,1102]),
    [iquote('para_from,1254.1.1,1102.1.1.2')] ).

cnf(1272,plain,
    ( dollar_c2 != dollar_c2
    | join(dollar_c1,dollar_c3) != dollar_c1 ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[343]),1265]),
    [iquote('back_demod,343,demod,1265')] ).

cnf(1279,plain,
    join(dollar_c1,dollar_c3) = dollar_c1,
    inference(para_from,[status(thm),theory(equality)],[1256,1102]),
    [iquote('para_from,1256.1.1,1102.1.1.2')] ).

cnf(1286,plain,
    ( dollar_c2 != dollar_c2
    | dollar_c1 != dollar_c1 ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1272]),1279]),
    [iquote('back_demod,1272,demod,1279')] ).

cnf(1323,plain,
    $false,
    inference(hyper,[status(thm)],[1286,2,2]),
    [iquote('hyper,1286,2,2')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : REL046+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.13  % Command  : otter-tptp-script %s
% 0.12/0.34  % Computer : n006.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Wed Jul 27 10:04:17 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 2.02/2.19  ----- Otter 3.3f, August 2004 -----
% 2.02/2.19  The process was started by sandbox2 on n006.cluster.edu,
% 2.02/2.19  Wed Jul 27 10:04:17 2022
% 2.02/2.19  The command was "./otter".  The process ID is 24170.
% 2.02/2.19  
% 2.02/2.19  set(prolog_style_variables).
% 2.02/2.19  set(auto).
% 2.02/2.19     dependent: set(auto1).
% 2.02/2.19     dependent: set(process_input).
% 2.02/2.19     dependent: clear(print_kept).
% 2.02/2.19     dependent: clear(print_new_demod).
% 2.02/2.19     dependent: clear(print_back_demod).
% 2.02/2.19     dependent: clear(print_back_sub).
% 2.02/2.19     dependent: set(control_memory).
% 2.02/2.19     dependent: assign(max_mem, 12000).
% 2.02/2.19     dependent: assign(pick_given_ratio, 4).
% 2.02/2.19     dependent: assign(stats_level, 1).
% 2.02/2.19     dependent: assign(max_seconds, 10800).
% 2.02/2.19  clear(print_given).
% 2.02/2.19  
% 2.02/2.19  formula_list(usable).
% 2.02/2.19  all A (A=A).
% 2.02/2.19  all X0 X1 (join(X0,X1)=join(X1,X0)).
% 2.02/2.19  all X0 X1 X2 (join(X0,join(X1,X2))=join(join(X0,X1),X2)).
% 2.02/2.19  all X0 X1 (X0=join(complement(join(complement(X0),complement(X1))),complement(join(complement(X0),X1)))).
% 2.02/2.19  all X0 X1 (meet(X0,X1)=complement(join(complement(X0),complement(X1)))).
% 2.02/2.19  all X0 X1 X2 (composition(X0,composition(X1,X2))=composition(composition(X0,X1),X2)).
% 2.02/2.19  all X0 (composition(X0,one)=X0).
% 2.02/2.19  all X0 X1 X2 (composition(join(X0,X1),X2)=join(composition(X0,X2),composition(X1,X2))).
% 2.02/2.19  all X0 (converse(converse(X0))=X0).
% 2.02/2.19  all X0 X1 (converse(join(X0,X1))=join(converse(X0),converse(X1))).
% 2.02/2.19  all X0 X1 (converse(composition(X0,X1))=composition(converse(X1),converse(X0))).
% 2.02/2.19  all X0 X1 (join(composition(converse(X0),complement(composition(X0,X1))),complement(X1))=complement(X1)).
% 2.02/2.19  all X0 (top=join(X0,complement(X0))).
% 2.02/2.19  all X0 (zero=meet(X0,complement(X0))).
% 2.02/2.19  -(all X0 X1 X2 (join(X0,meet(X1,X2))=meet(X1,X2)->join(X0,X1)=X1&join(X0,X2)=X2)).
% 2.02/2.19  end_of_list.
% 2.02/2.19  
% 2.02/2.19  -------> usable clausifies to:
% 2.02/2.19  
% 2.02/2.19  list(usable).
% 2.02/2.19  0 [] A=A.
% 2.02/2.19  0 [] join(X0,X1)=join(X1,X0).
% 2.02/2.19  0 [] join(X0,join(X1,X2))=join(join(X0,X1),X2).
% 2.02/2.19  0 [] X0=join(complement(join(complement(X0),complement(X1))),complement(join(complement(X0),X1))).
% 2.02/2.19  0 [] meet(X0,X1)=complement(join(complement(X0),complement(X1))).
% 2.02/2.19  0 [] composition(X0,composition(X1,X2))=composition(composition(X0,X1),X2).
% 2.02/2.19  0 [] composition(X0,one)=X0.
% 2.02/2.19  0 [] composition(join(X0,X1),X2)=join(composition(X0,X2),composition(X1,X2)).
