TSTP Solution File: REL027+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : REL027+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n010.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:44:08 EDT 2023

% Result   : Theorem 17.80s 2.69s
% Output   : Proof 18.77s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : REL027+1 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.35  % Computer : n010.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Fri Aug 25 22:17:35 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 17.80/2.69  Command-line arguments: --lhs-weight 9 --flip-ordering --complete-subsets --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 17.80/2.69  
% 17.80/2.69  % SZS status Theorem
% 17.80/2.69  
% 18.25/2.74  % SZS output start Proof
% 18.25/2.74  Axiom 1 (maddux1_join_commutativity): join(X, Y) = join(Y, X).
% 18.25/2.74  Axiom 2 (goals): join(x0, one) = one.
% 18.25/2.74  Axiom 3 (composition_identity): composition(X, one) = X.
% 18.25/2.74  Axiom 4 (converse_idempotence): converse(converse(X)) = X.
% 18.25/2.74  Axiom 5 (def_top): top = join(X, complement(X)).
% 18.25/2.74  Axiom 6 (def_zero): zero = meet(X, complement(X)).
% 18.25/2.74  Axiom 7 (converse_additivity): converse(join(X, Y)) = join(converse(X), converse(Y)).
% 18.25/2.74  Axiom 8 (maddux2_join_associativity): join(X, join(Y, Z)) = join(join(X, Y), Z).
% 18.25/2.74  Axiom 9 (converse_multiplicativity): converse(composition(X, Y)) = composition(converse(Y), converse(X)).
% 18.25/2.74  Axiom 10 (composition_associativity): composition(X, composition(Y, Z)) = composition(composition(X, Y), Z).
% 18.25/2.74  Axiom 11 (maddux4_definiton_of_meet): meet(X, Y) = complement(join(complement(X), complement(Y))).
% 18.25/2.74  Axiom 12 (composition_distributivity): composition(join(X, Y), Z) = join(composition(X, Z), composition(Y, Z)).
% 18.25/2.74  Axiom 13 (converse_cancellativity): join(composition(converse(X), complement(composition(X, Y))), complement(Y)) = complement(Y).
% 18.25/2.74  Axiom 14 (maddux3_a_kind_of_de_Morgan): X = join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y))).
% 18.25/2.74  
% 18.25/2.74  Lemma 15: complement(top) = zero.
% 18.25/2.74  Proof:
% 18.25/2.74    complement(top)
% 18.25/2.74  = { by axiom 5 (def_top) }
% 18.25/2.74    complement(join(complement(X), complement(complement(X))))
% 18.25/2.74  = { by axiom 11 (maddux4_definiton_of_meet) R->L }
% 18.25/2.74    meet(X, complement(X))
% 18.25/2.74  = { by axiom 6 (def_zero) R->L }
% 18.25/2.74    zero
% 18.25/2.74  
% 18.25/2.74  Lemma 16: join(meet(X, Y), complement(join(complement(X), Y))) = X.
% 18.25/2.74  Proof:
% 18.25/2.74    join(meet(X, Y), complement(join(complement(X), Y)))
% 18.25/2.74  = { by axiom 11 (maddux4_definiton_of_meet) }
% 18.25/2.74    join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y)))
% 18.25/2.74  = { by axiom 14 (maddux3_a_kind_of_de_Morgan) R->L }
% 18.25/2.74    X
% 18.25/2.74  
% 18.25/2.74  Lemma 17: join(zero, meet(X, X)) = X.
% 18.25/2.74  Proof:
% 18.25/2.74    join(zero, meet(X, X))
% 18.25/2.74  = { by axiom 11 (maddux4_definiton_of_meet) }
% 18.25/2.74    join(zero, complement(join(complement(X), complement(X))))
% 18.25/2.74  = { by axiom 6 (def_zero) }
% 18.25/2.74    join(meet(X, complement(X)), complement(join(complement(X), complement(X))))
% 18.25/2.74  = { by lemma 16 }
% 18.25/2.74    X
% 18.25/2.74  
% 18.25/2.74  Lemma 18: converse(composition(converse(X), Y)) = composition(converse(Y), X).
% 18.25/2.74  Proof:
% 18.25/2.74    converse(composition(converse(X), Y))
% 18.25/2.74  = { by axiom 9 (converse_multiplicativity) }
% 18.25/2.74    composition(converse(Y), converse(converse(X)))
% 18.25/2.74  = { by axiom 4 (converse_idempotence) }
% 18.25/2.74    composition(converse(Y), X)
% 18.25/2.74  
% 18.25/2.74  Lemma 19: composition(converse(one), X) = X.
