TSTP Solution File: REL027-4 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : REL027-4 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:44:09 EDT 2023

% Result   : Unsatisfiable 19.27s 2.86s
% Output   : Proof 19.62s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : REL027-4 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n019.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Fri Aug 25 20:28:44 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 19.27/2.86  Command-line arguments: --no-flatten-goal
% 19.27/2.86  
% 19.27/2.86  % SZS status Unsatisfiable
% 19.27/2.86  
% 19.62/2.88  % SZS output start Proof
% 19.62/2.88  Take the following subset of the input axioms:
% 19.62/2.88    fof(composition_associativity_5, axiom, ![A, B, C]: composition(A, composition(B, C))=composition(composition(A, B), C)).
% 19.62/2.88    fof(composition_distributivity_7, axiom, ![A2, B2, C2]: composition(join(A2, B2), C2)=join(composition(A2, C2), composition(B2, C2))).
% 19.62/2.88    fof(composition_identity_6, axiom, ![A2]: composition(A2, one)=A2).
% 19.62/2.88    fof(converse_additivity_9, axiom, ![A2, B2]: converse(join(A2, B2))=join(converse(A2), converse(B2))).
% 19.62/2.88    fof(converse_cancellativity_11, axiom, ![A2, B2]: join(composition(converse(A2), complement(composition(A2, B2))), complement(B2))=complement(B2)).
% 19.62/2.88    fof(converse_idempotence_8, axiom, ![A2]: converse(converse(A2))=A2).
% 19.62/2.88    fof(converse_multiplicativity_10, axiom, ![A2, B2]: converse(composition(A2, B2))=composition(converse(B2), converse(A2))).
% 19.62/2.88    fof(def_top_12, axiom, ![A2]: top=join(A2, complement(A2))).
% 19.62/2.88    fof(def_zero_13, axiom, ![A2]: zero=meet(A2, complement(A2))).
% 19.62/2.88    fof(goals_17, negated_conjecture, join(sk1, one)=one).
% 19.62/2.88    fof(goals_18, negated_conjecture, join(meet(complement(sk1), one), meet(complement(composition(sk1, top)), one))!=meet(complement(composition(sk1, top)), one) | join(meet(complement(composition(sk1, top)), one), meet(complement(sk1), one))!=meet(complement(sk1), one)).
% 19.62/2.88    fof(maddux1_join_commutativity_1, axiom, ![A2, B2]: join(A2, B2)=join(B2, A2)).
% 19.62/2.88    fof(maddux2_join_associativity_2, axiom, ![A2, B2, C2]: join(A2, join(B2, C2))=join(join(A2, B2), C2)).
% 19.62/2.88    fof(maddux3_a_kind_of_de_Morgan_3, axiom, ![A2, B2]: A2=join(complement(join(complement(A2), complement(B2))), complement(join(complement(A2), B2)))).
% 19.62/2.88    fof(maddux4_definiton_of_meet_4, axiom, ![A2, B2]: meet(A2, B2)=complement(join(complement(A2), complement(B2)))).
% 19.62/2.88  
% 19.62/2.88  Now clausify the problem and encode Horn clauses using encoding 3 of
% 19.62/2.88  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 19.62/2.88  We repeatedly replace C & s=t => u=v by the two clauses:
% 19.62/2.88    fresh(y, y, x1...xn) = u
% 19.62/2.88    C => fresh(s, t, x1...xn) = v
% 19.62/2.88  where fresh is a fresh function symbol and x1..xn are the free
% 19.62/2.88  variables of u and v.
% 19.62/2.88  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 19.62/2.88  input problem has no model of domain size 1).
% 19.62/2.88  
% 19.62/2.88  The encoding turns the above axioms into the following unit equations and goals:
% 19.62/2.88  
% 19.62/2.88  Axiom 1 (converse_idempotence_8): converse(converse(X)) = X.
% 19.62/2.88  Axiom 2 (maddux1_join_commutativity_1): join(X, Y) = join(Y, X).
% 19.62/2.88  Axiom 3 (goals_17): join(sk1, one) = one.
% 19.62/2.88  Axiom 4 (composition_identity_6): composition(X, one) = X.
% 19.62/2.88  Axiom 5 (def_top_12): top = join(X, complement(X)).
% 19.62/2.88  Axiom 6 (def_zero_13): zero = meet(X, complement(X)).
