TSTP Solution File: REL005+3 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : REL005+3 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:43:46 EDT 2023

% Result   : Theorem 10.33s 1.72s
% Output   : Proof 11.11s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem  : REL005+3 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.11  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.31  % Computer : n032.cluster.edu
% 0.13/0.31  % Model    : x86_64 x86_64
% 0.13/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.31  % Memory   : 8042.1875MB
% 0.13/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.31  % CPULimit : 300
% 0.13/0.31  % WCLimit  : 300
% 0.13/0.31  % DateTime : Fri Aug 25 22:51:43 EDT 2023
% 0.13/0.31  % CPUTime  : 
% 10.33/1.72  Command-line arguments: --no-flatten-goal
% 10.33/1.72  
% 10.33/1.72  % SZS status Theorem
% 10.33/1.72  
% 11.11/1.77  % SZS output start Proof
% 11.11/1.77  Axiom 1 (maddux1_join_commutativity): join(X, Y) = join(Y, X).
% 11.11/1.77  Axiom 2 (converse_idempotence): converse(converse(X)) = X.
% 11.11/1.77  Axiom 3 (composition_identity): composition(X, one) = X.
% 11.11/1.77  Axiom 4 (def_top): top = join(X, complement(X)).
% 11.11/1.77  Axiom 5 (def_zero): zero = meet(X, complement(X)).
% 11.11/1.77  Axiom 6 (converse_additivity): converse(join(X, Y)) = join(converse(X), converse(Y)).
% 11.11/1.77  Axiom 7 (maddux2_join_associativity): join(X, join(Y, Z)) = join(join(X, Y), Z).
% 11.11/1.77  Axiom 8 (converse_multiplicativity): converse(composition(X, Y)) = composition(converse(Y), converse(X)).
% 11.11/1.77  Axiom 9 (composition_associativity): composition(X, composition(Y, Z)) = composition(composition(X, Y), Z).
% 11.11/1.77  Axiom 10 (maddux4_definiton_of_meet): meet(X, Y) = complement(join(complement(X), complement(Y))).
% 11.11/1.77  Axiom 11 (composition_distributivity): composition(join(X, Y), Z) = join(composition(X, Z), composition(Y, Z)).
% 11.11/1.77  Axiom 12 (converse_cancellativity): join(composition(converse(X), complement(composition(X, Y))), complement(Y)) = complement(Y).
% 11.11/1.77  Axiom 13 (maddux3_a_kind_of_de_Morgan): X = join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y))).
% 11.11/1.77  Axiom 14 (modular_law_2): join(meet(composition(X, Y), Z), meet(composition(meet(X, composition(Z, converse(Y))), Y), Z)) = meet(composition(meet(X, composition(Z, converse(Y))), Y), Z).
% 11.11/1.77  
% 11.11/1.77  Lemma 15: complement(top) = zero.
% 11.11/1.77  Proof:
% 11.11/1.77    complement(top)
% 11.11/1.77  = { by axiom 4 (def_top) }
% 11.11/1.77    complement(join(complement(X), complement(complement(X))))
% 11.11/1.77  = { by axiom 10 (maddux4_definiton_of_meet) R->L }
% 11.11/1.77    meet(X, complement(X))
% 11.11/1.77  = { by axiom 5 (def_zero) R->L }
% 11.11/1.77    zero
% 11.11/1.77  
% 11.11/1.77  Lemma 16: join(X, join(Y, complement(X))) = join(Y, top).
% 11.11/1.77  Proof:
% 11.11/1.77    join(X, join(Y, complement(X)))
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(X, join(complement(X), Y))
% 11.11/1.77  = { by axiom 7 (maddux2_join_associativity) }
% 11.11/1.77    join(join(X, complement(X)), Y)
% 11.11/1.77  = { by axiom 4 (def_top) R->L }
% 11.11/1.77    join(top, Y)
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) }
% 11.11/1.77    join(Y, top)
% 11.11/1.77  
% 11.11/1.77  Lemma 17: converse(composition(converse(X), Y)) = composition(converse(Y), X).
% 11.11/1.77  Proof:
% 11.11/1.77    converse(composition(converse(X), Y))
% 11.11/1.77  = { by axiom 8 (converse_multiplicativity) }
% 11.11/1.77    composition(converse(Y), converse(converse(X)))
% 11.11/1.77  = { by axiom 2 (converse_idempotence) }
% 11.11/1.77    composition(converse(Y), X)
% 11.11/1.77  
% 11.11/1.77  Lemma 18: composition(converse(one), X) = X.
