TSTP Solution File: REL036-2 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : REL036-2 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n001.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:44:22 EDT 2023

% Result   : Unsatisfiable 13.49s 2.33s
% Output   : Proof 15.05s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : REL036-2 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n001.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Fri Aug 25 21:56:14 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 13.49/2.33  Command-line arguments: --flatten
% 13.49/2.33  
% 13.49/2.33  % SZS status Unsatisfiable
% 13.49/2.33  
% 13.49/2.37  % SZS output start Proof
% 13.49/2.37  Axiom 1 (maddux1_join_commutativity_1): join(X, Y) = join(Y, X).
% 13.49/2.37  Axiom 2 (converse_idempotence_8): converse(converse(X)) = X.
% 13.49/2.37  Axiom 3 (composition_identity_6): composition(X, one) = X.
% 13.49/2.37  Axiom 4 (goals_17): composition(sk1, top) = sk1.
% 13.49/2.37  Axiom 5 (def_top_12): top = join(X, complement(X)).
% 13.49/2.37  Axiom 6 (def_zero_13): zero = meet(X, complement(X)).
% 13.49/2.37  Axiom 7 (converse_additivity_9): converse(join(X, Y)) = join(converse(X), converse(Y)).
% 13.49/2.37  Axiom 8 (maddux2_join_associativity_2): join(X, join(Y, Z)) = join(join(X, Y), Z).
% 13.49/2.37  Axiom 9 (converse_multiplicativity_10): converse(composition(X, Y)) = composition(converse(Y), converse(X)).
% 13.49/2.37  Axiom 10 (composition_associativity_5): composition(X, composition(Y, Z)) = composition(composition(X, Y), Z).
% 13.49/2.37  Axiom 11 (maddux4_definiton_of_meet_4): meet(X, Y) = complement(join(complement(X), complement(Y))).
% 13.49/2.37  Axiom 12 (composition_distributivity_7): composition(join(X, Y), Z) = join(composition(X, Z), composition(Y, Z)).
% 13.49/2.37  Axiom 13 (converse_cancellativity_11): join(composition(converse(X), complement(composition(X, Y))), complement(Y)) = complement(Y).
% 13.49/2.37  Axiom 14 (maddux3_a_kind_of_de_Morgan_3): X = join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y))).
% 13.49/2.37  
% 13.49/2.37  Lemma 15: complement(top) = zero.
% 13.49/2.37  Proof:
% 13.49/2.37    complement(top)
% 13.49/2.37  = { by axiom 5 (def_top_12) }
% 13.49/2.37    complement(join(complement(X), complement(complement(X))))
% 13.49/2.37  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 13.49/2.37    meet(X, complement(X))
% 13.49/2.37  = { by axiom 6 (def_zero_13) R->L }
% 13.49/2.37    zero
% 13.49/2.37  
% 13.49/2.37  Lemma 16: join(X, join(Y, complement(X))) = join(Y, top).
% 13.49/2.37  Proof:
% 13.49/2.37    join(X, join(Y, complement(X)))
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.37    join(X, join(complement(X), Y))
% 13.49/2.37  = { by axiom 8 (maddux2_join_associativity_2) }
% 13.49/2.37    join(join(X, complement(X)), Y)
% 13.49/2.37  = { by axiom 5 (def_top_12) R->L }
% 13.49/2.37    join(top, Y)
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) }
% 13.49/2.37    join(Y, top)
% 13.49/2.37  
% 13.49/2.37  Lemma 17: converse(composition(converse(X), Y)) = composition(converse(Y), X).
% 13.49/2.37  Proof:
% 13.49/2.37    converse(composition(converse(X), Y))
% 13.49/2.37  = { by axiom 9 (converse_multiplicativity_10) }
% 13.49/2.37    composition(converse(Y), converse(converse(X)))
% 13.49/2.37  = { by axiom 2 (converse_idempotence_8) }
% 13.49/2.37    composition(converse(Y), X)
% 13.49/2.37  
% 13.49/2.37  Lemma 18: composition(converse(one), X) = X.
% 13.49/2.37  Proof:
% 13.49/2.37    composition(converse(one), X)
% 13.49/2.37  = { by lemma 17 R->L }
% 13.49/2.37    converse(composition(converse(X), one))
% 13.49/2.37  = { by axiom 3 (composition_identity_6) }
% 13.49/2.37    converse(converse(X))
% 13.49/2.37  = { by axiom 2 (converse_idempotence_8) }
% 13.49/2.37    X
% 13.49/2.37  
% 13.49/2.37  Lemma 19: join(complement(X), composition(converse(Y), complement(composition(Y, X)))) = complement(X).
% 13.49/2.37  Proof:
% 13.49/2.37    join(complement(X), composition(converse(Y), complement(composition(Y, X))))
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.37    join(composition(converse(Y), complement(composition(Y, X))), complement(X))
% 13.49/2.37  = { by axiom 13 (converse_cancellativity_11) }
% 13.49/2.37    complement(X)
% 13.49/2.37  
% 13.49/2.37  Lemma 20: join(complement(X), complement(X)) = complement(X).