% 18.25/2.74  Proof:
% 18.25/2.74    composition(converse(one), X)
% 18.25/2.74  = { by lemma 18 R->L }
% 18.25/2.74    converse(composition(converse(X), one))
% 18.25/2.74  = { by axiom 3 (composition_identity) }
% 18.25/2.74    converse(converse(X))
% 18.25/2.74  = { by axiom 4 (converse_idempotence) }
% 18.25/2.74    X
% 18.25/2.74  
% 18.25/2.74  Lemma 20: composition(one, X) = X.
% 18.25/2.74  Proof:
% 18.25/2.74    composition(one, X)
% 18.25/2.74  = { by lemma 19 R->L }
% 18.25/2.74    composition(converse(one), composition(one, X))
% 18.25/2.74  = { by axiom 10 (composition_associativity) }
% 18.25/2.74    composition(composition(converse(one), one), X)
% 18.25/2.74  = { by axiom 3 (composition_identity) }
% 18.25/2.74    composition(converse(one), X)
% 18.25/2.74  = { by lemma 19 }
% 18.25/2.74    X
% 18.25/2.74  
% 18.25/2.74  Lemma 21: join(complement(X), composition(converse(Y), complement(composition(Y, X)))) = complement(X).
% 18.25/2.74  Proof:
% 18.25/2.74    join(complement(X), composition(converse(Y), complement(composition(Y, X))))
% 18.25/2.74  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.25/2.74    join(composition(converse(Y), complement(composition(Y, X))), complement(X))
% 18.25/2.74  = { by axiom 13 (converse_cancellativity) }
% 18.25/2.74    complement(X)
% 18.25/2.74  
% 18.25/2.74  Lemma 22: join(complement(X), complement(X)) = complement(X).
% 18.25/2.74  Proof:
% 18.25/2.74    join(complement(X), complement(X))
% 18.25/2.74  = { by lemma 19 R->L }
% 18.25/2.74    join(complement(X), composition(converse(one), complement(X)))
% 18.25/2.74  = { by lemma 20 R->L }
% 18.25/2.74    join(complement(X), composition(converse(one), complement(composition(one, X))))
% 18.25/2.74  = { by lemma 21 }
% 18.25/2.74    complement(X)
% 18.25/2.74  
% 18.25/2.74  Lemma 23: join(zero, zero) = zero.
% 18.25/2.74  Proof:
% 18.25/2.74    join(zero, zero)
% 18.25/2.74  = { by lemma 15 R->L }
% 18.25/2.75    join(zero, complement(top))
% 18.25/2.75  = { by lemma 15 R->L }
% 18.25/2.75    join(complement(top), complement(top))
% 18.25/2.75  = { by lemma 22 }
% 18.25/2.75    complement(top)
% 18.25/2.75  = { by lemma 15 }
% 18.25/2.75    zero
% 18.25/2.75  
% 18.25/2.75  Lemma 24: join(zero, join(zero, X)) = join(X, zero).
% 18.25/2.75  Proof:
% 18.25/2.75    join(zero, join(zero, X))
% 18.25/2.75  = { by axiom 8 (maddux2_join_associativity) }
% 18.25/2.75    join(join(zero, zero), X)
% 18.25/2.75  = { by lemma 23 }
% 18.25/2.75    join(zero, X)
% 18.25/2.75  = { by axiom 1 (maddux1_join_commutativity) }
% 18.25/2.75    join(X, zero)
% 18.25/2.75  
% 18.25/2.75  Lemma 25: join(zero, complement(complement(X))) = X.
% 18.25/2.75  Proof:
% 18.25/2.75    join(zero, complement(complement(X)))
% 18.25/2.75  = { by axiom 6 (def_zero) }
% 18.25/2.75    join(meet(X, complement(X)), complement(complement(X)))
% 18.25/2.75  = { by lemma 22 R->L }
% 18.25/2.75    join(meet(X, complement(X)), complement(join(complement(X), complement(X))))
% 18.25/2.75  = { by lemma 16 }
% 18.25/2.75    X
% 18.25/2.75  
% 18.25/2.75  Lemma 26: join(X, zero) = X.