% 11.11/1.77  Proof:
% 11.11/1.77    composition(converse(one), X)
% 11.11/1.77  = { by lemma 17 R->L }
% 11.11/1.77    converse(composition(converse(X), one))
% 11.11/1.77  = { by axiom 3 (composition_identity) }
% 11.11/1.77    converse(converse(X))
% 11.11/1.77  = { by axiom 2 (converse_idempotence) }
% 11.11/1.77    X
% 11.11/1.77  
% 11.11/1.77  Lemma 19: composition(one, X) = X.
% 11.11/1.77  Proof:
% 11.11/1.77    composition(one, X)
% 11.11/1.77  = { by lemma 18 R->L }
% 11.11/1.77    composition(converse(one), composition(one, X))
% 11.11/1.77  = { by axiom 9 (composition_associativity) }
% 11.11/1.77    composition(composition(converse(one), one), X)
% 11.11/1.77  = { by axiom 3 (composition_identity) }
% 11.11/1.77    composition(converse(one), X)
% 11.11/1.77  = { by lemma 18 }
% 11.11/1.77    X
% 11.11/1.77  
% 11.11/1.77  Lemma 20: join(complement(X), composition(converse(Y), complement(composition(Y, X)))) = complement(X).
% 11.11/1.77  Proof:
% 11.11/1.77    join(complement(X), composition(converse(Y), complement(composition(Y, X))))
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(composition(converse(Y), complement(composition(Y, X))), complement(X))
% 11.11/1.77  = { by axiom 12 (converse_cancellativity) }
% 11.11/1.77    complement(X)
% 11.11/1.77  
% 11.11/1.77  Lemma 21: join(complement(X), complement(X)) = complement(X).
% 11.11/1.77  Proof:
% 11.11/1.77    join(complement(X), complement(X))
% 11.11/1.77  = { by lemma 18 R->L }
% 11.11/1.77    join(complement(X), composition(converse(one), complement(X)))
% 11.11/1.77  = { by lemma 19 R->L }
% 11.11/1.77    join(complement(X), composition(converse(one), complement(composition(one, X))))
% 11.11/1.77  = { by lemma 20 }
% 11.11/1.77    complement(X)
% 11.11/1.77  
% 11.11/1.77  Lemma 22: join(top, complement(X)) = top.
% 11.11/1.77  Proof:
% 11.11/1.77    join(top, complement(X))
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(complement(X), top)
% 11.11/1.77  = { by lemma 16 R->L }
% 11.11/1.77    join(X, join(complement(X), complement(X)))
% 11.11/1.77  = { by lemma 21 }
% 11.11/1.77    join(X, complement(X))
% 11.11/1.77  = { by axiom 4 (def_top) R->L }
% 11.11/1.77    top
% 11.11/1.77  
% 11.11/1.77  Lemma 23: join(Y, top) = join(X, top).
% 11.11/1.77  Proof:
% 11.11/1.77    join(Y, top)
% 11.11/1.77  = { by lemma 22 R->L }
% 11.11/1.77    join(Y, join(top, complement(Y)))
% 11.11/1.77  = { by lemma 16 }
% 11.11/1.77    join(top, top)
% 11.11/1.77  = { by lemma 16 R->L }
% 11.11/1.77    join(X, join(top, complement(X)))
% 11.11/1.77  = { by lemma 22 }
% 11.11/1.77    join(X, top)
% 11.11/1.77  
% 11.11/1.77  Lemma 24: join(meet(X, Y), complement(join(complement(X), Y))) = X.
% 11.11/1.77  Proof:
% 11.11/1.77    join(meet(X, Y), complement(join(complement(X), Y)))
% 11.11/1.77  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.77    join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y)))
% 11.11/1.77  = { by axiom 13 (maddux3_a_kind_of_de_Morgan) R->L }
% 11.11/1.77    X
% 11.11/1.77  
% 11.11/1.77  Lemma 25: join(zero, meet(X, X)) = X.