% 2.02/2.19  0 [] converse(converse(X0))=X0.
% 2.02/2.19  0 [] converse(join(X0,X1))=join(converse(X0),converse(X1)).
% 2.02/2.19  0 [] converse(composition(X0,X1))=composition(converse(X1),converse(X0)).
% 2.02/2.19  0 [] join(composition(converse(X0),complement(composition(X0,X1))),complement(X1))=complement(X1).
% 2.02/2.19  0 [] top=join(X0,complement(X0)).
% 2.02/2.19  0 [] zero=meet(X0,complement(X0)).
% 2.02/2.19  0 [] join($c3,meet($c2,$c1))=meet($c2,$c1).
% 2.02/2.19  0 [] join($c3,$c2)!=$c2|join($c3,$c1)!=$c1.
% 2.02/2.19  end_of_list.
% 2.02/2.19  
% 2.02/2.19  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 2.02/2.19  
% 2.02/2.19  This is a Horn set with equality.  The strategy will be
% 2.02/2.19  Knuth-Bendix and hyper_res, with positive clauses in
% 2.02/2.19  sos and nonpositive clauses in usable.
% 2.02/2.19  
% 2.02/2.19     dependent: set(knuth_bendix).
% 2.02/2.19     dependent: set(anl_eq).
% 2.02/2.19     dependent: set(para_from).
% 2.02/2.19     dependent: set(para_into).
% 2.02/2.19     dependent: clear(para_from_right).
% 2.02/2.19     dependent: clear(para_into_right).
% 2.02/2.19     dependent: set(para_from_vars).
% 2.02/2.19     dependent: set(eq_units_both_ways).
% 2.02/2.19     dependent: set(dynamic_demod_all).
% 2.02/2.19     dependent: set(dynamic_demod).
% 2.02/2.19     dependent: set(order_eq).
% 2.02/2.19     dependent: set(back_demod).
% 2.02/2.19     dependent: set(lrpo).
% 2.02/2.19     dependent: set(hyper_res).
% 2.02/2.19     dependent: clear(order_hyper).
% 2.02/2.19  
% 2.02/2.19  ------------> process usable:
% 2.02/2.19  ** KEPT (pick-wt=10): 1 [] join($c3,$c2)!=$c2|join($c3,$c1)!=$c1.
% 2.02/2.19  
% 2.02/2.19  ------------> process sos:
% 2.02/2.19  ** KEPT (pick-wt=3): 2 [] A=A.
% 2.02/2.19  ** KEPT (pick-wt=7): 3 [] join(A,B)=join(B,A).
% 2.02/2.19  ** KEPT (pick-wt=11): 5 [copy,4,flip.1] join(join(A,B),C)=join(A,join(B,C)).
% 2.02/2.19  ---> New Demodulator: 6 [new_demod,5] join(join(A,B),C)=join(A,join(B,C)).
% 2.02/2.19  ** KEPT (pick-wt=14): 8 [copy,7,flip.1] join(complement(join(complement(A),complement(B))),complement(join(complement(A),B)))=A.
% 2.02/2.19  ---> New Demodulator: 9 [new_demod,8] join(complement(join(complement(A),complement(B))),complement(join(complement(A),B)))=A.
% 2.02/2.19  ** KEPT (pick-wt=10): 11 [copy,10,flip.1] complement(join(complement(A),complement(B)))=meet(A,B).
% 2.02/2.19  ---> New Demodulator: 12 [new_demod,11] complement(join(complement(A),complement(B)))=meet(A,B).
% 2.02/2.19  ** KEPT (pick-wt=11): 14 [copy,13,flip.1] composition(composition(A,B),C)=composition(A,composition(B,C)).
% 2.07/2.28  ---> New Demodulator: 15 [new_demod,14] composition(composition(A,B),C)=composition(A,composition(B,C)).
% 2.07/2.28  ** KEPT (pick-wt=5): 16 [] composition(A,one)=A.
% 2.07/2.28  ---> New Demodulator: 17 [new_demod,16] composition(A,one)=A.
% 2.07/2.28  ** KEPT (pick-wt=13): 19 [copy,18,flip.1] join(composition(A,B),composition(C,B))=composition(join(A,C),B).
% 2.07/2.28  ---> New Demodulator: 20 [new_demod,19] join(composition(A,B),composition(C,B))=composition(join(A,C),B).
% 2.07/2.28  ** KEPT (pick-wt=5): 21 [] converse(converse(A))=A.
% 2.07/2.28  ---> New Demodulator: 22 [new_demod,21] converse(converse(A))=A.
% 2.07/2.28  ** KEPT (pick-wt=10): 23 [] converse(join(A,B))=join(converse(A),converse(B)).
% 2.07/2.28  ---> New Demodulator: 24 [new_demod,23] converse(join(A,B))=join(converse(A),converse(B)).
% 2.07/2.28  ** KEPT (pick-wt=10): 25 [] converse(composition(A,B))=composition(converse(B),converse(A)).