% 13.49/2.37  Proof:
% 13.49/2.37    join(complement(X), complement(X))
% 13.49/2.37  = { by lemma 18 R->L }
% 13.49/2.37    join(complement(X), composition(converse(one), complement(X)))
% 13.49/2.37  = { by lemma 18 R->L }
% 13.49/2.37    join(complement(X), composition(converse(one), complement(composition(converse(one), X))))
% 13.49/2.37  = { by axiom 3 (composition_identity_6) R->L }
% 13.49/2.37    join(complement(X), composition(converse(one), complement(composition(composition(converse(one), one), X))))
% 13.49/2.37  = { by axiom 10 (composition_associativity_5) R->L }
% 13.49/2.37    join(complement(X), composition(converse(one), complement(composition(converse(one), composition(one, X)))))
% 13.49/2.37  = { by lemma 18 }
% 13.49/2.37    join(complement(X), composition(converse(one), complement(composition(one, X))))
% 13.49/2.37  = { by lemma 19 }
% 13.49/2.37    complement(X)
% 13.49/2.37  
% 13.49/2.37  Lemma 21: join(top, complement(X)) = top.
% 13.49/2.37  Proof:
% 13.49/2.37    join(top, complement(X))
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.37    join(complement(X), top)
% 13.49/2.37  = { by lemma 16 R->L }
% 13.49/2.37    join(X, join(complement(X), complement(X)))
% 13.49/2.37  = { by lemma 20 }
% 13.49/2.37    join(X, complement(X))
% 13.49/2.37  = { by axiom 5 (def_top_12) R->L }
% 13.49/2.37    top
% 13.49/2.37  
% 13.49/2.37  Lemma 22: join(meet(X, Y), complement(join(complement(X), Y))) = X.
% 13.49/2.37  Proof:
% 13.49/2.37    join(meet(X, Y), complement(join(complement(X), Y)))
% 13.49/2.37  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.37    join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y)))
% 13.49/2.37  = { by axiom 14 (maddux3_a_kind_of_de_Morgan_3) R->L }
% 13.49/2.37    X
% 13.49/2.37  
% 13.49/2.37  Lemma 23: join(zero, meet(X, X)) = X.
% 13.49/2.37  Proof:
% 13.49/2.37    join(zero, meet(X, X))
% 13.49/2.37  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.37    join(zero, complement(join(complement(X), complement(X))))
% 13.49/2.37  = { by axiom 6 (def_zero_13) }
% 13.49/2.37    join(meet(X, complement(X)), complement(join(complement(X), complement(X))))
% 13.49/2.37  = { by lemma 22 }
% 13.49/2.37    X
% 13.49/2.37  
% 13.49/2.37  Lemma 24: join(zero, join(X, complement(complement(Y)))) = join(X, Y).
% 13.49/2.37  Proof:
% 13.49/2.37    join(zero, join(X, complement(complement(Y))))
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.37    join(zero, join(complement(complement(Y)), X))
% 13.49/2.37  = { by lemma 20 R->L }
% 13.49/2.37    join(zero, join(complement(join(complement(Y), complement(Y))), X))
% 13.49/2.37  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 13.49/2.37    join(zero, join(meet(Y, Y), X))
% 13.49/2.37  = { by axiom 8 (maddux2_join_associativity_2) }
% 13.49/2.37    join(join(zero, meet(Y, Y)), X)
% 13.49/2.37  = { by lemma 23 }
% 13.49/2.37    join(Y, X)
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) }
% 13.49/2.37    join(X, Y)
% 13.49/2.37  
% 13.49/2.37  Lemma 25: join(zero, complement(complement(X))) = X.
% 13.49/2.37  Proof:
% 13.49/2.37    join(zero, complement(complement(X)))
% 13.49/2.37  = { by axiom 6 (def_zero_13) }
% 13.49/2.37    join(meet(X, complement(X)), complement(complement(X)))
% 13.49/2.37  = { by lemma 20 R->L }
% 13.49/2.37    join(meet(X, complement(X)), complement(join(complement(X), complement(X))))
% 13.49/2.37  = { by lemma 22 }
% 13.49/2.37    X
% 13.49/2.37  
% 13.49/2.37  Lemma 26: join(zero, complement(X)) = complement(X).
% 13.49/2.37  Proof:
% 13.49/2.37    join(zero, complement(X))
% 13.49/2.37  = { by lemma 25 R->L }
% 13.49/2.37    join(zero, join(zero, complement(complement(complement(X)))))
% 13.49/2.37  = { by lemma 20 R->L }
% 13.49/2.37    join(zero, join(zero, join(complement(complement(complement(X))), complement(complement(complement(X))))))
% 13.49/2.37  = { by lemma 24 }
% 13.49/2.37    join(zero, join(complement(complement(complement(X))), complement(X)))
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) }
% 13.49/2.37    join(zero, join(complement(X), complement(complement(complement(X)))))
% 13.49/2.37  = { by lemma 24 }
% 13.49/2.37    join(complement(X), complement(X))
% 13.49/2.37  = { by lemma 20 }
% 13.49/2.37    complement(X)
% 13.49/2.37  
% 13.49/2.37  Lemma 27: join(X, zero) = X.
% 13.49/2.37  Proof:
% 13.49/2.37    join(X, zero)
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.37    join(zero, X)
% 13.49/2.37  = { by lemma 24 R->L }
% 13.49/2.37    join(zero, join(zero, complement(complement(X))))
% 13.49/2.37  = { by lemma 26 }
% 13.49/2.37    join(zero, complement(complement(X)))
% 13.49/2.37  = { by lemma 25 }
% 13.49/2.37    X
% 13.49/2.37  
% 13.49/2.37  Lemma 28: join(zero, X) = X.
% 13.49/2.37  Proof:
% 13.49/2.37    join(zero, X)
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.37    join(X, zero)
% 13.49/2.37  = { by lemma 27 }
% 13.49/2.37    X
% 13.49/2.37  
% 13.49/2.37  Lemma 29: join(X, top) = top.