% 11.11/1.77  Proof:
% 11.11/1.77    join(zero, meet(X, X))
% 11.11/1.77  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.77    join(zero, complement(join(complement(X), complement(X))))
% 11.11/1.77  = { by axiom 5 (def_zero) }
% 11.11/1.77    join(meet(X, complement(X)), complement(join(complement(X), complement(X))))
% 11.11/1.77  = { by lemma 24 }
% 11.11/1.77    X
% 11.11/1.77  
% 11.11/1.77  Lemma 26: join(zero, join(X, complement(complement(Y)))) = join(X, Y).
% 11.11/1.77  Proof:
% 11.11/1.77    join(zero, join(X, complement(complement(Y))))
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(zero, join(complement(complement(Y)), X))
% 11.11/1.77  = { by lemma 21 R->L }
% 11.11/1.77    join(zero, join(complement(join(complement(Y), complement(Y))), X))
% 11.11/1.77  = { by axiom 10 (maddux4_definiton_of_meet) R->L }
% 11.11/1.77    join(zero, join(meet(Y, Y), X))
% 11.11/1.77  = { by axiom 7 (maddux2_join_associativity) }
% 11.11/1.77    join(join(zero, meet(Y, Y)), X)
% 11.11/1.77  = { by lemma 25 }
% 11.11/1.77    join(Y, X)
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) }
% 11.11/1.77    join(X, Y)
% 11.11/1.77  
% 11.11/1.77  Lemma 27: join(zero, complement(complement(X))) = X.
% 11.11/1.77  Proof:
% 11.11/1.77    join(zero, complement(complement(X)))
% 11.11/1.77  = { by axiom 5 (def_zero) }
% 11.11/1.77    join(meet(X, complement(X)), complement(complement(X)))
% 11.11/1.77  = { by lemma 21 R->L }
% 11.11/1.77    join(meet(X, complement(X)), complement(join(complement(X), complement(X))))
% 11.11/1.77  = { by lemma 24 }
% 11.11/1.77    X
% 11.11/1.77  
% 11.11/1.77  Lemma 28: join(X, zero) = join(X, X).
% 11.11/1.77  Proof:
% 11.11/1.77    join(X, zero)
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(zero, X)
% 11.11/1.77  = { by lemma 27 R->L }
% 11.11/1.77    join(zero, join(zero, complement(complement(X))))
% 11.11/1.77  = { by lemma 21 R->L }
% 11.11/1.77    join(zero, join(zero, join(complement(complement(X)), complement(complement(X)))))
% 11.11/1.77  = { by lemma 26 }
% 11.11/1.77    join(zero, join(complement(complement(X)), X))
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) }
% 11.11/1.77    join(zero, join(X, complement(complement(X))))
% 11.11/1.77  = { by lemma 26 }
% 11.11/1.77    join(X, X)
% 11.11/1.77  
% 11.11/1.77  Lemma 29: join(zero, complement(X)) = complement(X).
% 11.11/1.77  Proof:
% 11.11/1.77    join(zero, complement(X))
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(complement(X), zero)
% 11.11/1.77  = { by lemma 28 }
% 11.11/1.77    join(complement(X), complement(X))
% 11.11/1.77  = { by lemma 21 }
% 11.11/1.77    complement(X)
% 11.11/1.77  
% 11.11/1.77  Lemma 30: join(X, zero) = X.
% 11.11/1.77  Proof:
% 11.11/1.77    join(X, zero)
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(zero, X)
% 11.11/1.77  = { by lemma 26 R->L }
% 11.11/1.77    join(zero, join(zero, complement(complement(X))))
% 11.11/1.77  = { by lemma 29 }
% 11.11/1.77    join(zero, complement(complement(X)))
% 11.11/1.77  = { by lemma 27 }
% 11.11/1.77    X
% 11.11/1.77  
% 11.11/1.77  Lemma 31: join(X, top) = top.
% 11.11/1.77  Proof:
% 11.11/1.77    join(X, top)
% 11.11/1.77  = { by lemma 23 }
% 11.11/1.77    join(join(zero, zero), top)
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(top, join(zero, zero))
% 11.11/1.77  = { by lemma 30 }
% 11.11/1.77    join(top, zero)
% 11.11/1.77  = { by lemma 30 }
% 11.11/1.77    top
% 11.11/1.77  
% 11.11/1.77  Lemma 32: converse(join(X, converse(Y))) = join(Y, converse(X)).