% 18.25/2.75  Proof:
% 18.25/2.75    join(X, zero)
% 18.25/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.25/2.75    join(zero, X)
% 18.25/2.75  = { by lemma 17 R->L }
% 18.25/2.75    join(zero, join(zero, meet(X, X)))
% 18.25/2.75  = { by lemma 24 }
% 18.25/2.75    join(meet(X, X), zero)
% 18.25/2.75  = { by axiom 11 (maddux4_definiton_of_meet) }
% 18.25/2.75    join(complement(join(complement(X), complement(X))), zero)
% 18.25/2.75  = { by lemma 22 }
% 18.25/2.75    join(complement(complement(X)), zero)
% 18.25/2.75  = { by axiom 1 (maddux1_join_commutativity) }
% 18.25/2.75    join(zero, complement(complement(X)))
% 18.25/2.75  = { by lemma 25 }
% 18.25/2.75    X
% 18.25/2.75  
% 18.25/2.75  Lemma 27: join(zero, X) = X.
% 18.25/2.75  Proof:
% 18.25/2.75    join(zero, X)
% 18.25/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.25/2.75    join(X, zero)
% 18.25/2.75  = { by lemma 26 }
% 18.25/2.75    X
% 18.25/2.75  
% 18.25/2.75  Lemma 28: complement(zero) = top.
% 18.25/2.75  Proof:
% 18.25/2.75    complement(zero)
% 18.25/2.75  = { by lemma 27 R->L }
% 18.25/2.75    join(zero, complement(zero))
% 18.25/2.75  = { by axiom 5 (def_top) R->L }
% 18.25/2.75    top
% 18.25/2.75  
% 18.25/2.75  Lemma 29: converse(join(X, converse(Y))) = join(Y, converse(X)).
% 18.25/2.75  Proof:
% 18.25/2.75    converse(join(X, converse(Y)))
% 18.25/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.25/2.75    converse(join(converse(Y), X))
% 18.25/2.75  = { by axiom 7 (converse_additivity) }
% 18.25/2.75    join(converse(converse(Y)), converse(X))
% 18.25/2.75  = { by axiom 4 (converse_idempotence) }
% 18.25/2.75    join(Y, converse(X))
% 18.25/2.75  
% 18.25/2.75  Lemma 30: join(X, join(Y, complement(X))) = join(Y, top).
% 18.25/2.75  Proof:
% 18.25/2.75    join(X, join(Y, complement(X)))
% 18.25/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.25/2.75    join(X, join(complement(X), Y))
% 18.25/2.75  = { by axiom 8 (maddux2_join_associativity) }
% 18.25/2.75    join(join(X, complement(X)), Y)
% 18.25/2.75  = { by axiom 5 (def_top) R->L }
% 18.25/2.75    join(top, Y)
% 18.25/2.75  = { by axiom 1 (maddux1_join_commutativity) }
% 18.25/2.75    join(Y, top)
% 18.25/2.75  
% 18.25/2.75  Lemma 31: join(top, complement(X)) = top.
% 18.25/2.75  Proof:
% 18.25/2.75    join(top, complement(X))
% 18.25/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.25/2.75    join(complement(X), top)
% 18.25/2.75  = { by lemma 30 R->L }
% 18.25/2.75    join(X, join(complement(X), complement(X)))
% 18.25/2.75  = { by lemma 22 }
% 18.25/2.75    join(X, complement(X))
% 18.25/2.75  = { by axiom 5 (def_top) R->L }
% 18.25/2.75    top
% 18.25/2.75  
% 18.25/2.75  Lemma 32: join(Y, top) = join(X, top).
% 18.25/2.75  Proof:
% 18.25/2.75    join(Y, top)
% 18.25/2.75  = { by lemma 31 R->L }
% 18.25/2.75    join(Y, join(top, complement(Y)))
% 18.25/2.75  = { by lemma 30 }
% 18.25/2.75    join(top, top)
% 18.25/2.75  = { by lemma 30 R->L }
% 18.25/2.75    join(X, join(top, complement(X)))
% 18.25/2.75  = { by lemma 31 }
% 18.25/2.75    join(X, top)
% 18.25/2.75  
% 18.25/2.75  Lemma 33: join(x0, join(one, X)) = join(X, one).
% 18.25/2.75  Proof:
% 18.25/2.75    join(x0, join(one, X))
% 18.25/2.75  = { by axiom 8 (maddux2_join_associativity) }
% 18.25/2.75    join(join(x0, one), X)
% 18.25/2.75  = { by axiom 2 (goals) }
% 18.25/2.75    join(one, X)
% 18.25/2.75  = { by axiom 1 (maddux1_join_commutativity) }
% 18.25/2.75    join(X, one)
% 18.25/2.75  
% 18.25/2.75  Lemma 34: join(X, top) = top.