% 13.49/2.37  Proof:
% 13.49/2.37    join(X, top)
% 13.49/2.37  = { by lemma 21 R->L }
% 13.49/2.37    join(X, join(top, complement(X)))
% 13.49/2.37  = { by lemma 16 }
% 13.49/2.37    join(top, top)
% 13.49/2.37  = { by lemma 16 R->L }
% 13.49/2.37    join(zero, join(top, complement(zero)))
% 13.49/2.37  = { by lemma 21 }
% 13.49/2.37    join(zero, top)
% 13.49/2.37  = { by lemma 28 }
% 13.49/2.37    top
% 13.49/2.37  
% 13.49/2.37  Lemma 30: meet(Y, X) = meet(X, Y).
% 13.49/2.37  Proof:
% 13.49/2.37    meet(Y, X)
% 13.49/2.37  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.37    complement(join(complement(Y), complement(X)))
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.37    complement(join(complement(X), complement(Y)))
% 13.49/2.37  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 13.49/2.37    meet(X, Y)
% 13.49/2.37  
% 13.49/2.37  Lemma 31: complement(join(zero, complement(X))) = meet(X, top).
% 13.49/2.37  Proof:
% 13.49/2.37    complement(join(zero, complement(X)))
% 13.49/2.37  = { by lemma 15 R->L }
% 13.49/2.37    complement(join(complement(top), complement(X)))
% 13.49/2.37  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 13.49/2.37    meet(top, X)
% 13.49/2.37  = { by lemma 30 R->L }
% 13.49/2.37    meet(X, top)
% 13.49/2.37  
% 13.49/2.37  Lemma 32: join(X, complement(zero)) = top.
% 13.49/2.37  Proof:
% 13.49/2.37    join(X, complement(zero))
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.37    join(complement(zero), X)
% 13.49/2.37  = { by lemma 24 R->L }
% 13.49/2.37    join(zero, join(complement(zero), complement(complement(X))))
% 13.49/2.37  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.37    join(zero, join(complement(complement(X)), complement(zero)))
% 13.49/2.37  = { by lemma 16 }
% 13.49/2.37    join(complement(complement(X)), top)
% 13.49/2.37  = { by lemma 29 }
% 13.49/2.38    top
% 13.49/2.38  
% 13.49/2.38  Lemma 33: meet(X, zero) = zero.
% 13.49/2.38  Proof:
% 13.49/2.38    meet(X, zero)
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.38    complement(join(complement(X), complement(zero)))
% 13.49/2.38  = { by lemma 32 }
% 13.49/2.38    complement(top)
% 13.49/2.38  = { by lemma 15 }
% 13.49/2.38    zero
% 13.49/2.38  
% 13.49/2.38  Lemma 34: join(meet(X, Y), meet(X, complement(Y))) = X.
% 13.49/2.38  Proof:
% 13.49/2.38    join(meet(X, Y), meet(X, complement(Y)))
% 13.49/2.38  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.38    join(meet(X, complement(Y)), meet(X, Y))
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.38    join(meet(X, complement(Y)), complement(join(complement(X), complement(Y))))
% 13.49/2.38  = { by lemma 22 }
% 13.49/2.38    X
% 13.49/2.38  
% 13.49/2.38  Lemma 35: meet(X, top) = X.
% 13.49/2.38  Proof:
% 13.49/2.38    meet(X, top)
% 13.49/2.38  = { by lemma 31 R->L }
% 13.49/2.38    complement(join(zero, complement(X)))
% 13.49/2.38  = { by lemma 26 R->L }
% 13.49/2.38    join(zero, complement(join(zero, complement(X))))
% 13.49/2.38  = { by lemma 31 }
% 13.49/2.38    join(zero, meet(X, top))
% 13.49/2.38  = { by lemma 32 R->L }
% 13.49/2.38    join(zero, meet(X, join(complement(zero), complement(zero))))
% 13.49/2.38  = { by lemma 20 }
% 13.49/2.38    join(zero, meet(X, complement(zero)))
% 13.49/2.38  = { by lemma 33 R->L }
% 13.49/2.38    join(meet(X, zero), meet(X, complement(zero)))
% 13.49/2.38  = { by lemma 34 }
% 13.49/2.38    X
% 13.49/2.38  
% 13.49/2.38  Lemma 36: meet(X, join(complement(Y), complement(Z))) = complement(join(complement(X), meet(Y, Z))).
% 13.49/2.38  Proof:
% 13.49/2.38    meet(X, join(complement(Y), complement(Z)))
% 13.49/2.38  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.38    meet(X, join(complement(Z), complement(Y)))
% 13.49/2.38  = { by lemma 30 }
% 13.49/2.38    meet(join(complement(Z), complement(Y)), X)
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.38    complement(join(complement(join(complement(Z), complement(Y))), complement(X)))
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 13.49/2.38    complement(join(meet(Z, Y), complement(X)))
% 13.49/2.38  = { by axiom 1 (maddux1_join_commutativity_1) }
% 13.49/2.38    complement(join(complement(X), meet(Z, Y)))
% 13.49/2.38  = { by lemma 30 R->L }
% 13.49/2.38    complement(join(complement(X), meet(Y, Z)))
% 13.49/2.38  
% 13.49/2.38  Lemma 37: complement(join(X, complement(Y))) = meet(Y, complement(X)).