% 11.11/1.77  Proof:
% 11.11/1.77    converse(join(X, converse(Y)))
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    converse(join(converse(Y), X))
% 11.11/1.77  = { by axiom 6 (converse_additivity) }
% 11.11/1.77    join(converse(converse(Y)), converse(X))
% 11.11/1.77  = { by axiom 2 (converse_idempotence) }
% 11.11/1.77    join(Y, converse(X))
% 11.11/1.77  
% 11.11/1.77  Lemma 33: converse(join(converse(X), Y)) = join(X, converse(Y)).
% 11.11/1.77  Proof:
% 11.11/1.77    converse(join(converse(X), Y))
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    converse(join(Y, converse(X)))
% 11.11/1.77  = { by lemma 32 }
% 11.11/1.77    join(X, converse(Y))
% 11.11/1.77  
% 11.11/1.77  Lemma 34: join(X, converse(complement(converse(X)))) = converse(top).
% 11.11/1.77  Proof:
% 11.11/1.77    join(X, converse(complement(converse(X))))
% 11.11/1.77  = { by lemma 33 R->L }
% 11.11/1.77    converse(join(converse(X), complement(converse(X))))
% 11.11/1.77  = { by axiom 4 (def_top) R->L }
% 11.11/1.77    converse(top)
% 11.11/1.77  
% 11.11/1.77  Lemma 35: join(X, join(complement(X), Y)) = top.
% 11.11/1.77  Proof:
% 11.11/1.77    join(X, join(complement(X), Y))
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(X, join(Y, complement(X)))
% 11.11/1.77  = { by lemma 16 }
% 11.11/1.77    join(Y, top)
% 11.11/1.77  = { by lemma 23 R->L }
% 11.11/1.77    join(Z, top)
% 11.11/1.77  = { by lemma 31 }
% 11.11/1.77    top
% 11.11/1.77  
% 11.11/1.77  Lemma 36: join(X, converse(top)) = top.
% 11.11/1.77  Proof:
% 11.11/1.77    join(X, converse(top))
% 11.11/1.77  = { by lemma 34 R->L }
% 11.11/1.77    join(X, join(complement(X), converse(complement(converse(complement(X))))))
% 11.11/1.77  = { by lemma 35 }
% 11.11/1.77    top
% 11.11/1.77  
% 11.11/1.77  Lemma 37: converse(top) = top.
% 11.11/1.77  Proof:
% 11.11/1.77    converse(top)
% 11.11/1.77  = { by lemma 31 R->L }
% 11.11/1.77    converse(join(X, top))
% 11.11/1.77  = { by axiom 6 (converse_additivity) }
% 11.11/1.77    join(converse(X), converse(top))
% 11.11/1.77  = { by lemma 36 }
% 11.11/1.77    top
% 11.11/1.77  
% 11.11/1.77  Lemma 38: join(zero, X) = X.
% 11.11/1.77  Proof:
% 11.11/1.77    join(zero, X)
% 11.11/1.77  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.77    join(X, zero)
% 11.11/1.77  = { by lemma 30 }
% 11.11/1.77    X
% 11.11/1.77  
% 11.11/1.77  Lemma 39: meet(Y, X) = meet(X, Y).
% 11.11/1.77  Proof:
% 11.11/1.77    meet(Y, X)
% 11.11/1.77  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.78    complement(join(complement(Y), complement(X)))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    complement(join(complement(X), complement(Y)))
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) R->L }
% 11.11/1.78    meet(X, Y)
% 11.11/1.78  
% 11.11/1.78  Lemma 40: complement(join(zero, complement(X))) = meet(X, top).
% 11.11/1.78  Proof:
% 11.11/1.78    complement(join(zero, complement(X)))
% 11.11/1.78  = { by lemma 15 R->L }
% 11.11/1.78    complement(join(complement(top), complement(X)))
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) R->L }
% 11.11/1.78    meet(top, X)
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    meet(X, top)
% 11.11/1.78  
% 11.11/1.78  Lemma 41: join(X, complement(zero)) = top.
% 11.11/1.78  Proof:
% 11.11/1.78    join(X, complement(zero))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    join(complement(zero), X)
% 11.11/1.78  = { by lemma 26 R->L }
% 11.11/1.78    join(zero, join(complement(zero), complement(complement(X))))
% 11.11/1.78  = { by lemma 35 }
% 11.11/1.78    top
% 11.11/1.78  
% 11.11/1.78  Lemma 42: meet(X, zero) = zero.