% 19.62/2.88  Axiom 7 (converse_additivity_9): converse(join(X, Y)) = join(converse(X), converse(Y)).
% 19.62/2.88  Axiom 8 (maddux2_join_associativity_2): join(X, join(Y, Z)) = join(join(X, Y), Z).
% 19.62/2.88  Axiom 9 (converse_multiplicativity_10): converse(composition(X, Y)) = composition(converse(Y), converse(X)).
% 19.62/2.88  Axiom 10 (composition_associativity_5): composition(X, composition(Y, Z)) = composition(composition(X, Y), Z).
% 19.62/2.88  Axiom 11 (maddux4_definiton_of_meet_4): meet(X, Y) = complement(join(complement(X), complement(Y))).
% 19.62/2.88  Axiom 12 (composition_distributivity_7): composition(join(X, Y), Z) = join(composition(X, Z), composition(Y, Z)).
% 19.62/2.88  Axiom 13 (converse_cancellativity_11): join(composition(converse(X), complement(composition(X, Y))), complement(Y)) = complement(Y).
% 19.62/2.88  Axiom 14 (maddux3_a_kind_of_de_Morgan_3): X = join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y))).
% 19.62/2.88  
% 19.62/2.88  Lemma 15: complement(top) = zero.
% 19.62/2.88  Proof:
% 19.62/2.88    complement(top)
% 19.62/2.88  = { by axiom 5 (def_top_12) }
% 19.62/2.88    complement(join(complement(X), complement(complement(X))))
% 19.62/2.88  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 19.62/2.88    meet(X, complement(X))
% 19.62/2.88  = { by axiom 6 (def_zero_13) R->L }
% 19.62/2.88    zero
% 19.62/2.88  
% 19.62/2.88  Lemma 16: meet(Y, X) = meet(X, Y).
% 19.62/2.88  Proof:
% 19.62/2.88    meet(Y, X)
% 19.62/2.88  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 19.62/2.88    complement(join(complement(Y), complement(X)))
% 19.62/2.88  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.88    complement(join(complement(X), complement(Y)))
% 19.62/2.88  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 19.62/2.88    meet(X, Y)
% 19.62/2.88  
% 19.62/2.88  Lemma 17: complement(join(zero, complement(X))) = meet(X, top).
% 19.62/2.88  Proof:
% 19.62/2.88    complement(join(zero, complement(X)))
% 19.62/2.88  = { by lemma 15 R->L }
% 19.62/2.88    complement(join(complement(top), complement(X)))
% 19.62/2.88  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 19.62/2.88    meet(top, X)
% 19.62/2.88  = { by lemma 16 R->L }
% 19.62/2.88    meet(X, top)
% 19.62/2.88  
% 19.62/2.88  Lemma 18: join(meet(X, Y), complement(join(complement(X), Y))) = X.
% 19.62/2.88  Proof:
% 19.62/2.88    join(meet(X, Y), complement(join(complement(X), Y)))
% 19.62/2.88  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 19.62/2.88    join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y)))
% 19.62/2.88  = { by axiom 14 (maddux3_a_kind_of_de_Morgan_3) R->L }
% 19.62/2.88    X
% 19.62/2.88  
% 19.62/2.88  Lemma 19: composition(converse(one), X) = X.
% 19.62/2.88  Proof:
% 19.62/2.88    composition(converse(one), X)
% 19.62/2.88  = { by axiom 1 (converse_idempotence_8) R->L }
% 19.62/2.88    composition(converse(one), converse(converse(X)))
% 19.62/2.88  = { by axiom 9 (converse_multiplicativity_10) R->L }
% 19.62/2.88    converse(composition(converse(X), one))
% 19.62/2.88  = { by axiom 4 (composition_identity_6) }
% 19.62/2.88    converse(converse(X))
% 19.62/2.88  = { by axiom 1 (converse_idempotence_8) }
% 19.62/2.88    X
% 19.62/2.88  
% 19.62/2.88  Lemma 20: composition(one, X) = X.
% 19.62/2.88  Proof:
% 19.62/2.88    composition(one, X)
% 19.62/2.88  = { by lemma 19 R->L }
% 19.62/2.88    composition(converse(one), composition(one, X))
% 19.62/2.88  = { by axiom 10 (composition_associativity_5) }
% 19.62/2.88    composition(composition(converse(one), one), X)
% 19.62/2.88  = { by axiom 4 (composition_identity_6) }
% 19.62/2.88    composition(converse(one), X)
% 19.62/2.88  = { by lemma 19 }
% 19.62/2.88    X
% 19.62/2.88  
% 19.62/2.88  Lemma 21: join(complement(X), composition(converse(Y), complement(composition(Y, X)))) = complement(X).