% 13.49/2.38  Proof:
% 13.49/2.38    complement(join(X, complement(Y)))
% 13.49/2.38  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.38    complement(join(complement(Y), X))
% 13.49/2.38  = { by lemma 35 R->L }
% 13.49/2.38    complement(join(complement(Y), meet(X, top)))
% 13.49/2.38  = { by lemma 30 R->L }
% 13.49/2.38    complement(join(complement(Y), meet(top, X)))
% 13.49/2.38  = { by lemma 36 R->L }
% 13.49/2.38    meet(Y, join(complement(top), complement(X)))
% 13.49/2.38  = { by lemma 15 }
% 13.49/2.38    meet(Y, join(zero, complement(X)))
% 13.49/2.38  = { by lemma 26 }
% 13.49/2.38    meet(Y, complement(X))
% 13.49/2.38  
% 13.49/2.38  Lemma 38: complement(meet(X, complement(Y))) = join(Y, complement(X)).
% 13.49/2.38  Proof:
% 13.49/2.38    complement(meet(X, complement(Y)))
% 13.49/2.38  = { by lemma 28 R->L }
% 13.49/2.38    complement(join(zero, meet(X, complement(Y))))
% 13.49/2.38  = { by lemma 37 R->L }
% 13.49/2.38    complement(join(zero, complement(join(Y, complement(X)))))
% 13.49/2.38  = { by lemma 31 }
% 13.49/2.38    meet(join(Y, complement(X)), top)
% 13.49/2.38  = { by lemma 35 }
% 13.49/2.38    join(Y, complement(X))
% 13.49/2.38  
% 13.49/2.38  Lemma 39: complement(join(complement(X), Y)) = meet(X, complement(Y)).
% 13.49/2.38  Proof:
% 13.49/2.38    complement(join(complement(X), Y))
% 13.49/2.38  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.38    complement(join(Y, complement(X)))
% 13.49/2.38  = { by lemma 37 }
% 13.49/2.38    meet(X, complement(Y))
% 13.49/2.38  
% 13.49/2.38  Lemma 40: join(X, complement(meet(X, Y))) = top.
% 13.49/2.38  Proof:
% 13.49/2.38    join(X, complement(meet(X, Y)))
% 13.49/2.38  = { by lemma 30 }
% 13.49/2.38    join(X, complement(meet(Y, X)))
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.38    join(X, complement(complement(join(complement(Y), complement(X)))))
% 13.49/2.38  = { by lemma 20 R->L }
% 13.49/2.38    join(X, complement(join(complement(join(complement(Y), complement(X))), complement(join(complement(Y), complement(X))))))
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 13.49/2.38    join(X, complement(join(meet(Y, X), complement(join(complement(Y), complement(X))))))
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 13.49/2.38    join(X, complement(join(meet(Y, X), meet(Y, X))))
% 13.49/2.38  = { by lemma 30 R->L }
% 13.49/2.38    join(X, complement(join(meet(Y, X), meet(X, Y))))
% 13.49/2.38  = { by lemma 30 R->L }
% 13.49/2.38    join(X, complement(join(meet(X, Y), meet(X, Y))))
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.38    join(X, complement(join(complement(join(complement(X), complement(Y))), meet(X, Y))))
% 13.49/2.38  = { by lemma 26 R->L }
% 13.49/2.38    join(X, join(zero, complement(join(complement(join(complement(X), complement(Y))), meet(X, Y)))))
% 13.49/2.38  = { by lemma 36 R->L }
% 13.49/2.38    join(X, join(zero, meet(join(complement(X), complement(Y)), join(complement(X), complement(Y)))))
% 13.49/2.38  = { by lemma 23 }
% 13.49/2.38    join(X, join(complement(X), complement(Y)))
% 13.49/2.38  = { by axiom 1 (maddux1_join_commutativity_1) }
% 13.49/2.38    join(X, join(complement(Y), complement(X)))
% 13.49/2.38  = { by lemma 16 }
% 13.49/2.38    join(complement(Y), top)
% 13.49/2.38  = { by lemma 29 }
% 13.49/2.38    top
% 13.49/2.38  
% 13.49/2.38  Lemma 41: meet(X, join(X, complement(Y))) = X.
% 13.49/2.38  Proof:
% 13.49/2.38    meet(X, join(X, complement(Y)))
% 13.49/2.38  = { by lemma 38 R->L }
% 13.49/2.38    meet(X, complement(meet(Y, complement(X))))
% 13.49/2.38  = { by lemma 39 R->L }
% 13.49/2.38    complement(join(complement(X), meet(Y, complement(X))))
% 13.49/2.38  = { by lemma 26 R->L }
% 13.49/2.38    join(zero, complement(join(complement(X), meet(Y, complement(X)))))
% 13.49/2.38  = { by lemma 15 R->L }
% 13.49/2.38    join(complement(top), complement(join(complement(X), meet(Y, complement(X)))))
% 13.49/2.38  = { by lemma 40 R->L }
% 13.49/2.38    join(complement(join(complement(X), complement(meet(complement(X), Y)))), complement(join(complement(X), meet(Y, complement(X)))))
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 13.49/2.38    join(meet(X, meet(complement(X), Y)), complement(join(complement(X), meet(Y, complement(X)))))
% 13.49/2.38  = { by lemma 30 R->L }
% 13.49/2.38    join(meet(X, meet(Y, complement(X))), complement(join(complement(X), meet(Y, complement(X)))))
% 13.49/2.38  = { by lemma 22 }
% 13.49/2.38    X
% 13.49/2.38  
% 13.49/2.38  Lemma 42: join(X, meet(X, Y)) = X.
