TSTP Solution File: REL016-10 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : REL016-10 : TPTP v8.1.2. Released v7.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:43:55 EDT 2023

% Result   : Unsatisfiable 10.78s 1.78s
% Output   : Proof 11.38s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem  : REL016-10 : TPTP v8.1.2. Released v7.5.0.
% 0.00/0.12  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.12/0.33  % Computer : n012.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Fri Aug 25 20:14:41 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 10.78/1.78  Command-line arguments: --flatten
% 10.78/1.78  
% 10.78/1.78  % SZS status Unsatisfiable
% 10.78/1.78  
% 11.38/1.83  % SZS output start Proof
% 11.38/1.83  Axiom 1 (converse_idempotence_8): converse(converse(X)) = X.
% 11.38/1.83  Axiom 2 (maddux1_join_commutativity_1): join(X, Y) = join(Y, X).
% 11.38/1.83  Axiom 3 (composition_identity_6): composition(X, one) = X.
% 11.38/1.83  Axiom 4 (def_top_12): top = join(X, complement(X)).
% 11.38/1.83  Axiom 5 (def_zero_13): zero = meet(X, complement(X)).
% 11.38/1.83  Axiom 6 (converse_additivity_9): converse(join(X, Y)) = join(converse(X), converse(Y)).
% 11.38/1.83  Axiom 7 (maddux2_join_associativity_2): join(X, join(Y, Z)) = join(join(X, Y), Z).
% 11.38/1.83  Axiom 8 (converse_multiplicativity_10): converse(composition(X, Y)) = composition(converse(Y), converse(X)).
% 11.38/1.83  Axiom 9 (composition_associativity_5): composition(X, composition(Y, Z)) = composition(composition(X, Y), Z).
% 11.38/1.83  Axiom 10 (maddux4_definiton_of_meet_4): meet(X, Y) = complement(join(complement(X), complement(Y))).
% 11.38/1.83  Axiom 11 (composition_distributivity_7): composition(join(X, Y), Z) = join(composition(X, Z), composition(Y, Z)).
% 11.38/1.83  Axiom 12 (converse_cancellativity_11): join(composition(converse(X), complement(composition(X, Y))), complement(Y)) = complement(Y).
% 11.38/1.83  Axiom 13 (maddux3_a_kind_of_de_Morgan_3): X = join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y))).
% 11.38/1.83  
% 11.38/1.83  Lemma 14: complement(top) = zero.
% 11.38/1.83  Proof:
% 11.38/1.83    complement(top)
% 11.38/1.83  = { by axiom 4 (def_top_12) }
% 11.38/1.83    complement(join(complement(X), complement(complement(X))))
% 11.38/1.83  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 11.38/1.83    meet(X, complement(X))
% 11.38/1.83  = { by axiom 5 (def_zero_13) R->L }
% 11.38/1.83    zero
% 11.38/1.83  
% 11.38/1.83  Lemma 15: join(X, join(Y, complement(X))) = join(Y, top).
% 11.38/1.83  Proof:
% 11.38/1.83    join(X, join(Y, complement(X)))
% 11.38/1.83  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.83    join(X, join(complement(X), Y))
% 11.38/1.83  = { by axiom 7 (maddux2_join_associativity_2) }
% 11.38/1.83    join(join(X, complement(X)), Y)
% 11.38/1.83  = { by axiom 4 (def_top_12) R->L }
% 11.38/1.83    join(top, Y)
% 11.38/1.83  = { by axiom 2 (maddux1_join_commutativity_1) }
% 11.38/1.83    join(Y, top)
% 11.38/1.83  
% 11.38/1.83  Lemma 16: composition(converse(one), X) = X.
% 11.38/1.83  Proof:
% 11.38/1.83    composition(converse(one), X)
% 11.38/1.83  = { by axiom 1 (converse_idempotence_8) R->L }
% 11.38/1.83    composition(converse(one), converse(converse(X)))
% 11.38/1.83  = { by axiom 8 (converse_multiplicativity_10) R->L }
% 11.38/1.83    converse(composition(converse(X), one))
% 11.38/1.83  = { by axiom 3 (composition_identity_6) }
% 11.38/1.83    converse(converse(X))
% 11.38/1.83  = { by axiom 1 (converse_idempotence_8) }
% 11.38/1.83    X
% 11.38/1.83  
% 11.38/1.83  Lemma 17: join(complement(X), complement(X)) = complement(X).