% 19.62/2.88  Proof:
% 19.62/2.88    join(complement(X), composition(converse(Y), complement(composition(Y, X))))
% 19.62/2.88  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.88    join(composition(converse(Y), complement(composition(Y, X))), complement(X))
% 19.62/2.88  = { by axiom 13 (converse_cancellativity_11) }
% 19.62/2.88    complement(X)
% 19.62/2.88  
% 19.62/2.88  Lemma 22: join(complement(X), complement(X)) = complement(X).
% 19.62/2.88  Proof:
% 19.62/2.88    join(complement(X), complement(X))
% 19.62/2.88  = { by lemma 19 R->L }
% 19.62/2.88    join(complement(X), composition(converse(one), complement(X)))
% 19.62/2.88  = { by lemma 20 R->L }
% 19.62/2.88    join(complement(X), composition(converse(one), complement(composition(one, X))))
% 19.62/2.88  = { by lemma 21 }
% 19.62/2.88    complement(X)
% 19.62/2.88  
% 19.62/2.88  Lemma 23: join(zero, join(X, complement(complement(Y)))) = join(X, Y).
% 19.62/2.88  Proof:
% 19.62/2.88    join(zero, join(X, complement(complement(Y))))
% 19.62/2.88  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.88    join(zero, join(complement(complement(Y)), X))
% 19.62/2.88  = { by lemma 22 R->L }
% 19.62/2.88    join(zero, join(complement(join(complement(Y), complement(Y))), X))
% 19.62/2.88  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 19.62/2.88    join(zero, join(meet(Y, Y), X))
% 19.62/2.88  = { by axiom 8 (maddux2_join_associativity_2) }
% 19.62/2.88    join(join(zero, meet(Y, Y)), X)
% 19.62/2.88  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 19.62/2.88    join(join(zero, complement(join(complement(Y), complement(Y)))), X)
% 19.62/2.88  = { by axiom 6 (def_zero_13) }
% 19.62/2.88    join(join(meet(Y, complement(Y)), complement(join(complement(Y), complement(Y)))), X)
% 19.62/2.88  = { by lemma 18 }
% 19.62/2.88    join(Y, X)
% 19.62/2.88  = { by axiom 2 (maddux1_join_commutativity_1) }
% 19.62/2.88    join(X, Y)
% 19.62/2.89  
% 19.62/2.89  Lemma 24: join(zero, complement(X)) = complement(X).
% 19.62/2.89  Proof:
% 19.62/2.89    join(zero, complement(X))
% 19.62/2.89  = { by lemma 18 R->L }
% 19.62/2.89    join(zero, join(meet(complement(X), complement(complement(X))), complement(join(complement(complement(X)), complement(complement(X))))))
% 19.62/2.89  = { by lemma 22 }
% 19.62/2.89    join(zero, join(meet(complement(X), complement(complement(X))), complement(complement(complement(X)))))
% 19.62/2.89  = { by axiom 6 (def_zero_13) R->L }
% 19.62/2.89    join(zero, join(zero, complement(complement(complement(X)))))
% 19.62/2.89  = { by lemma 22 R->L }
% 19.62/2.89    join(zero, join(zero, join(complement(complement(complement(X))), complement(complement(complement(X))))))
% 19.62/2.89  = { by lemma 23 }
% 19.62/2.89    join(zero, join(complement(complement(complement(X))), complement(X)))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) }
% 19.62/2.89    join(zero, join(complement(X), complement(complement(complement(X)))))
% 19.62/2.89  = { by lemma 23 }
% 19.62/2.89    join(complement(X), complement(X))
% 19.62/2.89  = { by lemma 22 }
% 19.62/2.89    complement(X)
% 19.62/2.89  
% 19.62/2.89  Lemma 25: join(X, join(Y, complement(X))) = join(Y, top).