% 18.25/2.75  Proof:
% 18.72/2.75    join(X, top)
% 18.72/2.75  = { by lemma 32 }
% 18.72/2.75    join(x0, top)
% 18.72/2.75  = { by axiom 5 (def_top) }
% 18.72/2.75    join(x0, join(one, complement(one)))
% 18.72/2.75  = { by lemma 33 }
% 18.72/2.75    join(complement(one), one)
% 18.72/2.75  = { by axiom 1 (maddux1_join_commutativity) }
% 18.72/2.75    join(one, complement(one))
% 18.72/2.75  = { by axiom 5 (def_top) R->L }
% 18.72/2.75    top
% 18.72/2.75  
% 18.72/2.75  Lemma 35: join(top, X) = top.
% 18.72/2.75  Proof:
% 18.72/2.75    join(top, X)
% 18.72/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.72/2.75    join(X, top)
% 18.72/2.75  = { by lemma 32 R->L }
% 18.72/2.75    join(Y, top)
% 18.72/2.75  = { by lemma 34 }
% 18.72/2.75    top
% 18.72/2.75  
% 18.72/2.75  Lemma 36: join(X, converse(top)) = converse(top).
% 18.72/2.75  Proof:
% 18.72/2.75    join(X, converse(top))
% 18.72/2.75  = { by lemma 29 R->L }
% 18.72/2.75    converse(join(top, converse(X)))
% 18.72/2.75  = { by lemma 35 }
% 18.72/2.75    converse(top)
% 18.72/2.75  
% 18.72/2.75  Lemma 37: converse(top) = top.
% 18.72/2.75  Proof:
% 18.72/2.75    converse(top)
% 18.72/2.75  = { by lemma 36 R->L }
% 18.72/2.75    join(X, converse(top))
% 18.72/2.75  = { by lemma 36 R->L }
% 18.72/2.75    join(X, join(complement(X), converse(top)))
% 18.72/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.72/2.75    join(X, join(converse(top), complement(X)))
% 18.72/2.75  = { by lemma 30 }
% 18.72/2.75    join(converse(top), top)
% 18.72/2.75  = { by lemma 34 }
% 18.72/2.75    top
% 18.72/2.75  
% 18.72/2.75  Lemma 38: converse(join(converse(X), Y)) = join(X, converse(Y)).
% 18.72/2.75  Proof:
% 18.72/2.75    converse(join(converse(X), Y))
% 18.72/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.72/2.75    converse(join(Y, converse(X)))
% 18.72/2.75  = { by lemma 29 }
% 18.72/2.75    join(X, converse(Y))
% 18.72/2.75  
% 18.72/2.75  Lemma 39: converse(zero) = zero.
% 18.72/2.75  Proof:
% 18.72/2.75    converse(zero)
% 18.72/2.75  = { by lemma 26 R->L }
% 18.72/2.75    join(converse(zero), zero)
% 18.72/2.75  = { by lemma 24 R->L }
% 18.72/2.75    join(zero, join(zero, converse(zero)))
% 18.72/2.75  = { by lemma 38 R->L }
% 18.72/2.75    join(zero, converse(join(converse(zero), zero)))
% 18.72/2.75  = { by lemma 26 }
% 18.72/2.75    join(zero, converse(converse(zero)))
% 18.72/2.75  = { by axiom 4 (converse_idempotence) }
% 18.72/2.75    join(zero, zero)
% 18.72/2.75  = { by lemma 23 }
% 18.72/2.75    zero
% 18.72/2.75  
% 18.72/2.75  Lemma 40: complement(complement(X)) = X.
% 18.72/2.75  Proof:
% 18.72/2.75    complement(complement(X))
% 18.72/2.75  = { by lemma 27 R->L }
% 18.72/2.75    join(zero, complement(complement(X)))
% 18.72/2.75  = { by lemma 25 }
% 18.72/2.75    X
% 18.72/2.75  
% 18.72/2.75  Lemma 41: meet(Y, X) = meet(X, Y).