% 11.38/1.83  Proof:
% 11.38/1.83    join(complement(X), complement(X))
% 11.38/1.83  = { by lemma 16 R->L }
% 11.38/1.83    join(complement(X), composition(converse(one), complement(X)))
% 11.38/1.83  = { by lemma 16 R->L }
% 11.38/1.83    join(complement(X), composition(converse(one), complement(composition(converse(one), X))))
% 11.38/1.83  = { by axiom 3 (composition_identity_6) R->L }
% 11.38/1.83    join(complement(X), composition(converse(one), complement(composition(composition(converse(one), one), X))))
% 11.38/1.83  = { by axiom 9 (composition_associativity_5) R->L }
% 11.38/1.83    join(complement(X), composition(converse(one), complement(composition(converse(one), composition(one, X)))))
% 11.38/1.83  = { by lemma 16 }
% 11.38/1.83    join(complement(X), composition(converse(one), complement(composition(one, X))))
% 11.38/1.83  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.83    join(composition(converse(one), complement(composition(one, X))), complement(X))
% 11.38/1.83  = { by axiom 12 (converse_cancellativity_11) }
% 11.38/1.83    complement(X)
% 11.38/1.83  
% 11.38/1.83  Lemma 18: join(top, complement(X)) = top.
% 11.38/1.83  Proof:
% 11.38/1.83    join(top, complement(X))
% 11.38/1.83  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.83    join(complement(X), top)
% 11.38/1.83  = { by lemma 15 R->L }
% 11.38/1.83    join(X, join(complement(X), complement(X)))
% 11.38/1.83  = { by lemma 17 }
% 11.38/1.83    join(X, complement(X))
% 11.38/1.83  = { by axiom 4 (def_top_12) R->L }
% 11.38/1.83    top
% 11.38/1.83  
% 11.38/1.83  Lemma 19: join(X, top) = top.
% 11.38/1.83  Proof:
% 11.38/1.83    join(X, top)
% 11.38/1.83  = { by lemma 18 R->L }
% 11.38/1.83    join(X, join(top, complement(X)))
% 11.38/1.83  = { by lemma 15 }
% 11.38/1.83    join(top, top)
% 11.38/1.83  = { by lemma 15 R->L }
% 11.38/1.83    join(complement(Y), join(top, complement(complement(Y))))
% 11.38/1.83  = { by lemma 18 }
% 11.38/1.83    join(complement(Y), top)
% 11.38/1.83  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.83    join(top, complement(Y))
% 11.38/1.83  = { by lemma 18 }
% 11.38/1.83    top
% 11.38/1.83  
% 11.38/1.83  Lemma 20: join(meet(X, Y), complement(join(complement(X), Y))) = X.
% 11.38/1.83  Proof:
% 11.38/1.83    join(meet(X, Y), complement(join(complement(X), Y)))
% 11.38/1.83  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 11.38/1.83    join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y)))
% 11.38/1.83  = { by axiom 13 (maddux3_a_kind_of_de_Morgan_3) R->L }
% 11.38/1.83    X
% 11.38/1.83  
% 11.38/1.83  Lemma 21: join(zero, meet(X, X)) = X.
% 11.38/1.83  Proof:
% 11.38/1.83    join(zero, meet(X, X))
% 11.38/1.83  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 11.38/1.83    join(zero, complement(join(complement(X), complement(X))))
% 11.38/1.83  = { by axiom 5 (def_zero_13) }
% 11.38/1.83    join(meet(X, complement(X)), complement(join(complement(X), complement(X))))
% 11.38/1.83  = { by lemma 20 }
% 11.38/1.83    X
% 11.38/1.83  
% 11.38/1.83  Lemma 22: complement(complement(X)) = meet(X, X).
% 11.38/1.83  Proof:
% 11.38/1.83    complement(complement(X))
% 11.38/1.83  = { by lemma 17 R->L }
% 11.38/1.83    complement(join(complement(X), complement(X)))
% 11.38/1.83  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 11.38/1.83    meet(X, X)
% 11.38/1.83  
% 11.38/1.83  Lemma 23: meet(Y, X) = meet(X, Y).
% 11.38/1.83  Proof:
% 11.38/1.83    meet(Y, X)
% 11.38/1.83  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 11.38/1.83    complement(join(complement(Y), complement(X)))
% 11.38/1.83  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.83    complement(join(complement(X), complement(Y)))
% 11.38/1.83  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 11.38/1.83    meet(X, Y)
% 11.38/1.83  
% 11.38/1.83  Lemma 24: complement(join(zero, complement(X))) = meet(X, top).