% 13.49/2.38  Proof:
% 13.49/2.38    join(X, meet(X, Y))
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.38    join(X, complement(join(complement(X), complement(Y))))
% 13.49/2.38  = { by lemma 38 R->L }
% 13.49/2.38    complement(meet(join(complement(X), complement(Y)), complement(X)))
% 13.49/2.38  = { by lemma 30 R->L }
% 13.49/2.38    complement(meet(complement(X), join(complement(X), complement(Y))))
% 13.49/2.38  = { by lemma 41 }
% 13.49/2.38    complement(complement(X))
% 13.49/2.38  = { by lemma 26 R->L }
% 13.49/2.38    join(zero, complement(complement(X)))
% 13.49/2.38  = { by lemma 25 }
% 13.49/2.38    X
% 13.49/2.38  
% 13.49/2.38  Lemma 43: join(meet(X, Y), Y) = Y.
% 13.49/2.38  Proof:
% 13.49/2.38    join(meet(X, Y), Y)
% 13.49/2.38  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 13.49/2.38    join(Y, meet(X, Y))
% 13.49/2.38  = { by lemma 30 R->L }
% 13.49/2.38    join(Y, meet(Y, X))
% 13.49/2.38  = { by lemma 42 }
% 13.49/2.38    Y
% 13.49/2.38  
% 13.49/2.38  Lemma 44: meet(X, join(X, Y)) = X.
% 13.49/2.38  Proof:
% 13.49/2.38    meet(X, join(X, Y))
% 13.49/2.38  = { by lemma 35 R->L }
% 13.49/2.38    meet(X, join(X, meet(Y, top)))
% 13.49/2.38  = { by lemma 31 R->L }
% 13.49/2.38    meet(X, join(X, complement(join(zero, complement(Y)))))
% 13.49/2.38  = { by lemma 41 }
% 13.49/2.38    X
% 13.49/2.38  
% 13.49/2.38  Lemma 45: meet(complement(X), complement(Y)) = complement(join(X, Y)).
% 13.49/2.38  Proof:
% 13.49/2.38    meet(complement(X), complement(Y))
% 13.49/2.38  = { by lemma 30 }
% 13.49/2.38    meet(complement(Y), complement(X))
% 13.49/2.38  = { by lemma 26 R->L }
% 13.49/2.38    meet(join(zero, complement(Y)), complement(X))
% 13.49/2.38  = { by lemma 37 R->L }
% 13.49/2.38    complement(join(X, complement(join(zero, complement(Y)))))
% 13.49/2.38  = { by lemma 31 }
% 13.49/2.38    complement(join(X, meet(Y, top)))
% 13.49/2.38  = { by lemma 35 }
% 13.49/2.38    complement(join(X, Y))
% 13.49/2.38  
% 13.49/2.38  Lemma 46: meet(complement(Z), meet(Y, X)) = meet(X, meet(Y, complement(Z))).
% 13.49/2.38  Proof:
% 13.49/2.38    meet(complement(Z), meet(Y, X))
% 13.49/2.38  = { by lemma 30 }
% 13.49/2.38    meet(complement(Z), meet(X, Y))
% 13.49/2.38  = { by lemma 30 }
% 13.49/2.38    meet(meet(X, Y), complement(Z))
% 13.49/2.38  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 13.49/2.38    meet(complement(join(complement(X), complement(Y))), complement(Z))
% 13.49/2.38  = { by lemma 45 }
% 13.49/2.38    complement(join(join(complement(X), complement(Y)), Z))
% 13.49/2.38  = { by axiom 8 (maddux2_join_associativity_2) R->L }
% 13.49/2.38    complement(join(complement(X), join(complement(Y), Z)))
% 13.49/2.38  = { by lemma 39 }
% 13.49/2.38    meet(X, complement(join(complement(Y), Z)))
% 13.49/2.38  = { by lemma 39 }
% 13.49/2.38    meet(X, meet(Y, complement(Z)))
% 13.49/2.38  
% 13.49/2.38  Lemma 47: meet(Y, meet(Z, X)) = meet(X, meet(Y, Z)).
% 13.49/2.38  Proof:
% 13.49/2.38    meet(Y, meet(Z, X))
% 13.49/2.38  = { by lemma 35 R->L }
% 13.49/2.38    meet(meet(Y, top), meet(Z, X))
% 13.49/2.38  = { by lemma 31 R->L }
% 13.49/2.38    meet(complement(join(zero, complement(Y))), meet(Z, X))
% 13.49/2.38  = { by lemma 46 }
% 13.49/2.38    meet(X, meet(Z, complement(join(zero, complement(Y)))))
% 13.49/2.38  = { by lemma 31 }
% 13.49/2.38    meet(X, meet(Z, meet(Y, top)))
% 13.49/2.38  = { by lemma 35 }
% 13.49/2.38    meet(X, meet(Z, Y))
% 13.49/2.38  = { by lemma 30 R->L }
% 13.49/2.38    meet(X, meet(Y, Z))
% 13.49/2.38  
% 13.49/2.38  Lemma 48: meet(Y, meet(X, Z)) = meet(X, meet(Y, Z)).
% 13.49/2.38  Proof:
% 13.49/2.38    meet(Y, meet(X, Z))
% 13.49/2.38  = { by lemma 30 }
% 13.49/2.38    meet(Y, meet(Z, X))
% 13.49/2.38  = { by lemma 47 }
% 13.49/2.38    meet(X, meet(Y, Z))
% 13.49/2.38  
% 13.49/2.38  Lemma 49: join(composition(X, Y), composition(X, Z)) = composition(X, join(Y, Z)).