% 11.11/1.78  Proof:
% 11.11/1.78    meet(X, zero)
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.78    complement(join(complement(X), complement(zero)))
% 11.11/1.78  = { by lemma 41 }
% 11.11/1.78    complement(top)
% 11.11/1.78  = { by lemma 15 }
% 11.11/1.78    zero
% 11.11/1.78  
% 11.11/1.78  Lemma 43: join(meet(X, Y), meet(X, complement(Y))) = X.
% 11.11/1.78  Proof:
% 11.11/1.78    join(meet(X, Y), meet(X, complement(Y)))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    join(meet(X, complement(Y)), meet(X, Y))
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.78    join(meet(X, complement(Y)), complement(join(complement(X), complement(Y))))
% 11.11/1.78  = { by lemma 24 }
% 11.11/1.78    X
% 11.11/1.78  
% 11.11/1.78  Lemma 44: meet(X, top) = X.
% 11.11/1.78  Proof:
% 11.11/1.78    meet(X, top)
% 11.11/1.78  = { by lemma 40 R->L }
% 11.11/1.78    complement(join(zero, complement(X)))
% 11.11/1.78  = { by lemma 29 R->L }
% 11.11/1.78    join(zero, complement(join(zero, complement(X))))
% 11.11/1.78  = { by lemma 40 }
% 11.11/1.78    join(zero, meet(X, top))
% 11.11/1.78  = { by lemma 41 R->L }
% 11.11/1.78    join(zero, meet(X, join(complement(zero), complement(zero))))
% 11.11/1.78  = { by lemma 21 }
% 11.11/1.78    join(zero, meet(X, complement(zero)))
% 11.11/1.78  = { by lemma 42 R->L }
% 11.11/1.78    join(meet(X, zero), meet(X, complement(zero)))
% 11.11/1.78  = { by lemma 43 }
% 11.11/1.78    X
% 11.11/1.78  
% 11.11/1.78  Lemma 45: join(meet(X, Y), meet(X, Y)) = meet(X, Y).
% 11.11/1.78  Proof:
% 11.11/1.78    join(meet(X, Y), meet(X, Y))
% 11.11/1.78  = { by lemma 39 }
% 11.11/1.78    join(meet(Y, X), meet(X, Y))
% 11.11/1.78  = { by lemma 39 }
% 11.11/1.78    join(meet(Y, X), meet(Y, X))
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.78    join(meet(Y, X), complement(join(complement(Y), complement(X))))
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.78    join(complement(join(complement(Y), complement(X))), complement(join(complement(Y), complement(X))))
% 11.11/1.78  = { by lemma 21 }
% 11.11/1.78    complement(join(complement(Y), complement(X)))
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) R->L }
% 11.11/1.78    meet(Y, X)
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    meet(X, Y)
% 11.11/1.78  
% 11.11/1.78  Lemma 46: converse(zero) = zero.
% 11.11/1.78  Proof:
% 11.11/1.78    converse(zero)
% 11.11/1.78  = { by lemma 38 R->L }
% 11.11/1.78    join(zero, converse(zero))
% 11.11/1.78  = { by lemma 33 R->L }
% 11.11/1.78    converse(join(converse(zero), zero))
% 11.11/1.78  = { by lemma 28 }
% 11.11/1.78    converse(join(converse(zero), converse(zero)))
% 11.11/1.78  = { by lemma 32 }
% 11.11/1.78    join(zero, converse(converse(zero)))
% 11.11/1.78  = { by axiom 2 (converse_idempotence) }
% 11.11/1.78    join(zero, zero)
% 11.11/1.78  = { by lemma 44 R->L }
% 11.11/1.78    join(zero, meet(zero, top))
% 11.11/1.78  = { by lemma 44 R->L }
% 11.11/1.78    join(meet(zero, top), meet(zero, top))
% 11.11/1.78  = { by lemma 45 }
% 11.11/1.78    meet(zero, top)
% 11.11/1.78  = { by lemma 44 }
% 11.11/1.78    zero
% 11.11/1.78  
% 11.11/1.78  Lemma 47: join(top, X) = top.
% 11.11/1.78  Proof:
% 11.11/1.78    join(top, X)
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    join(X, top)
% 11.11/1.78  = { by lemma 23 R->L }
% 11.11/1.78    join(Y, top)
% 11.11/1.78  = { by lemma 31 }
% 11.11/1.78    top
% 11.11/1.78  
% 11.11/1.78  Lemma 48: complement(complement(X)) = X.