% 11.38/1.83  Proof:
% 11.38/1.83    complement(join(zero, complement(X)))
% 11.38/1.83  = { by lemma 14 R->L }
% 11.38/1.83    complement(join(complement(top), complement(X)))
% 11.38/1.83  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 11.38/1.83    meet(top, X)
% 11.38/1.83  = { by lemma 23 R->L }
% 11.38/1.83    meet(X, top)
% 11.38/1.83  
% 11.38/1.83  Lemma 25: join(X, complement(zero)) = top.
% 11.38/1.83  Proof:
% 11.38/1.83    join(X, complement(zero))
% 11.38/1.84  = { by lemma 21 R->L }
% 11.38/1.84    join(join(zero, meet(X, X)), complement(zero))
% 11.38/1.84  = { by axiom 7 (maddux2_join_associativity_2) R->L }
% 11.38/1.84    join(zero, join(meet(X, X), complement(zero)))
% 11.38/1.84  = { by lemma 15 }
% 11.38/1.84    join(meet(X, X), top)
% 11.38/1.84  = { by lemma 19 }
% 11.38/1.84    top
% 11.38/1.84  
% 11.38/1.84  Lemma 26: join(meet(X, Y), meet(X, complement(Y))) = X.
% 11.38/1.84  Proof:
% 11.38/1.84    join(meet(X, Y), meet(X, complement(Y)))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    join(meet(X, complement(Y)), meet(X, Y))
% 11.38/1.84  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 11.38/1.84    join(meet(X, complement(Y)), complement(join(complement(X), complement(Y))))
% 11.38/1.84  = { by lemma 20 }
% 11.38/1.84    X
% 11.38/1.84  
% 11.38/1.84  Lemma 27: join(zero, meet(X, top)) = X.
% 11.38/1.84  Proof:
% 11.38/1.84    join(zero, meet(X, top))
% 11.38/1.84  = { by lemma 25 R->L }
% 11.38/1.84    join(zero, meet(X, join(complement(zero), complement(zero))))
% 11.38/1.84  = { by lemma 17 }
% 11.38/1.84    join(zero, meet(X, complement(zero)))
% 11.38/1.84  = { by lemma 14 R->L }
% 11.38/1.84    join(complement(top), meet(X, complement(zero)))
% 11.38/1.84  = { by lemma 25 R->L }
% 11.38/1.84    join(complement(join(complement(X), complement(zero))), meet(X, complement(zero)))
% 11.38/1.84  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 11.38/1.84    join(meet(X, zero), meet(X, complement(zero)))
% 11.38/1.84  = { by lemma 26 }
% 11.38/1.84    X
% 11.38/1.84  
% 11.38/1.84  Lemma 28: join(zero, complement(X)) = complement(X).
% 11.38/1.84  Proof:
% 11.38/1.84    join(zero, complement(X))
% 11.38/1.84  = { by lemma 21 R->L }
% 11.38/1.84    join(zero, complement(join(zero, meet(X, X))))
% 11.38/1.84  = { by lemma 22 R->L }
% 11.38/1.84    join(zero, complement(join(zero, complement(complement(X)))))
% 11.38/1.84  = { by lemma 24 }
% 11.38/1.84    join(zero, meet(complement(X), top))
% 11.38/1.84  = { by lemma 27 }
% 11.38/1.84    complement(X)
% 11.38/1.84  
% 11.38/1.84  Lemma 29: complement(complement(X)) = X.
% 11.38/1.84  Proof:
% 11.38/1.84    complement(complement(X))
% 11.38/1.84  = { by lemma 28 R->L }
% 11.38/1.84    join(zero, complement(complement(X)))
% 11.38/1.84  = { by lemma 22 }
% 11.38/1.84    join(zero, meet(X, X))
% 11.38/1.84  = { by lemma 21 }
% 11.38/1.84    X
% 11.38/1.84  
% 11.38/1.84  Lemma 30: meet(X, top) = X.
% 11.38/1.84  Proof:
% 11.38/1.84    meet(X, top)
% 11.38/1.84  = { by lemma 24 R->L }
% 11.38/1.84    complement(join(zero, complement(X)))
% 11.38/1.84  = { by lemma 28 R->L }
% 11.38/1.84    join(zero, complement(join(zero, complement(X))))
% 11.38/1.84  = { by lemma 24 }
% 11.38/1.84    join(zero, meet(X, top))
% 11.38/1.84  = { by lemma 27 }
% 11.38/1.84    X
% 11.38/1.84  
% 11.38/1.84  Lemma 31: meet(top, X) = X.