% 18.72/2.75  Proof:
% 18.72/2.75    meet(Y, X)
% 18.72/2.75  = { by axiom 11 (maddux4_definiton_of_meet) }
% 18.72/2.75    complement(join(complement(Y), complement(X)))
% 18.72/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.72/2.75    complement(join(complement(X), complement(Y)))
% 18.72/2.75  = { by axiom 11 (maddux4_definiton_of_meet) R->L }
% 18.72/2.75    meet(X, Y)
% 18.72/2.75  
% 18.72/2.75  Lemma 42: composition(join(X, one), Y) = join(Y, composition(X, Y)).
% 18.72/2.75  Proof:
% 18.72/2.75    composition(join(X, one), Y)
% 18.72/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.72/2.75    composition(join(one, X), Y)
% 18.72/2.75  = { by axiom 12 (composition_distributivity) }
% 18.72/2.75    join(composition(one, Y), composition(X, Y))
% 18.72/2.75  = { by lemma 20 }
% 18.72/2.75    join(Y, composition(X, Y))
% 18.72/2.75  
% 18.72/2.75  Lemma 43: composition(join(one, Y), X) = join(X, composition(Y, X)).
% 18.72/2.75  Proof:
% 18.72/2.75    composition(join(one, Y), X)
% 18.72/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.72/2.75    composition(join(Y, one), X)
% 18.72/2.75  = { by lemma 42 }
% 18.72/2.75    join(X, composition(Y, X))
% 18.72/2.75  
% 18.72/2.75  Lemma 44: composition(top, zero) = zero.
% 18.72/2.75  Proof:
% 18.72/2.75    composition(top, zero)
% 18.72/2.75  = { by lemma 37 R->L }
% 18.72/2.75    composition(converse(top), zero)
% 18.72/2.75  = { by lemma 27 R->L }
% 18.72/2.75    join(zero, composition(converse(top), zero))
% 18.72/2.75  = { by lemma 15 R->L }
% 18.72/2.75    join(complement(top), composition(converse(top), zero))
% 18.72/2.75  = { by lemma 15 R->L }
% 18.72/2.75    join(complement(top), composition(converse(top), complement(top)))
% 18.72/2.75  = { by lemma 35 R->L }
% 18.72/2.75    join(complement(top), composition(converse(top), complement(join(top, composition(complement(x0), top)))))
% 18.72/2.75  = { by lemma 43 R->L }
% 18.72/2.75    join(complement(top), composition(converse(top), complement(composition(join(one, complement(x0)), top))))
% 18.72/2.75  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.72/2.75    join(complement(top), composition(converse(top), complement(composition(join(complement(x0), one), top))))
% 18.72/2.75  = { by lemma 33 R->L }
% 18.72/2.75    join(complement(top), composition(converse(top), complement(composition(join(x0, join(one, complement(x0))), top))))
% 18.72/2.75  = { by lemma 30 }
% 18.72/2.75    join(complement(top), composition(converse(top), complement(composition(join(one, top), top))))
% 18.72/2.75  = { by lemma 34 }
% 18.72/2.75    join(complement(top), composition(converse(top), complement(composition(top, top))))
% 18.72/2.75  = { by lemma 21 }
% 18.72/2.75    complement(top)
% 18.72/2.75  = { by lemma 15 }
% 18.72/2.75    zero
% 18.72/2.75  
% 18.72/2.75  Lemma 45: converse(composition(top, X)) = composition(converse(X), top).
% 18.72/2.75  Proof:
% 18.72/2.75    converse(composition(top, X))
% 18.72/2.75  = { by axiom 9 (converse_multiplicativity) }
% 18.72/2.75    composition(converse(X), converse(top))
% 18.72/2.75  = { by lemma 37 }
% 18.72/2.75    composition(converse(X), top)
% 18.72/2.75  
% 18.72/2.75  Lemma 46: composition(converse(X), complement(composition(X, top))) = zero.
% 18.72/2.75  Proof:
% 18.72/2.75    composition(converse(X), complement(composition(X, top)))
% 18.72/2.75  = { by lemma 27 R->L }
% 18.72/2.75    join(zero, composition(converse(X), complement(composition(X, top))))
% 18.72/2.75  = { by lemma 15 R->L }
% 18.72/2.75    join(complement(top), composition(converse(X), complement(composition(X, top))))
% 18.72/2.75  = { by lemma 21 }
% 18.72/2.75    complement(top)
% 18.72/2.75  = { by lemma 15 }
% 18.77/2.76    zero
% 18.77/2.76  
% 18.77/2.76  Lemma 47: join(complement(composition(X, top)), complement(X)) = complement(X).