% 11.11/1.78  Proof:
% 11.11/1.78    complement(complement(X))
% 11.11/1.78  = { by lemma 29 R->L }
% 11.11/1.78    join(zero, complement(complement(X)))
% 11.11/1.78  = { by lemma 27 }
% 11.11/1.78    X
% 11.11/1.78  
% 11.11/1.78  Lemma 49: meet(zero, X) = zero.
% 11.11/1.78  Proof:
% 11.11/1.78    meet(zero, X)
% 11.11/1.78  = { by lemma 39 }
% 11.11/1.78    meet(X, zero)
% 11.11/1.78  = { by lemma 42 }
% 11.11/1.78    zero
% 11.11/1.78  
% 11.11/1.78  Lemma 50: composition(top, zero) = zero.
% 11.11/1.78  Proof:
% 11.11/1.78    composition(top, zero)
% 11.11/1.78  = { by lemma 37 R->L }
% 11.11/1.78    composition(converse(top), zero)
% 11.11/1.78  = { by lemma 38 R->L }
% 11.11/1.78    join(zero, composition(converse(top), zero))
% 11.11/1.78  = { by lemma 15 R->L }
% 11.11/1.78    join(complement(top), composition(converse(top), zero))
% 11.11/1.78  = { by lemma 15 R->L }
% 11.11/1.78    join(complement(top), composition(converse(top), complement(top)))
% 11.11/1.78  = { by lemma 47 R->L }
% 11.11/1.78    join(complement(top), composition(converse(top), complement(join(top, composition(top, top)))))
% 11.11/1.78  = { by lemma 37 R->L }
% 11.11/1.78    join(complement(top), composition(converse(top), complement(join(top, composition(converse(top), top)))))
% 11.11/1.78  = { by lemma 19 R->L }
% 11.11/1.78    join(complement(top), composition(converse(top), complement(join(composition(one, top), composition(converse(top), top)))))
% 11.11/1.78  = { by axiom 11 (composition_distributivity) R->L }
% 11.11/1.78    join(complement(top), composition(converse(top), complement(composition(join(one, converse(top)), top))))
% 11.11/1.78  = { by lemma 36 }
% 11.11/1.78    join(complement(top), composition(converse(top), complement(composition(top, top))))
% 11.11/1.78  = { by lemma 20 }
% 11.11/1.78    complement(top)
% 11.11/1.78  = { by lemma 15 }
% 11.11/1.78    zero
% 11.11/1.78  
% 11.11/1.78  Lemma 51: composition(zero, X) = zero.
% 11.11/1.78  Proof:
% 11.11/1.78    composition(zero, X)
% 11.11/1.78  = { by lemma 46 R->L }
% 11.11/1.78    composition(converse(zero), X)
% 11.11/1.78  = { by lemma 17 R->L }
% 11.11/1.78    converse(composition(converse(X), zero))
% 11.11/1.78  = { by lemma 38 R->L }
% 11.11/1.78    converse(join(zero, composition(converse(X), zero)))
% 11.11/1.78  = { by lemma 50 R->L }
% 11.11/1.78    converse(join(composition(top, zero), composition(converse(X), zero)))
% 11.11/1.78  = { by axiom 11 (composition_distributivity) R->L }
% 11.11/1.78    converse(composition(join(top, converse(X)), zero))
% 11.11/1.78  = { by lemma 47 }
% 11.11/1.78    converse(composition(top, zero))
% 11.11/1.78  = { by lemma 50 }
% 11.11/1.78    converse(zero)
% 11.11/1.78  = { by lemma 46 }
% 11.11/1.78    zero
% 11.11/1.78  
% 11.11/1.78  Lemma 52: meet(X, join(complement(Y), complement(Z))) = complement(join(complement(X), meet(Y, Z))).
% 11.11/1.78  Proof:
% 11.11/1.78    meet(X, join(complement(Y), complement(Z)))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    meet(X, join(complement(Z), complement(Y)))
% 11.11/1.78  = { by lemma 39 }
% 11.11/1.78    meet(join(complement(Z), complement(Y)), X)
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.78    complement(join(complement(join(complement(Z), complement(Y))), complement(X)))
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) R->L }
% 11.11/1.78    complement(join(meet(Z, Y), complement(X)))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) }
% 11.11/1.78    complement(join(complement(X), meet(Z, Y)))
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    complement(join(complement(X), meet(Y, Z)))
% 11.11/1.78  
% 11.11/1.78  Lemma 53: join(complement(X), complement(Y)) = complement(meet(X, Y)).