% 11.38/1.84  Proof:
% 11.38/1.84    meet(top, X)
% 11.38/1.84  = { by lemma 23 }
% 11.38/1.84    meet(X, top)
% 11.38/1.84  = { by lemma 30 }
% 11.38/1.84    X
% 11.38/1.84  
% 11.38/1.84  Lemma 32: complement(join(complement(X), meet(Y, Z))) = meet(X, join(complement(Y), complement(Z))).
% 11.38/1.84  Proof:
% 11.38/1.84    complement(join(complement(X), meet(Y, Z)))
% 11.38/1.84  = { by lemma 23 }
% 11.38/1.84    complement(join(complement(X), meet(Z, Y)))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    complement(join(meet(Z, Y), complement(X)))
% 11.38/1.84  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 11.38/1.84    complement(join(complement(join(complement(Z), complement(Y))), complement(X)))
% 11.38/1.84  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 11.38/1.84    meet(join(complement(Z), complement(Y)), X)
% 11.38/1.84  = { by lemma 23 R->L }
% 11.38/1.84    meet(X, join(complement(Z), complement(Y)))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) }
% 11.38/1.84    meet(X, join(complement(Y), complement(Z)))
% 11.38/1.84  
% 11.38/1.84  Lemma 33: join(complement(X), complement(Y)) = complement(meet(X, Y)).
% 11.38/1.84  Proof:
% 11.38/1.84    join(complement(X), complement(Y))
% 11.38/1.84  = { by lemma 31 R->L }
% 11.38/1.84    meet(top, join(complement(X), complement(Y)))
% 11.38/1.84  = { by lemma 32 R->L }
% 11.38/1.84    complement(join(complement(top), meet(X, Y)))
% 11.38/1.84  = { by lemma 14 }
% 11.38/1.84    complement(join(zero, meet(X, Y)))
% 11.38/1.84  = { by lemma 23 R->L }
% 11.38/1.84    complement(join(zero, meet(Y, X)))
% 11.38/1.84  = { by lemma 29 R->L }
% 11.38/1.84    complement(join(zero, complement(complement(meet(Y, X)))))
% 11.38/1.84  = { by lemma 22 }
% 11.38/1.84    complement(join(zero, meet(meet(Y, X), meet(Y, X))))
% 11.38/1.84  = { by lemma 21 }
% 11.38/1.84    complement(meet(Y, X))
% 11.38/1.84  = { by lemma 23 R->L }
% 11.38/1.84    complement(meet(X, Y))
% 11.38/1.84  
% 11.38/1.84  Lemma 34: complement(join(complement(X), complement(Y))) = meet(Y, X).
% 11.38/1.84  Proof:
% 11.38/1.84    complement(join(complement(X), complement(Y)))
% 11.38/1.84  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 11.38/1.84    meet(X, Y)
% 11.38/1.84  = { by lemma 23 R->L }
% 11.38/1.84    meet(Y, X)
% 11.38/1.84  
% 11.38/1.84  Lemma 35: complement(meet(X, complement(Y))) = join(Y, complement(X)).
% 11.38/1.84  Proof:
% 11.38/1.84    complement(meet(X, complement(Y)))
% 11.38/1.84  = { by lemma 23 }
% 11.38/1.84    complement(meet(complement(Y), X))
% 11.38/1.84  = { by lemma 28 R->L }
% 11.38/1.84    complement(meet(join(zero, complement(Y)), X))
% 11.38/1.84  = { by lemma 33 R->L }
% 11.38/1.84    join(complement(join(zero, complement(Y))), complement(X))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    join(complement(join(complement(Y), zero)), complement(X))
% 11.38/1.84  = { by lemma 14 R->L }
% 11.38/1.84    join(complement(join(complement(Y), complement(top))), complement(X))
% 11.38/1.84  = { by lemma 34 }
% 11.38/1.84    join(meet(top, Y), complement(X))
% 11.38/1.84  = { by lemma 31 }
% 11.38/1.84    join(Y, complement(X))
% 11.38/1.84  
% 11.38/1.84  Lemma 36: complement(meet(complement(X), Y)) = join(X, complement(Y)).
% 11.38/1.84  Proof:
% 11.38/1.84    complement(meet(complement(X), Y))
% 11.38/1.84  = { by lemma 23 }
% 11.38/1.84    complement(meet(Y, complement(X)))
% 11.38/1.84  = { by lemma 35 }
% 11.38/1.84    join(X, complement(Y))
% 11.38/1.84  
% 11.38/1.84  Lemma 37: join(meet(X, complement(Y)), meet(X, Y)) = X.