% 13.49/2.38  Proof:
% 13.49/2.38    join(composition(X, Y), composition(X, Z))
% 15.05/2.38  = { by axiom 2 (converse_idempotence_8) R->L }
% 15.05/2.38    join(composition(X, Y), composition(converse(converse(X)), Z))
% 15.05/2.38  = { by axiom 2 (converse_idempotence_8) R->L }
% 15.05/2.38    join(converse(converse(composition(X, Y))), composition(converse(converse(X)), Z))
% 15.05/2.38  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 15.05/2.38    join(composition(converse(converse(X)), Z), converse(converse(composition(X, Y))))
% 15.05/2.38  = { by lemma 17 R->L }
% 15.05/2.38    join(converse(composition(converse(Z), converse(X))), converse(converse(composition(X, Y))))
% 15.05/2.38  = { by axiom 7 (converse_additivity_9) R->L }
% 15.05/2.38    converse(join(composition(converse(Z), converse(X)), converse(composition(X, Y))))
% 15.05/2.38  = { by axiom 1 (maddux1_join_commutativity_1) }
% 15.05/2.38    converse(join(converse(composition(X, Y)), composition(converse(Z), converse(X))))
% 15.05/2.38  = { by axiom 9 (converse_multiplicativity_10) }
% 15.05/2.38    converse(join(composition(converse(Y), converse(X)), composition(converse(Z), converse(X))))
% 15.05/2.38  = { by axiom 12 (composition_distributivity_7) R->L }
% 15.05/2.38    converse(composition(join(converse(Y), converse(Z)), converse(X)))
% 15.05/2.38  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 15.05/2.38    converse(composition(join(converse(Z), converse(Y)), converse(X)))
% 15.05/2.38  = { by axiom 2 (converse_idempotence_8) R->L }
% 15.05/2.38    converse(composition(join(converse(converse(converse(Z))), converse(Y)), converse(X)))
% 15.05/2.38  = { by axiom 7 (converse_additivity_9) R->L }
% 15.05/2.38    converse(composition(converse(join(converse(converse(Z)), Y)), converse(X)))
% 15.05/2.38  = { by axiom 1 (maddux1_join_commutativity_1) }
% 15.05/2.38    converse(composition(converse(join(Y, converse(converse(Z)))), converse(X)))
% 15.05/2.38  = { by axiom 9 (converse_multiplicativity_10) R->L }
% 15.05/2.38    converse(converse(composition(X, join(Y, converse(converse(Z))))))
% 15.05/2.38  = { by axiom 2 (converse_idempotence_8) }
% 15.05/2.38    composition(X, join(Y, converse(converse(Z))))
% 15.05/2.38  = { by axiom 2 (converse_idempotence_8) }
% 15.05/2.38    composition(X, join(Y, Z))
% 15.05/2.38  
% 15.05/2.38  Lemma 50: join(composition(X, Z), composition(X, Y)) = composition(X, join(Y, Z)).
% 15.05/2.38  Proof:
% 15.05/2.38    join(composition(X, Z), composition(X, Y))
% 15.05/2.38  = { by lemma 49 }
% 15.05/2.38    composition(X, join(Z, Y))
% 15.05/2.38  = { by axiom 1 (maddux1_join_commutativity_1) }
% 15.05/2.38    composition(X, join(Y, Z))
% 15.05/2.38  
% 15.05/2.38  Lemma 51: meet(complement(X), join(Y, complement(Z))) = complement(join(X, meet(Z, complement(Y)))).
% 15.05/2.38  Proof:
% 15.05/2.38    meet(complement(X), join(Y, complement(Z)))
% 15.05/2.38  = { by lemma 30 }
% 15.05/2.38    meet(join(Y, complement(Z)), complement(X))
% 15.05/2.38  = { by lemma 37 R->L }
% 15.05/2.38    complement(join(X, complement(join(Y, complement(Z)))))
% 15.05/2.38  = { by lemma 37 }
% 15.05/2.38    complement(join(X, meet(Z, complement(Y))))
% 15.05/2.38  
% 15.05/2.38  Lemma 52: join(meet(X, Y), meet(Y, complement(X))) = Y.
% 15.05/2.38  Proof:
% 15.05/2.38    join(meet(X, Y), meet(Y, complement(X)))
% 15.05/2.38  = { by lemma 30 }
% 15.05/2.38    join(meet(Y, X), meet(Y, complement(X)))
% 15.05/2.38  = { by lemma 34 }
% 15.05/2.38    Y
% 15.05/2.38  
% 15.05/2.38  Lemma 53: join(zero, composition(converse(sk1), complement(composition(sk1, top)))) = zero.
% 15.05/2.38  Proof:
% 15.05/2.38    join(zero, composition(converse(sk1), complement(composition(sk1, top))))
% 15.05/2.38  = { by axiom 4 (goals_17) R->L }
% 15.05/2.38    join(zero, composition(converse(composition(sk1, top)), complement(composition(sk1, top))))
% 15.05/2.38  = { by lemma 15 R->L }
% 15.05/2.38    join(complement(top), composition(converse(composition(sk1, top)), complement(composition(sk1, top))))
% 15.05/2.38  = { by axiom 4 (goals_17) R->L }
% 15.05/2.38    join(complement(top), composition(converse(composition(sk1, top)), complement(composition(composition(sk1, top), top))))
% 15.05/2.38  = { by lemma 19 }
% 15.05/2.38    complement(top)
% 15.05/2.38  = { by lemma 15 }
% 15.05/2.38    zero
% 15.05/2.38  
% 15.05/2.38  Lemma 54: composition(meet(X, converse(sk1)), complement(composition(sk1, top))) = zero.