% 18.77/2.76  Proof:
% 18.77/2.76    join(complement(composition(X, top)), complement(X))
% 18.77/2.76  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.77/2.76    join(complement(X), complement(composition(X, top)))
% 18.77/2.76  = { by lemma 21 R->L }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(composition(converse(complement(composition(X, top))), composition(X, top))))))
% 18.77/2.76  = { by lemma 18 R->L }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(converse(composition(converse(composition(X, top)), complement(composition(X, top))))))))
% 18.77/2.76  = { by axiom 9 (converse_multiplicativity) }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(converse(composition(composition(converse(top), converse(X)), complement(composition(X, top))))))))
% 18.77/2.76  = { by axiom 10 (composition_associativity) R->L }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(converse(composition(converse(top), composition(converse(X), complement(composition(X, top)))))))))
% 18.77/2.76  = { by lemma 46 }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(converse(composition(converse(top), zero))))))
% 18.77/2.76  = { by lemma 27 R->L }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(converse(join(zero, composition(converse(top), zero)))))))
% 18.77/2.76  = { by lemma 44 R->L }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(converse(join(composition(top, zero), composition(converse(top), zero)))))))
% 18.77/2.76  = { by axiom 12 (composition_distributivity) R->L }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(converse(composition(join(top, converse(top)), zero))))))
% 18.77/2.76  = { by lemma 35 }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(converse(composition(top, zero))))))
% 18.77/2.76  = { by lemma 44 }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(converse(zero)))))
% 18.77/2.76  = { by lemma 39 }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), complement(zero))))
% 18.77/2.76  = { by axiom 4 (converse_idempotence) }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(complement(composition(X, top)), complement(zero))))
% 18.77/2.76  = { by lemma 28 }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(complement(composition(X, top)), top)))
% 18.77/2.76  = { by axiom 4 (converse_idempotence) R->L }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), composition(converse(converse(complement(composition(X, top)))), top)))
% 18.77/2.76  = { by lemma 45 R->L }
% 18.77/2.76    join(complement(X), join(complement(composition(X, top)), converse(composition(top, converse(complement(composition(X, top)))))))
% 18.77/2.76  = { by lemma 38 R->L }
% 18.77/2.76    join(complement(X), converse(join(converse(complement(composition(X, top))), composition(top, converse(complement(composition(X, top)))))))
% 18.77/2.76  = { by lemma 43 R->L }
% 18.77/2.76    join(complement(X), converse(composition(join(one, top), converse(complement(composition(X, top))))))
% 18.77/2.76  = { by lemma 34 }
% 18.77/2.76    join(complement(X), converse(composition(top, converse(complement(composition(X, top))))))
% 18.77/2.76  = { by lemma 45 }
% 18.77/2.76    join(complement(X), composition(converse(converse(complement(composition(X, top)))), top))
% 18.77/2.76  = { by axiom 4 (converse_idempotence) }
% 18.77/2.76    join(complement(X), composition(complement(composition(X, top)), top))
% 18.77/2.76  = { by lemma 28 R->L }
% 18.77/2.76    join(complement(X), composition(complement(composition(X, top)), complement(zero)))
% 18.77/2.76  = { by axiom 4 (converse_idempotence) R->L }
% 18.77/2.76    join(complement(X), composition(converse(converse(complement(composition(X, top)))), complement(zero)))
% 18.77/2.76  = { by lemma 39 R->L }
% 18.77/2.76    join(complement(X), composition(converse(converse(complement(composition(X, top)))), complement(converse(zero))))
% 18.77/2.76  = { by lemma 46 R->L }
% 18.77/2.76    join(complement(X), composition(converse(converse(complement(composition(X, top)))), complement(converse(composition(converse(X), complement(composition(X, top)))))))
% 18.77/2.76  = { by lemma 18 }
% 18.77/2.76    join(complement(X), composition(converse(converse(complement(composition(X, top)))), complement(composition(converse(complement(composition(X, top))), X))))
% 18.77/2.76  = { by lemma 21 }
% 18.77/2.76    complement(X)
% 18.77/2.76  
% 18.77/2.76  Lemma 48: complement(meet(Y, complement(X))) = join(X, complement(Y)).