% 19.62/2.89  Proof:
% 19.62/2.89    join(X, join(Y, complement(X)))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    join(X, join(complement(X), Y))
% 19.62/2.89  = { by axiom 8 (maddux2_join_associativity_2) }
% 19.62/2.89    join(join(X, complement(X)), Y)
% 19.62/2.89  = { by axiom 5 (def_top_12) R->L }
% 19.62/2.89    join(top, Y)
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) }
% 19.62/2.89    join(Y, top)
% 19.62/2.89  
% 19.62/2.89  Lemma 26: join(top, complement(X)) = top.
% 19.62/2.89  Proof:
% 19.62/2.89    join(top, complement(X))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    join(complement(X), top)
% 19.62/2.89  = { by lemma 25 R->L }
% 19.62/2.89    join(X, join(complement(X), complement(X)))
% 19.62/2.89  = { by lemma 22 }
% 19.62/2.89    join(X, complement(X))
% 19.62/2.89  = { by axiom 5 (def_top_12) R->L }
% 19.62/2.89    top
% 19.62/2.89  
% 19.62/2.89  Lemma 27: join(Y, top) = join(X, top).
% 19.62/2.89  Proof:
% 19.62/2.89    join(Y, top)
% 19.62/2.89  = { by lemma 26 R->L }
% 19.62/2.89    join(Y, join(top, complement(Y)))
% 19.62/2.89  = { by lemma 25 }
% 19.62/2.89    join(top, top)
% 19.62/2.89  = { by lemma 25 R->L }
% 19.62/2.89    join(X, join(top, complement(X)))
% 19.62/2.89  = { by lemma 26 }
% 19.62/2.89    join(X, top)
% 19.62/2.89  
% 19.62/2.89  Lemma 28: join(X, top) = top.
% 19.62/2.89  Proof:
% 19.62/2.89    join(X, top)
% 19.62/2.89  = { by lemma 27 }
% 19.62/2.89    join(zero, top)
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    join(top, zero)
% 19.62/2.89  = { by lemma 15 R->L }
% 19.62/2.89    join(top, complement(top))
% 19.62/2.89  = { by axiom 5 (def_top_12) R->L }
% 19.62/2.89    top
% 19.62/2.89  
% 19.62/2.89  Lemma 29: join(X, join(complement(X), Y)) = top.
% 19.62/2.89  Proof:
% 19.62/2.89    join(X, join(complement(X), Y))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    join(X, join(Y, complement(X)))
% 19.62/2.89  = { by lemma 25 }
% 19.62/2.89    join(Y, top)
% 19.62/2.89  = { by lemma 27 R->L }
% 19.62/2.89    join(Z, top)
% 19.62/2.89  = { by lemma 28 }
% 19.62/2.89    top
% 19.62/2.89  
% 19.62/2.89  Lemma 30: join(X, complement(zero)) = top.
% 19.62/2.89  Proof:
% 19.62/2.89    join(X, complement(zero))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    join(complement(zero), X)
% 19.62/2.89  = { by lemma 23 R->L }
% 19.62/2.89    join(zero, join(complement(zero), complement(complement(X))))
% 19.62/2.89  = { by lemma 29 }
% 19.62/2.89    top
% 19.62/2.89  
% 19.62/2.89  Lemma 31: meet(X, top) = X.
% 19.62/2.89  Proof:
% 19.62/2.89    meet(X, top)
% 19.62/2.89  = { by lemma 17 R->L }
% 19.62/2.89    complement(join(zero, complement(X)))
% 19.62/2.89  = { by lemma 24 R->L }
% 19.62/2.89    join(zero, complement(join(zero, complement(X))))
% 19.62/2.89  = { by lemma 17 }
% 19.62/2.89    join(zero, meet(X, top))
% 19.62/2.89  = { by lemma 30 R->L }
% 19.62/2.89    join(zero, meet(X, join(complement(zero), complement(zero))))
% 19.62/2.89  = { by lemma 22 }
% 19.62/2.89    join(zero, meet(X, complement(zero)))
% 19.62/2.89  = { by lemma 15 R->L }
% 19.62/2.89    join(complement(top), meet(X, complement(zero)))
% 19.62/2.89  = { by lemma 30 R->L }
% 19.62/2.89    join(complement(join(complement(X), complement(zero))), meet(X, complement(zero)))
% 19.62/2.89  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 19.62/2.89    join(meet(X, zero), meet(X, complement(zero)))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    join(meet(X, complement(zero)), meet(X, zero))
% 19.62/2.89  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 19.62/2.89    join(meet(X, complement(zero)), complement(join(complement(X), complement(zero))))
% 19.62/2.89  = { by lemma 18 }
% 19.62/2.89    X
% 19.62/2.89  
% 19.62/2.89  Lemma 32: join(X, X) = X.