% 11.38/1.84  Proof:
% 11.38/1.84    join(meet(X, complement(Y)), meet(X, Y))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    join(meet(X, Y), meet(X, complement(Y)))
% 11.38/1.84  = { by lemma 26 }
% 11.38/1.84    X
% 11.38/1.84  
% 11.38/1.84  Lemma 38: join(meet(X, complement(Y)), Y) = join(X, Y).
% 11.38/1.84  Proof:
% 11.38/1.84    join(meet(X, complement(Y)), Y)
% 11.38/1.84  = { by lemma 29 R->L }
% 11.38/1.84    join(meet(X, complement(Y)), complement(complement(Y)))
% 11.38/1.84  = { by lemma 20 R->L }
% 11.38/1.84    join(meet(X, complement(Y)), complement(join(meet(complement(Y), meet(X, complement(complement(Y)))), complement(join(complement(complement(Y)), meet(X, complement(complement(Y))))))))
% 11.38/1.84  = { by lemma 23 }
% 11.38/1.84    join(meet(X, complement(Y)), complement(join(meet(complement(Y), meet(complement(complement(Y)), X)), complement(join(complement(complement(Y)), meet(X, complement(complement(Y))))))))
% 11.38/1.84  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 11.38/1.84    join(meet(X, complement(Y)), complement(join(complement(join(complement(complement(Y)), complement(meet(complement(complement(Y)), X)))), complement(join(complement(complement(Y)), meet(X, complement(complement(Y))))))))
% 11.38/1.84  = { by lemma 23 }
% 11.38/1.84    join(meet(X, complement(Y)), complement(join(complement(join(complement(complement(Y)), complement(meet(X, complement(complement(Y)))))), complement(join(complement(complement(Y)), meet(X, complement(complement(Y))))))))
% 11.38/1.84  = { by lemma 33 R->L }
% 11.38/1.84    join(meet(X, complement(Y)), complement(join(complement(join(complement(complement(Y)), join(complement(X), complement(complement(complement(Y)))))), complement(join(complement(complement(Y)), meet(X, complement(complement(Y))))))))
% 11.38/1.84  = { by lemma 15 }
% 11.38/1.84    join(meet(X, complement(Y)), complement(join(complement(join(complement(X), top)), complement(join(complement(complement(Y)), meet(X, complement(complement(Y))))))))
% 11.38/1.84  = { by lemma 19 }
% 11.38/1.84    join(meet(X, complement(Y)), complement(join(complement(top), complement(join(complement(complement(Y)), meet(X, complement(complement(Y))))))))
% 11.38/1.84  = { by lemma 14 }
% 11.38/1.84    join(meet(X, complement(Y)), complement(join(zero, complement(join(complement(complement(Y)), meet(X, complement(complement(Y))))))))
% 11.38/1.84  = { by lemma 28 }
% 11.38/1.84    join(meet(X, complement(Y)), complement(complement(join(complement(complement(Y)), meet(X, complement(complement(Y)))))))
% 11.38/1.84  = { by lemma 32 }
% 11.38/1.84    join(meet(X, complement(Y)), complement(meet(complement(Y), join(complement(X), complement(complement(complement(Y)))))))
% 11.38/1.84  = { by lemma 33 }
% 11.38/1.84    join(meet(X, complement(Y)), complement(meet(complement(Y), complement(meet(X, complement(complement(Y)))))))
% 11.38/1.84  = { by lemma 35 }
% 11.38/1.84    join(meet(X, complement(Y)), complement(meet(complement(Y), join(complement(Y), complement(X)))))
% 11.38/1.84  = { by lemma 36 }
% 11.38/1.84    join(meet(X, complement(Y)), join(Y, complement(join(complement(Y), complement(X)))))
% 11.38/1.84  = { by lemma 34 }
% 11.38/1.84    join(meet(X, complement(Y)), join(Y, meet(X, Y)))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    join(meet(X, complement(Y)), join(meet(X, Y), Y))
% 11.38/1.84  = { by axiom 7 (maddux2_join_associativity_2) }
% 11.38/1.84    join(join(meet(X, complement(Y)), meet(X, Y)), Y)
% 11.38/1.84  = { by lemma 37 }
% 11.38/1.84    join(X, Y)
% 11.38/1.84  
% 11.38/1.84  Lemma 39: join(composition(X, Z), composition(X, Y)) = composition(X, join(Y, Z)).