% 18.77/2.76  Proof:
% 18.77/2.76    complement(meet(Y, complement(X)))
% 18.77/2.76  = { by lemma 41 }
% 18.77/2.76    complement(meet(complement(X), Y))
% 18.77/2.76  = { by lemma 47 R->L }
% 18.77/2.76    complement(meet(join(complement(composition(X, top)), complement(X)), Y))
% 18.77/2.76  = { by axiom 11 (maddux4_definiton_of_meet) }
% 18.77/2.76    complement(complement(join(complement(join(complement(composition(X, top)), complement(X))), complement(Y))))
% 18.77/2.76  = { by lemma 22 R->L }
% 18.77/2.76    complement(join(complement(join(complement(join(complement(composition(X, top)), complement(X))), complement(Y))), complement(join(complement(join(complement(composition(X, top)), complement(X))), complement(Y)))))
% 18.77/2.76  = { by axiom 11 (maddux4_definiton_of_meet) R->L }
% 18.77/2.76    complement(join(meet(join(complement(composition(X, top)), complement(X)), Y), complement(join(complement(join(complement(composition(X, top)), complement(X))), complement(Y)))))
% 18.77/2.76  = { by axiom 11 (maddux4_definiton_of_meet) R->L }
% 18.77/2.76    complement(join(meet(join(complement(composition(X, top)), complement(X)), Y), meet(join(complement(composition(X, top)), complement(X)), Y)))
% 18.77/2.76  = { by lemma 41 R->L }
% 18.77/2.76    complement(join(meet(join(complement(composition(X, top)), complement(X)), Y), meet(Y, join(complement(composition(X, top)), complement(X)))))
% 18.77/2.76  = { by lemma 41 R->L }
% 18.77/2.76    complement(join(meet(Y, join(complement(composition(X, top)), complement(X))), meet(Y, join(complement(composition(X, top)), complement(X)))))
% 18.77/2.76  = { by axiom 11 (maddux4_definiton_of_meet) }
% 18.77/2.76    complement(join(complement(join(complement(Y), complement(join(complement(composition(X, top)), complement(X))))), meet(Y, join(complement(composition(X, top)), complement(X)))))
% 18.77/2.76  = { by lemma 27 R->L }
% 18.77/2.76    join(zero, complement(join(complement(join(complement(Y), complement(join(complement(composition(X, top)), complement(X))))), meet(Y, join(complement(composition(X, top)), complement(X))))))
% 18.77/2.76  = { by lemma 41 }
% 18.77/2.76    join(zero, complement(join(complement(join(complement(Y), complement(join(complement(composition(X, top)), complement(X))))), meet(join(complement(composition(X, top)), complement(X)), Y))))
% 18.77/2.76  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.77/2.76    join(zero, complement(join(meet(join(complement(composition(X, top)), complement(X)), Y), complement(join(complement(Y), complement(join(complement(composition(X, top)), complement(X))))))))
% 18.77/2.76  = { by axiom 11 (maddux4_definiton_of_meet) }
% 18.77/2.76    join(zero, complement(join(complement(join(complement(join(complement(composition(X, top)), complement(X))), complement(Y))), complement(join(complement(Y), complement(join(complement(composition(X, top)), complement(X))))))))
% 18.77/2.76  = { by axiom 11 (maddux4_definiton_of_meet) R->L }
% 18.77/2.76    join(zero, meet(join(complement(join(complement(composition(X, top)), complement(X))), complement(Y)), join(complement(Y), complement(join(complement(composition(X, top)), complement(X))))))
% 18.77/2.76  = { by lemma 41 R->L }
% 18.77/2.76    join(zero, meet(join(complement(Y), complement(join(complement(composition(X, top)), complement(X)))), join(complement(join(complement(composition(X, top)), complement(X))), complement(Y))))
% 18.77/2.76  = { by axiom 1 (maddux1_join_commutativity) }
% 18.77/2.76    join(zero, meet(join(complement(Y), complement(join(complement(composition(X, top)), complement(X)))), join(complement(Y), complement(join(complement(composition(X, top)), complement(X))))))
% 18.77/2.76  = { by lemma 17 }
% 18.77/2.76    join(complement(Y), complement(join(complement(composition(X, top)), complement(X))))
% 18.77/2.76  = { by axiom 1 (maddux1_join_commutativity) }
% 18.77/2.76    join(complement(join(complement(composition(X, top)), complement(X))), complement(Y))
% 18.77/2.76  = { by lemma 47 }
% 18.77/2.76    join(complement(complement(X)), complement(Y))
% 18.77/2.76  = { by lemma 40 }
% 18.77/2.76    join(X, complement(Y))
% 18.77/2.76  
% 18.77/2.76  Lemma 49: converse(composition(X, converse(Y))) = composition(Y, converse(X)).