% 19.62/2.89  Proof:
% 19.62/2.89    join(X, X)
% 19.62/2.89  = { by lemma 31 R->L }
% 19.62/2.89    join(X, meet(X, top))
% 19.62/2.89  = { by lemma 31 R->L }
% 19.62/2.89    join(meet(X, top), meet(X, top))
% 19.62/2.89  = { by lemma 16 }
% 19.62/2.89    join(meet(top, X), meet(X, top))
% 19.62/2.89  = { by lemma 16 }
% 19.62/2.89    join(meet(top, X), meet(top, X))
% 19.62/2.89  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 19.62/2.89    join(meet(top, X), complement(join(complement(top), complement(X))))
% 19.62/2.89  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 19.62/2.89    join(complement(join(complement(top), complement(X))), complement(join(complement(top), complement(X))))
% 19.62/2.89  = { by lemma 22 }
% 19.62/2.89    complement(join(complement(top), complement(X)))
% 19.62/2.89  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 19.62/2.89    meet(top, X)
% 19.62/2.89  = { by lemma 16 R->L }
% 19.62/2.89    meet(X, top)
% 19.62/2.89  = { by lemma 31 }
% 19.62/2.89    X
% 19.62/2.89  
% 19.62/2.89  Lemma 33: complement(join(X, complement(Y))) = meet(Y, complement(X)).
% 19.62/2.89  Proof:
% 19.62/2.89    complement(join(X, complement(Y)))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    complement(join(complement(Y), X))
% 19.62/2.89  = { by lemma 31 R->L }
% 19.62/2.89    complement(join(complement(Y), meet(X, top)))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    complement(join(meet(X, top), complement(Y)))
% 19.62/2.89  = { by axiom 11 (maddux4_definiton_of_meet_4) }
% 19.62/2.89    complement(join(complement(join(complement(X), complement(top))), complement(Y)))
% 19.62/2.89  = { by axiom 11 (maddux4_definiton_of_meet_4) R->L }
% 19.62/2.89    meet(join(complement(X), complement(top)), Y)
% 19.62/2.89  = { by lemma 16 R->L }
% 19.62/2.89    meet(Y, join(complement(X), complement(top)))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) }
% 19.62/2.89    meet(Y, join(complement(top), complement(X)))
% 19.62/2.89  = { by lemma 15 }
% 19.62/2.89    meet(Y, join(zero, complement(X)))
% 19.62/2.89  = { by lemma 24 }
% 19.62/2.89    meet(Y, complement(X))
% 19.62/2.89  
% 19.62/2.89  Lemma 34: composition(join(X, one), Y) = join(Y, composition(X, Y)).
% 19.62/2.89  Proof:
% 19.62/2.89    composition(join(X, one), Y)
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    composition(join(one, X), Y)
% 19.62/2.89  = { by axiom 12 (composition_distributivity_7) }
% 19.62/2.89    join(composition(one, Y), composition(X, Y))
% 19.62/2.89  = { by lemma 20 }
% 19.62/2.89    join(Y, composition(X, Y))
% 19.62/2.89  
% 19.62/2.89  Lemma 35: converse(join(X, converse(Y))) = join(Y, converse(X)).
% 19.62/2.89  Proof:
% 19.62/2.89    converse(join(X, converse(Y)))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    converse(join(converse(Y), X))
% 19.62/2.89  = { by axiom 7 (converse_additivity_9) }
% 19.62/2.89    join(converse(converse(Y)), converse(X))
% 19.62/2.89  = { by axiom 1 (converse_idempotence_8) }
% 19.62/2.89    join(Y, converse(X))
% 19.62/2.89  
% 19.62/2.89  Lemma 36: converse(join(converse(X), Y)) = join(X, converse(Y)).
% 19.62/2.89  Proof:
% 19.62/2.89    converse(join(converse(X), Y))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    converse(join(Y, converse(X)))
% 19.62/2.89  = { by lemma 35 }
% 19.62/2.89    join(X, converse(Y))
% 19.62/2.89  
% 19.62/2.89  Lemma 37: converse(composition(X, converse(Y))) = composition(Y, converse(X)).