% 11.38/1.84  Proof:
% 11.38/1.84    join(composition(X, Z), composition(X, Y))
% 11.38/1.84  = { by axiom 1 (converse_idempotence_8) R->L }
% 11.38/1.84    join(composition(X, Z), composition(X, converse(converse(Y))))
% 11.38/1.84  = { by axiom 1 (converse_idempotence_8) R->L }
% 11.38/1.84    converse(converse(join(composition(X, Z), composition(X, converse(converse(Y))))))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    converse(converse(join(composition(X, converse(converse(Y))), composition(X, Z))))
% 11.38/1.84  = { by axiom 6 (converse_additivity_9) }
% 11.38/1.84    converse(join(converse(composition(X, converse(converse(Y)))), converse(composition(X, Z))))
% 11.38/1.84  = { by axiom 8 (converse_multiplicativity_10) }
% 11.38/1.84    converse(join(composition(converse(converse(converse(Y))), converse(X)), converse(composition(X, Z))))
% 11.38/1.84  = { by axiom 1 (converse_idempotence_8) }
% 11.38/1.84    converse(join(composition(converse(Y), converse(X)), converse(composition(X, Z))))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) }
% 11.38/1.84    converse(join(converse(composition(X, Z)), composition(converse(Y), converse(X))))
% 11.38/1.84  = { by axiom 8 (converse_multiplicativity_10) }
% 11.38/1.84    converse(join(composition(converse(Z), converse(X)), composition(converse(Y), converse(X))))
% 11.38/1.84  = { by axiom 11 (composition_distributivity_7) R->L }
% 11.38/1.84    converse(composition(join(converse(Z), converse(Y)), converse(X)))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    converse(composition(join(converse(Y), converse(Z)), converse(X)))
% 11.38/1.84  = { by axiom 1 (converse_idempotence_8) R->L }
% 11.38/1.84    converse(composition(join(converse(converse(converse(Y))), converse(Z)), converse(X)))
% 11.38/1.84  = { by axiom 6 (converse_additivity_9) R->L }
% 11.38/1.84    converse(composition(converse(join(converse(converse(Y)), Z)), converse(X)))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) }
% 11.38/1.84    converse(composition(converse(join(Z, converse(converse(Y)))), converse(X)))
% 11.38/1.84  = { by axiom 8 (converse_multiplicativity_10) R->L }
% 11.38/1.84    converse(converse(composition(X, join(Z, converse(converse(Y))))))
% 11.38/1.84  = { by axiom 1 (converse_idempotence_8) }
% 11.38/1.84    composition(X, join(Z, converse(converse(Y))))
% 11.38/1.84  = { by axiom 1 (converse_idempotence_8) }
% 11.38/1.84    composition(X, join(Z, Y))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) }
% 11.38/1.84    composition(X, join(Y, Z))
% 11.38/1.84  
% 11.38/1.84  Lemma 40: complement(join(complement(X), meet(Y, complement(X)))) = X.
% 11.38/1.84  Proof:
% 11.38/1.84    complement(join(complement(X), meet(Y, complement(X))))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    complement(join(meet(Y, complement(X)), complement(X)))
% 11.38/1.84  = { by lemma 28 R->L }
% 11.38/1.84    join(zero, complement(join(meet(Y, complement(X)), complement(X))))
% 11.38/1.84  = { by lemma 14 R->L }
% 11.38/1.84    join(complement(top), complement(join(meet(Y, complement(X)), complement(X))))
% 11.38/1.84  = { by lemma 19 R->L }
% 11.38/1.84    join(complement(join(complement(Y), top)), complement(join(meet(Y, complement(X)), complement(X))))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    join(complement(join(top, complement(Y))), complement(join(meet(Y, complement(X)), complement(X))))
% 11.38/1.84  = { by axiom 4 (def_top_12) }
% 11.38/1.84    join(complement(join(join(X, complement(X)), complement(Y))), complement(join(meet(Y, complement(X)), complement(X))))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) }
% 11.38/1.84    join(complement(join(join(complement(X), X), complement(Y))), complement(join(meet(Y, complement(X)), complement(X))))
% 11.38/1.84  = { by axiom 7 (maddux2_join_associativity_2) R->L }
% 11.38/1.84    join(complement(join(complement(X), join(X, complement(Y)))), complement(join(meet(Y, complement(X)), complement(X))))
% 11.38/1.84  = { by lemma 35 R->L }
% 11.38/1.84    join(complement(join(complement(X), complement(meet(Y, complement(X))))), complement(join(meet(Y, complement(X)), complement(X))))
% 11.38/1.84  = { by lemma 34 }
% 11.38/1.84    join(meet(meet(Y, complement(X)), X), complement(join(meet(Y, complement(X)), complement(X))))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    join(meet(meet(Y, complement(X)), X), complement(join(complement(X), meet(Y, complement(X)))))
% 11.38/1.84  = { by lemma 23 }
% 11.38/1.84    join(meet(X, meet(Y, complement(X))), complement(join(complement(X), meet(Y, complement(X)))))
% 11.38/1.84  = { by lemma 20 }
% 11.38/1.84    X
% 11.38/1.84  
% 11.38/1.84  Lemma 41: meet(X, complement(meet(Y, complement(X)))) = X.