% 18.77/2.76  Proof:
% 18.77/2.76    converse(composition(X, converse(Y)))
% 18.77/2.76  = { by axiom 9 (converse_multiplicativity) }
% 18.77/2.76    composition(converse(converse(Y)), converse(X))
% 18.77/2.76  = { by axiom 4 (converse_idempotence) }
% 18.77/2.76    composition(Y, converse(X))
% 18.77/2.76  
% 18.77/2.76  Goal 1 (goals_1): meet(complement(composition(x0, top)), one) = meet(complement(x0), one).
% 18.77/2.76  Proof:
% 18.77/2.76    meet(complement(composition(x0, top)), one)
% 18.77/2.76  = { by lemma 40 R->L }
% 18.77/2.76    complement(complement(meet(complement(composition(x0, top)), one)))
% 18.77/2.76  = { by lemma 41 R->L }
% 18.77/2.76    complement(complement(meet(one, complement(composition(x0, top)))))
% 18.77/2.76  = { by lemma 48 }
% 18.77/2.77    complement(join(composition(x0, top), complement(one)))
% 18.77/2.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.77/2.77    complement(join(complement(one), composition(x0, top)))
% 18.77/2.77  = { by axiom 5 (def_top) }
% 18.77/2.77    complement(join(complement(one), composition(x0, join(one, complement(one)))))
% 18.77/2.77  = { by axiom 4 (converse_idempotence) R->L }
% 18.77/2.77    complement(join(complement(one), composition(x0, join(one, converse(converse(complement(one)))))))
% 18.77/2.77  = { by lemma 19 R->L }
% 18.77/2.77    complement(join(complement(one), composition(x0, join(composition(converse(one), one), converse(converse(complement(one)))))))
% 18.77/2.77  = { by axiom 3 (composition_identity) }
% 18.77/2.77    complement(join(complement(one), composition(x0, join(converse(one), converse(converse(complement(one)))))))
% 18.77/2.77  = { by axiom 7 (converse_additivity) R->L }
% 18.77/2.77    complement(join(complement(one), composition(x0, converse(join(one, converse(complement(one)))))))
% 18.77/2.77  = { by axiom 1 (maddux1_join_commutativity) }
% 18.77/2.77    complement(join(complement(one), composition(x0, converse(join(converse(complement(one)), one)))))
% 18.77/2.77  = { by lemma 49 R->L }
% 18.77/2.77    complement(join(complement(one), converse(composition(join(converse(complement(one)), one), converse(x0)))))
% 18.77/2.77  = { by lemma 42 }
% 18.77/2.77    complement(join(complement(one), converse(join(converse(x0), composition(converse(complement(one)), converse(x0))))))
% 18.77/2.77  = { by lemma 38 }
% 18.77/2.77    complement(join(complement(one), join(x0, converse(composition(converse(complement(one)), converse(x0))))))
% 18.77/2.77  = { by lemma 49 }
% 18.77/2.77    complement(join(complement(one), join(x0, composition(x0, converse(converse(complement(one)))))))
% 18.77/2.77  = { by axiom 4 (converse_idempotence) }
% 18.77/2.77    complement(join(complement(one), join(x0, composition(x0, complement(one)))))
% 18.77/2.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 18.77/2.77    complement(join(complement(one), join(composition(x0, complement(one)), x0)))
% 18.77/2.77  = { by axiom 8 (maddux2_join_associativity) }
% 18.77/2.77    complement(join(join(complement(one), composition(x0, complement(one))), x0))
% 18.77/2.77  = { by lemma 42 R->L }
% 18.77/2.77    complement(join(composition(join(x0, one), complement(one)), x0))
% 18.77/2.77  = { by axiom 2 (goals) }
% 18.77/2.77    complement(join(composition(one, complement(one)), x0))
% 18.77/2.77  = { by lemma 20 }
% 18.77/2.77    complement(join(complement(one), x0))
% 18.77/2.77  = { by axiom 1 (maddux1_join_commutativity) }
% 18.77/2.77    complement(join(x0, complement(one)))
% 18.77/2.77  = { by lemma 48 R->L }
% 18.77/2.77    complement(complement(meet(one, complement(x0))))
% 18.77/2.77  = { by lemma 41 }
% 18.77/2.77    complement(complement(meet(complement(x0), one)))
% 18.77/2.77  = { by lemma 40 }
% 18.77/2.77    meet(complement(x0), one)
% 18.77/2.77  % SZS output end Proof
% 18.77/2.77  
% 18.77/2.77  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------