% 19.62/2.89  Proof:
% 19.62/2.89    converse(composition(X, converse(Y)))
% 19.62/2.89  = { by axiom 9 (converse_multiplicativity_10) }
% 19.62/2.89    composition(converse(converse(Y)), converse(X))
% 19.62/2.89  = { by axiom 1 (converse_idempotence_8) }
% 19.62/2.89    composition(Y, converse(X))
% 19.62/2.89  
% 19.62/2.89  Lemma 38: join(complement(one), converse(complement(one))) = complement(one).
% 19.62/2.89  Proof:
% 19.62/2.89    join(complement(one), converse(complement(one)))
% 19.62/2.89  = { by axiom 4 (composition_identity_6) R->L }
% 19.62/2.89    join(complement(one), composition(converse(complement(one)), one))
% 19.62/2.89  = { by lemma 31 R->L }
% 19.62/2.89    join(complement(one), composition(converse(complement(one)), meet(one, top)))
% 19.62/2.89  = { by lemma 24 R->L }
% 19.62/2.89    join(complement(one), composition(converse(join(zero, complement(one))), meet(one, top)))
% 19.62/2.89  = { by lemma 17 R->L }
% 19.62/2.89    join(complement(one), composition(converse(join(zero, complement(one))), complement(join(zero, complement(one)))))
% 19.62/2.89  = { by axiom 4 (composition_identity_6) R->L }
% 19.62/2.89    join(complement(one), composition(converse(join(zero, complement(one))), complement(composition(join(zero, complement(one)), one))))
% 19.62/2.89  = { by lemma 21 }
% 19.62/2.89    complement(one)
% 19.62/2.89  
% 19.62/2.89  Lemma 39: meet(one, complement(composition(sk1, top))) = meet(one, complement(sk1)).
% 19.62/2.89  Proof:
% 19.62/2.89    meet(one, complement(composition(sk1, top)))
% 19.62/2.89  = { by lemma 33 R->L }
% 19.62/2.89    complement(join(composition(sk1, top), complement(one)))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) }
% 19.62/2.89    complement(join(complement(one), composition(sk1, top)))
% 19.62/2.89  = { by lemma 29 R->L }
% 19.62/2.89    complement(join(complement(one), composition(sk1, join(converse(X), join(complement(converse(X)), converse(complement(converse(complement(converse(X))))))))))
% 19.62/2.89  = { by lemma 36 R->L }
% 19.62/2.89    complement(join(complement(one), composition(sk1, join(converse(X), converse(join(converse(complement(converse(X))), complement(converse(complement(converse(X))))))))))
% 19.62/2.89  = { by axiom 5 (def_top_12) R->L }
% 19.62/2.89    complement(join(complement(one), composition(sk1, join(converse(X), converse(top)))))
% 19.62/2.89  = { by axiom 7 (converse_additivity_9) R->L }
% 19.62/2.89    complement(join(complement(one), composition(sk1, converse(join(X, top)))))
% 19.62/2.89  = { by lemma 28 }
% 19.62/2.89    complement(join(complement(one), composition(sk1, converse(top))))
% 19.62/2.89  = { by axiom 5 (def_top_12) }
% 19.62/2.89    complement(join(complement(one), composition(sk1, converse(join(one, complement(one))))))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    complement(join(complement(one), composition(sk1, converse(join(complement(one), one)))))
% 19.62/2.89  = { by lemma 37 R->L }
% 19.62/2.89    complement(join(complement(one), converse(composition(join(complement(one), one), converse(sk1)))))
% 19.62/2.89  = { by lemma 34 }
% 19.62/2.89    complement(join(complement(one), converse(join(converse(sk1), composition(complement(one), converse(sk1))))))
% 19.62/2.89  = { by lemma 36 }
% 19.62/2.89    complement(join(complement(one), join(sk1, converse(composition(complement(one), converse(sk1))))))
% 19.62/2.89  = { by lemma 37 }
% 19.62/2.89    complement(join(complement(one), join(sk1, composition(sk1, converse(complement(one))))))
% 19.62/2.89  = { by lemma 38 R->L }
% 19.62/2.89    complement(join(complement(one), join(sk1, composition(sk1, converse(join(complement(one), converse(complement(one))))))))
% 19.62/2.89  = { by lemma 35 }