% 11.38/1.84  Proof:
% 11.38/1.84    meet(X, complement(meet(Y, complement(X))))
% 11.38/1.84  = { by lemma 33 R->L }
% 11.38/1.84    meet(X, join(complement(Y), complement(complement(X))))
% 11.38/1.84  = { by lemma 32 R->L }
% 11.38/1.84    complement(join(complement(X), meet(Y, complement(X))))
% 11.38/1.84  = { by lemma 40 }
% 11.38/1.84    X
% 11.38/1.84  
% 11.38/1.84  Lemma 42: meet(complement(X), join(meet(Y, complement(X)), X)) = meet(Y, complement(X)).
% 11.38/1.84  Proof:
% 11.38/1.84    meet(complement(X), join(meet(Y, complement(X)), X))
% 11.38/1.84  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.84    meet(complement(X), join(X, meet(Y, complement(X))))
% 11.38/1.84  = { by lemma 29 R->L }
% 11.38/1.84    meet(complement(X), join(X, complement(complement(meet(Y, complement(X))))))
% 11.38/1.84  = { by lemma 36 R->L }
% 11.38/1.84    meet(complement(X), complement(meet(complement(X), complement(meet(Y, complement(X))))))
% 11.38/1.84  = { by lemma 23 }
% 11.38/1.84    meet(complement(meet(complement(X), complement(meet(Y, complement(X))))), complement(X))
% 11.38/1.84  = { by lemma 28 R->L }
% 11.38/1.84    meet(join(zero, complement(meet(complement(X), complement(meet(Y, complement(X)))))), complement(X))
% 11.38/1.84  = { by lemma 40 R->L }
% 11.38/1.84    meet(join(zero, complement(meet(complement(X), complement(meet(Y, complement(X)))))), complement(complement(join(complement(X), meet(Z, complement(X))))))
% 11.38/1.84  = { by lemma 29 }
% 11.38/1.85    meet(join(zero, complement(meet(complement(X), complement(meet(Y, complement(X)))))), join(complement(X), meet(Z, complement(X))))
% 11.38/1.85  = { by lemma 29 R->L }
% 11.38/1.85    meet(join(zero, complement(meet(complement(X), complement(meet(Y, complement(X)))))), join(complement(X), complement(complement(meet(Z, complement(X))))))
% 11.38/1.85  = { by lemma 32 R->L }
% 11.38/1.85    complement(join(complement(join(zero, complement(meet(complement(X), complement(meet(Y, complement(X))))))), meet(X, complement(meet(Z, complement(X))))))
% 11.38/1.85  = { by lemma 41 }
% 11.38/1.85    complement(join(complement(join(zero, complement(meet(complement(X), complement(meet(Y, complement(X))))))), X))
% 11.38/1.85  = { by axiom 2 (maddux1_join_commutativity_1) }
% 11.38/1.85    complement(join(X, complement(join(zero, complement(meet(complement(X), complement(meet(Y, complement(X)))))))))
% 11.38/1.85  = { by lemma 24 }
% 11.38/1.85    complement(join(X, meet(meet(complement(X), complement(meet(Y, complement(X)))), top)))
% 11.38/1.85  = { by lemma 30 }
% 11.38/1.85    complement(join(X, meet(complement(X), complement(meet(Y, complement(X))))))
% 11.38/1.85  = { by lemma 23 }
% 11.38/1.85    complement(join(X, meet(complement(meet(Y, complement(X))), complement(X))))
% 11.38/1.85  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.85    complement(join(meet(complement(meet(Y, complement(X))), complement(X)), X))
% 11.38/1.85  = { by lemma 41 R->L }
% 11.38/1.85    complement(join(meet(complement(meet(Y, complement(X))), complement(X)), meet(X, complement(meet(Y, complement(X))))))
% 11.38/1.85  = { by lemma 23 }
% 11.38/1.85    complement(join(meet(complement(meet(Y, complement(X))), complement(X)), meet(complement(meet(Y, complement(X))), X)))
% 11.38/1.85  = { by lemma 37 }
% 11.38/1.85    complement(complement(meet(Y, complement(X))))
% 11.38/1.85  = { by lemma 29 }
% 11.38/1.85    meet(Y, complement(X))
% 11.38/1.85  
% 11.38/1.85  Lemma 43: meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))) = meet(composition(X, Y), complement(composition(X, Z))).