% 15.05/2.38  Proof:
% 15.05/2.38    composition(meet(X, converse(sk1)), complement(composition(sk1, top)))
% 15.05/2.38  = { by lemma 27 R->L }
% 15.05/2.38    join(composition(meet(X, converse(sk1)), complement(composition(sk1, top))), zero)
% 15.05/2.38  = { by lemma 53 R->L }
% 15.05/2.38    join(composition(meet(X, converse(sk1)), complement(composition(sk1, top))), join(zero, composition(converse(sk1), complement(composition(sk1, top)))))
% 15.05/2.38  = { by axiom 1 (maddux1_join_commutativity_1) R->L }
% 15.05/2.38    join(composition(meet(X, converse(sk1)), complement(composition(sk1, top))), join(composition(converse(sk1), complement(composition(sk1, top))), zero))
% 15.05/2.38  = { by axiom 8 (maddux2_join_associativity_2) }
% 15.05/2.38    join(join(composition(meet(X, converse(sk1)), complement(composition(sk1, top))), composition(converse(sk1), complement(composition(sk1, top)))), zero)
% 15.05/2.38  = { by axiom 12 (composition_distributivity_7) R->L }
% 15.05/2.38    join(composition(join(meet(X, converse(sk1)), converse(sk1)), complement(composition(sk1, top))), zero)
% 15.05/2.38  = { by axiom 1 (maddux1_join_commutativity_1) }
% 15.05/2.38    join(zero, composition(join(meet(X, converse(sk1)), converse(sk1)), complement(composition(sk1, top))))
% 15.05/2.38  = { by lemma 28 }
% 15.05/2.38    composition(join(meet(X, converse(sk1)), converse(sk1)), complement(composition(sk1, top)))
% 15.05/2.38  = { by lemma 43 }
% 15.05/2.38    composition(converse(sk1), complement(composition(sk1, top)))
% 15.05/2.38  = { by lemma 44 R->L }
% 15.05/2.38    meet(composition(converse(sk1), complement(composition(sk1, top))), join(composition(converse(sk1), complement(composition(sk1, top))), zero))
% 15.05/2.38  = { by axiom 1 (maddux1_join_commutativity_1) }
% 15.05/2.38    meet(composition(converse(sk1), complement(composition(sk1, top))), join(zero, composition(converse(sk1), complement(composition(sk1, top)))))
% 15.05/2.38  = { by lemma 53 }
% 15.05/2.38    meet(composition(converse(sk1), complement(composition(sk1, top))), zero)
% 15.05/2.38  = { by lemma 33 }
% 15.05/2.38    zero
% 15.05/2.38  
% 15.05/2.38  Lemma 55: join(meet(sk1, X), meet(composition(sk1, top), complement(X))) = composition(sk1, top).
% 15.05/2.38  Proof:
% 15.05/2.38    join(meet(sk1, X), meet(composition(sk1, top), complement(X)))
% 15.05/2.38  = { by axiom 4 (goals_17) }
% 15.05/2.38    join(meet(sk1, X), meet(sk1, complement(X)))
% 15.05/2.38  = { by lemma 34 }
% 15.05/2.38    sk1
% 15.05/2.38  = { by axiom 4 (goals_17) R->L }
% 15.05/2.39    composition(sk1, top)
% 15.05/2.39  
% 15.05/2.39  Goal 1 (goals_18): join(composition(meet(sk2, converse(sk1)), sk3), composition(meet(sk2, converse(sk1)), meet(sk1, sk3))) = composition(meet(sk2, converse(sk1)), meet(sk1, sk3)).
% 15.05/2.39  Proof:
% 15.05/2.39    join(composition(meet(sk2, converse(sk1)), sk3), composition(meet(sk2, converse(sk1)), meet(sk1, sk3)))
% 15.05/2.39  = { by lemma 27 R->L }
% 15.05/2.39    join(join(composition(meet(sk2, converse(sk1)), sk3), composition(meet(sk2, converse(sk1)), meet(sk1, sk3))), zero)
% 15.05/2.39  = { by lemma 54 R->L }
% 15.05/2.39    join(join(composition(meet(sk2, converse(sk1)), sk3), composition(meet(sk2, converse(sk1)), meet(sk1, sk3))), composition(meet(sk2, converse(sk1)), complement(composition(sk1, top))))
% 15.05/2.39  = { by lemma 50 }
% 15.05/2.39    join(composition(meet(sk2, converse(sk1)), join(meet(sk1, sk3), sk3)), composition(meet(sk2, converse(sk1)), complement(composition(sk1, top))))
% 15.05/2.39  = { by lemma 43 }
% 15.05/2.39    join(composition(meet(sk2, converse(sk1)), sk3), composition(meet(sk2, converse(sk1)), complement(composition(sk1, top))))
% 15.05/2.39  = { by lemma 50 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(complement(composition(sk1, top)), sk3))
% 15.05/2.39  = { by axiom 1 (maddux1_join_commutativity_1) }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(sk3, complement(composition(sk1, top))))
% 15.05/2.39  = { by lemma 52 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(composition(sk1, top), join(sk3, complement(composition(sk1, top)))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 30 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(join(sk3, complement(composition(sk1, top))), composition(sk1, top)), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 55 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(join(sk3, complement(composition(sk1, top))), join(meet(sk1, sk3), meet(composition(sk1, top), complement(sk3)))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 38 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(complement(meet(composition(sk1, top), complement(sk3))), join(meet(sk1, sk3), meet(composition(sk1, top), complement(sk3)))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 30 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(join(meet(sk1, sk3), meet(composition(sk1, top), complement(sk3))), complement(meet(composition(sk1, top), complement(sk3)))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 37 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(complement(join(meet(composition(sk1, top), complement(sk3)), complement(join(meet(sk1, sk3), meet(composition(sk1, top), complement(sk3)))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 45 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3)))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 52 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(join(meet(meet(sk1, sk3), complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3))))))), meet(complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3)))))), complement(meet(sk1, sk3)))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 30 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(join(meet(meet(sk1, sk3), complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3))))))), meet(complement(meet(sk1, sk3)), complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3)))))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 51 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(join(meet(meet(sk1, sk3), complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3))))))), meet(complement(meet(sk1, sk3)), meet(complement(meet(composition(sk1, top), complement(sk3))), join(meet(composition(sk1, top), complement(sk3)), complement(complement(meet(sk1, sk3))))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 48 