% 19.62/2.89    complement(join(complement(one), join(sk1, composition(sk1, join(complement(one), converse(complement(one)))))))
% 19.62/2.89  = { by lemma 38 }
% 19.62/2.89    complement(join(complement(one), join(sk1, composition(sk1, complement(one)))))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 19.62/2.89    complement(join(complement(one), join(composition(sk1, complement(one)), sk1)))
% 19.62/2.89  = { by axiom 8 (maddux2_join_associativity_2) }
% 19.62/2.89    complement(join(join(complement(one), composition(sk1, complement(one))), sk1))
% 19.62/2.89  = { by lemma 34 R->L }
% 19.62/2.89    complement(join(composition(join(sk1, one), complement(one)), sk1))
% 19.62/2.89  = { by axiom 3 (goals_17) }
% 19.62/2.89    complement(join(composition(one, complement(one)), sk1))
% 19.62/2.89  = { by lemma 20 }
% 19.62/2.89    complement(join(complement(one), sk1))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) }
% 19.62/2.89    complement(join(sk1, complement(one)))
% 19.62/2.89  = { by lemma 33 }
% 19.62/2.89    meet(one, complement(sk1))
% 19.62/2.89  
% 19.62/2.89  Goal 1 (goals_18): tuple(join(meet(complement(composition(sk1, top)), one), meet(complement(sk1), one)), join(meet(complement(sk1), one), meet(complement(composition(sk1, top)), one))) = tuple(meet(complement(sk1), one), meet(complement(composition(sk1, top)), one)).
% 19.62/2.89  Proof:
% 19.62/2.89    tuple(join(meet(complement(composition(sk1, top)), one), meet(complement(sk1), one)), join(meet(complement(sk1), one), meet(complement(composition(sk1, top)), one)))
% 19.62/2.89  = { by axiom 2 (maddux1_join_commutativity_1) }
% 19.62/2.89    tuple(join(meet(complement(sk1), one), meet(complement(composition(sk1, top)), one)), join(meet(complement(sk1), one), meet(complement(composition(sk1, top)), one)))
% 19.62/2.89  = { by lemma 16 R->L }
% 19.62/2.89    tuple(join(meet(one, complement(sk1)), meet(complement(composition(sk1, top)), one)), join(meet(complement(sk1), one), meet(complement(composition(sk1, top)), one)))
% 19.62/2.89  = { by lemma 16 R->L }
% 19.62/2.90    tuple(join(meet(one, complement(sk1)), meet(complement(composition(sk1, top)), one)), join(meet(one, complement(sk1)), meet(complement(composition(sk1, top)), one)))
% 19.62/2.90  = { by lemma 16 R->L }
% 19.62/2.90    tuple(join(meet(one, complement(sk1)), meet(one, complement(composition(sk1, top)))), join(meet(one, complement(sk1)), meet(complement(composition(sk1, top)), one)))
% 19.62/2.90  = { by lemma 16 R->L }
% 19.62/2.90    tuple(join(meet(one, complement(sk1)), meet(one, complement(composition(sk1, top)))), join(meet(one, complement(sk1)), meet(one, complement(composition(sk1, top)))))
% 19.62/2.90  = { by lemma 39 }
% 19.62/2.90    tuple(join(meet(one, complement(sk1)), meet(one, complement(sk1))), join(meet(one, complement(sk1)), meet(one, complement(composition(sk1, top)))))
% 19.62/2.90  = { by lemma 39 }
% 19.62/2.90    tuple(join(meet(one, complement(sk1)), meet(one, complement(sk1))), join(meet(one, complement(sk1)), meet(one, complement(sk1))))
% 19.62/2.90  = { by lemma 32 }
% 19.62/2.90    tuple(meet(one, complement(sk1)), join(meet(one, complement(sk1)), meet(one, complement(sk1))))
% 19.62/2.90  = { by lemma 32 }
% 19.62/2.90    tuple(meet(one, complement(sk1)), meet(one, complement(sk1)))
% 19.62/2.90  = { by lemma 39 R->L }
% 19.62/2.90    tuple(meet(one, complement(sk1)), meet(one, complement(composition(sk1, top))))
% 19.62/2.90  = { by lemma 16 }
% 19.62/2.90    tuple(meet(one, complement(sk1)), meet(complement(composition(sk1, top)), one))
% 19.62/2.90  = { by lemma 16 }
% 19.62/2.90    tuple(meet(complement(sk1), one), meet(complement(composition(sk1, top)), one))
% 19.62/2.90  % SZS output end Proof
% 19.62/2.90  
% 19.62/2.90  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------