% 2.07/2.28  ---> New Demodulator: 26 [new_demod,25] converse(composition(A,B))=composition(converse(B),converse(A)).
% 2.07/2.28  ** KEPT (pick-wt=13): 27 [] join(composition(converse(A),complement(composition(A,B))),complement(B))=complement(B).
% 2.07/2.28  ---> New Demodulator: 28 [new_demod,27] join(composition(converse(A),complement(composition(A,B))),complement(B))=complement(B).
% 2.07/2.28  ** KEPT (pick-wt=6): 30 [copy,29,flip.1] join(A,complement(A))=top.
% 2.07/2.28  ---> New Demodulator: 31 [new_demod,30] join(A,complement(A))=top.
% 2.07/2.28  ** KEPT (pick-wt=6): 33 [copy,32,flip.1] meet(A,complement(A))=zero.
% 2.07/2.28  ---> New Demodulator: 34 [new_demod,33] meet(A,complement(A))=zero.
% 2.07/2.28  ** KEPT (pick-wt=9): 35 [] join($c3,meet($c2,$c1))=meet($c2,$c1).
% 2.07/2.28  ---> New Demodulator: 36 [new_demod,35] join($c3,meet($c2,$c1))=meet($c2,$c1).
% 2.07/2.28    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 2.07/2.28    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] join(A,B)=join(B,A).
% 2.07/2.28  >>>> Starting back demodulation with 6.
% 2.07/2.28  >>>> Starting back demodulation with 9.
% 2.07/2.28  >>>> Starting back demodulation with 12.
% 2.07/2.28      >> back demodulating 8 with 12.
% 2.07/2.28  >>>> Starting back demodulation with 15.
% 2.07/2.28  >>>> Starting back demodulation with 17.
% 2.07/2.28  >>>> Starting back demodulation with 20.
% 2.07/2.28  >>>> Starting back demodulation with 22.
% 2.07/2.28  >>>> Starting back demodulation with 24.
% 2.07/2.28  >>>> Starting back demodulation with 26.
% 2.07/2.28  >>>> Starting back demodulation with 28.
% 2.07/2.28  >>>> Starting back demodulation with 31.
% 2.07/2.28  >>>> Starting back demodulation with 34.
% 2.07/2.28  >>>> Starting back demodulation with 36.
% 2.07/2.28  >>>> Starting back demodulation with 38.
% 2.07/2.28  
% 2.07/2.28  ======= end of input processing =======
% 2.07/2.28  
% 2.07/2.28  =========== start of search ===========
% 2.07/2.28  
% 2.07/2.28  
% 2.07/2.28  Resetting weight limit to 9.
% 2.07/2.28  
% 2.07/2.28  
% 2.07/2.28  Resetting weight limit to 9.
% 2.07/2.28  
% 2.07/2.28  sos_size=181
% 2.07/2.28  
% 2.07/2.28  
% 2.07/2.28  Resetting weight limit to 7.
% 2.07/2.28  
% 2.07/2.28  
% 2.07/2.28  Resetting weight limit to 7.
% 2.07/2.28  
% 2.07/2.28  sos_size=172
% 2.07/2.28  
% 2.07/2.28  -------- PROOF -------- 
% 2.07/2.28  
% 2.07/2.28  -----> EMPTY CLAUSE at   0.09 sec ----> 1323 [hyper,1286,2,2] $F.
% 2.07/2.28  
% 2.07/2.28  Length of proof is 57.  Level of proof is 28.
% 2.07/2.28  
% 2.07/2.28  ---------------- PROOF ----------------
% 2.07/2.28  % SZS status Theorem
% 2.07/2.28  % SZS output start Refutation
% See solution above
% 2.07/2.28  ------------ end of proof -------------
% 2.07/2.28  
% 2.07/2.28  
% 2.07/2.28  Search stopped by max_proofs option.
% 2.07/2.28  
% 2.07/2.28  
% 2.07/2.28  Search stopped by max_proofs option.
% 2.07/2.28  
% 2.07/2.28  ============ end of search ============
% 2.07/2.28  
% 2.07/2.28  -------------- statistics -------------
% 2.07/2.28  clauses given                244
% 2.07/2.28  clauses generated           8621
% 2.07/2.28  clauses kept                 686
% 2.07/2.28  clauses forward subsumed    5898
% 2.07/2.28  clauses back subsumed          0
% 2.07/2.28  Kbytes malloced             6835
% 2.07/2.28  
% 2.07/2.28  ----------- times (seconds) -----------
% 2.07/2.28  user CPU time          0.09          (0 hr, 0 min, 0 sec)
% 2.07/2.28  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.07/2.28  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.07/2.28  
% 2.07/2.28  That finishes the proof of the theorem.
% 2.07/2.28  
% 2.07/2.28  Process 24170 finished Wed Jul 27 10:04:19 2022
% 2.07/2.28  Otter interrupted
% 2.07/2.28  PROOF FOUND
%------------------------------------------------------------------------------