% 11.38/1.85  Proof:
% 11.38/1.85    meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z)))
% 11.38/1.85  = { by lemma 42 R->L }
% 11.38/1.85    meet(complement(composition(X, Z)), join(meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))), composition(X, Z)))
% 11.38/1.85  = { by lemma 38 }
% 11.38/1.85    meet(complement(composition(X, Z)), join(composition(X, meet(Y, complement(Z))), composition(X, Z)))
% 11.38/1.85  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 11.38/1.85    meet(complement(composition(X, Z)), join(composition(X, Z), composition(X, meet(Y, complement(Z)))))
% 11.38/1.85  = { by lemma 39 }
% 11.38/1.85    meet(complement(composition(X, Z)), composition(X, join(meet(Y, complement(Z)), Z)))
% 11.38/1.85  = { by lemma 38 }
% 11.38/1.85    meet(complement(composition(X, Z)), composition(X, join(Y, Z)))
% 11.38/1.85  = { by lemma 39 R->L }
% 11.38/1.85    meet(complement(composition(X, Z)), join(composition(X, Z), composition(X, Y)))
% 11.38/1.85  = { by axiom 2 (maddux1_join_commutativity_1) }
% 11.38/1.85    meet(complement(composition(X, Z)), join(composition(X, Y), composition(X, Z)))
% 11.38/1.85  = { by lemma 38 R->L }
% 11.38/1.85    meet(complement(composition(X, Z)), join(meet(composition(X, Y), complement(composition(X, Z))), composition(X, Z)))
% 11.38/1.85  = { by lemma 42 }
% 11.38/1.85    meet(composition(X, Y), complement(composition(X, Z)))
% 11.38/1.85  
% 11.38/1.85  Lemma 44: join(meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))), meet(composition(X, Y), complement(composition(X, Z)))) = meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))).
% 11.38/1.85  Proof:
% 11.38/1.85    join(meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))), meet(composition(X, Y), complement(composition(X, Z))))
% 11.38/1.85  = { by lemma 43 R->L }
% 11.38/1.85    join(meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))), meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))))
% 11.38/1.85  = { by lemma 29 R->L }
% 11.38/1.85    join(meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))), complement(complement(meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))))))
% 11.38/1.85  = { by lemma 29 R->L }
% 11.38/1.85    join(complement(complement(meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))))), complement(complement(meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z))))))
% 11.38/1.85  = { by lemma 17 }
% 11.38/1.85    complement(complement(meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z)))))
% 11.38/1.85  = { by lemma 29 }
% 11.38/1.85    meet(composition(X, meet(Y, complement(Z))), complement(composition(X, Z)))
% 11.38/1.85  
% 11.38/1.85  Goal 1 (goals_14): tuple(join(meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3))), meet(composition(sk1, sk2), complement(composition(sk1, sk3)))), join(meet(composition(sk1, sk2), complement(composition(sk1, sk3))), meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3))))) = tuple(meet(composition(sk1, sk2), complement(composition(sk1, sk3))), meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3)))).
% 11.38/1.85  Proof:
% 11.38/1.85    tuple(join(meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3))), meet(composition(sk1, sk2), complement(composition(sk1, sk3)))), join(meet(composition(sk1, sk2), complement(composition(sk1, sk3))), meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3)))))
% 11.38/1.85  = { by axiom 2 (maddux1_join_commutativity_1) }
% 11.38/1.85    tuple(join(meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3))), meet(composition(sk1, sk2), complement(composition(sk1, sk3)))), join(meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3))), meet(composition(sk1, sk2), complement(composition(sk1, sk3)))))
% 11.38/1.85  = { by lemma 44 }
% 11.38/1.85    tuple(meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3))), join(meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3))), meet(composition(sk1, sk2), complement(composition(sk1, sk3)))))
% 11.38/1.85  = { by lemma 43 }
% 11.38/1.85    tuple(meet(composition(sk1, sk2), complement(composition(sk1, sk3))), join(meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3))), meet(composition(sk1, sk2), complement(composition(sk1, sk3)))))
% 11.38/1.85  = { by lemma 44 }
% 11.38/1.85    tuple(meet(composition(sk1, sk2), complement(composition(sk1, sk3))), meet(composition(sk1, meet(sk2, complement(sk3))), complement(composition(sk1, sk3))))
% 11.38/1.85  % SZS output end Proof
% 11.38/1.85  
% 11.38/1.85  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------