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(join(meet(meet(sk1, sk3), complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3))))))), meet(complement(meet(composition(sk1, top), complement(sk3))), meet(complement(meet(sk1, sk3)), join(meet(composition(sk1, top), complement(sk3)), complement(complement(meet(sk1, sk3))))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 46 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(join(meet(meet(sk1, sk3), complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3))))))), meet(join(meet(composition(sk1, top), complement(sk3)), complement(complement(meet(sk1, sk3)))), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3)))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 37 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(join(meet(meet(sk1, sk3), complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3))))))), meet(join(meet(composition(sk1, top), complement(sk3)), complement(complement(meet(sk1, sk3)))), complement(join(meet(composition(sk1, top), complement(sk3)), complement(complement(meet(sk1, sk3))))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by axiom 6 (def_zero_13) R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(join(meet(meet(sk1, sk3), complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3))))))), zero), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 27 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(meet(sk1, sk3), complement(join(meet(composition(sk1, top), complement(sk3)), meet(complement(meet(sk1, sk3)), complement(meet(composition(sk1, top), complement(sk3))))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 45 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(meet(sk1, sk3), complement(join(meet(composition(sk1, top), complement(sk3)), complement(join(meet(sk1, sk3), meet(composition(sk1, top), complement(sk3))))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 37 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(meet(sk1, sk3), meet(join(meet(sk1, sk3), meet(composition(sk1, top), complement(sk3))), complement(meet(composition(sk1, top), complement(sk3))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 30 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(meet(sk1, sk3), meet(complement(meet(composition(sk1, top), complement(sk3))), join(meet(sk1, sk3), meet(composition(sk1, top), complement(sk3))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 55 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(meet(sk1, sk3), meet(complement(meet(composition(sk1, top), complement(sk3))), composition(sk1, top))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 48 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(complement(meet(composition(sk1, top), complement(sk3))), meet(meet(sk1, sk3), composition(sk1, top))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(complement(meet(composition(sk1, top), complement(sk3))), complement(join(complement(meet(sk1, sk3)), complement(composition(sk1, top))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 26 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(complement(meet(composition(sk1, top), complement(sk3))), join(zero, complement(join(complement(meet(sk1, sk3)), complement(composition(sk1, top)))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 15 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(complement(meet(composition(sk1, top), complement(sk3))), join(complement(top), complement(join(complement(meet(sk1, sk3)), complement(composition(sk1, top)))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 40 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(complement(meet(composition(sk1, top), complement(sk3))), join(complement(join(sk1, complement(meet(sk1, sk3)))), complement(join(complement(meet(sk1, sk3)), complement(composition(sk1, top)))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by axiom 4 (goals_17) R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(complement(meet(composition(sk1, top), complement(sk3))), join(complement(join(composition(sk1, top), complement(meet(sk1, sk3)))), complement(join(complement(meet(sk1, sk3)), complement(composition(sk1, top)))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 37 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(complement(meet(composition(sk1, top), complement(sk3))), join(meet(meet(sk1, sk3), complement(composition(sk1, top))), complement(join(complement(meet(sk1, sk3)), complement(composition(sk1, top)))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 22 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(complement(meet(composition(sk1, top), complement(sk3))), meet(sk1, sk3)), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 38 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(join(sk3, complement(composition(sk1, top))), meet(sk1, sk3)), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by axiom 4 (goals_17) R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(join(sk3, complement(composition(sk1, top))), meet(composition(sk1, top), sk3)), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 47 R->L }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(composition(sk1, top), meet(sk3, join(sk3, complement(composition(sk1, top))))), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 44 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(composition(sk1, top), sk3), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by axiom 4 (goals_17) }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(sk1, sk3), meet(join(sk3, complement(composition(sk1, top))), complement(composition(sk1, top)))))
% 15.05/2.39  = { by lemma 30 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(sk1, sk3), meet(complement(composition(sk1, top)), join(sk3, complement(composition(sk1, top))))))
% 15.05/2.39  = { by lemma 51 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(sk1, sk3), complement(join(composition(sk1, top), meet(composition(sk1, top), complement(sk3))))))
% 15.05/2.39  = { by lemma 42 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), join(meet(sk1, sk3), complement(composition(sk1, top))))
% 15.05/2.39  = { by lemma 49 R->L }
% 15.05/2.39    join(composition(meet(sk2, converse(sk1)), meet(sk1, sk3)), composition(meet(sk2, converse(sk1)), complement(composition(sk1, top))))
% 15.05/2.39  = { by lemma 54 }
% 15.05/2.39    join(composition(meet(sk2, converse(sk1)), meet(sk1, sk3)), zero)
% 15.05/2.39  = { by lemma 27 }
% 15.05/2.39    composition(meet(sk2, converse(sk1)), meet(sk1, sk3))
% 15.05/2.39  % SZS output end Proof
% 15.05/2.39  
% 15.05/2.39  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------