% 11.11/1.78  Proof:
% 11.11/1.78    join(complement(X), complement(Y))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    join(complement(Y), complement(X))
% 11.11/1.78  = { by lemma 25 R->L }
% 11.11/1.78    join(zero, meet(join(complement(Y), complement(X)), join(complement(Y), complement(X))))
% 11.11/1.78  = { by lemma 52 }
% 11.11/1.78    join(zero, complement(join(complement(join(complement(Y), complement(X))), meet(Y, X))))
% 11.11/1.78  = { by lemma 29 }
% 11.11/1.78    complement(join(complement(join(complement(Y), complement(X))), meet(Y, X)))
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) R->L }
% 11.11/1.78    complement(join(meet(Y, X), meet(Y, X)))
% 11.11/1.78  = { by lemma 45 }
% 11.11/1.78    complement(meet(Y, X))
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    complement(meet(X, Y))
% 11.11/1.78  
% 11.11/1.78  Lemma 54: complement(join(X, complement(Y))) = meet(Y, complement(X)).
% 11.11/1.78  Proof:
% 11.11/1.78    complement(join(X, complement(Y)))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    complement(join(complement(Y), X))
% 11.11/1.78  = { by lemma 44 R->L }
% 11.11/1.78    complement(join(complement(Y), meet(X, top)))
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    complement(join(complement(Y), meet(top, X)))
% 11.11/1.78  = { by lemma 52 R->L }
% 11.11/1.78    meet(Y, join(complement(top), complement(X)))
% 11.11/1.78  = { by lemma 15 }
% 11.11/1.78    meet(Y, join(zero, complement(X)))
% 11.11/1.78  = { by lemma 29 }
% 11.11/1.78    meet(Y, complement(X))
% 11.11/1.78  
% 11.11/1.78  Lemma 55: complement(join(complement(X), Y)) = meet(X, complement(Y)).
% 11.11/1.78  Proof:
% 11.11/1.78    complement(join(complement(X), Y))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    complement(join(Y, complement(X)))
% 11.11/1.78  = { by lemma 54 }
% 11.11/1.78    meet(X, complement(Y))
% 11.11/1.78  
% 11.11/1.78  Lemma 56: complement(meet(X, complement(Y))) = join(Y, complement(X)).
% 11.11/1.78  Proof:
% 11.11/1.78    complement(meet(X, complement(Y)))
% 11.11/1.78  = { by lemma 38 R->L }
% 11.11/1.78    complement(join(zero, meet(X, complement(Y))))
% 11.11/1.78  = { by lemma 54 R->L }
% 11.11/1.78    complement(join(zero, complement(join(Y, complement(X)))))
% 11.11/1.78  = { by lemma 40 }
% 11.11/1.78    meet(join(Y, complement(X)), top)
% 11.11/1.78  = { by lemma 44 }
% 11.11/1.78    join(Y, complement(X))
% 11.11/1.78  
% 11.11/1.78  Lemma 57: meet(meet(X, Y), Z) = meet(X, meet(Y, Z)).
% 11.11/1.78  Proof:
% 11.11/1.78    meet(meet(X, Y), Z)
% 11.11/1.78  = { by lemma 39 }
% 11.11/1.78    meet(Z, meet(X, Y))
% 11.11/1.78  = { by lemma 39 }
% 11.11/1.78    meet(Z, meet(Y, X))
% 11.11/1.78  = { by lemma 44 R->L }
% 11.11/1.78    meet(Z, meet(Y, meet(X, top)))
% 11.11/1.78  = { by lemma 40 R->L }
% 11.11/1.78    meet(Z, meet(Y, complement(join(zero, complement(X)))))
% 11.11/1.78  = { by lemma 55 R->L }
% 11.11/1.78    meet(Z, complement(join(complement(Y), join(zero, complement(X)))))
% 11.11/1.78  = { by lemma 55 R->L }
% 11.11/1.78    complement(join(complement(Z), join(complement(Y), join(zero, complement(X)))))
% 11.11/1.78  = { by axiom 7 (maddux2_join_associativity) }
% 11.11/1.78    complement(join(join(complement(Z), complement(Y)), join(zero, complement(X))))
% 11.11/1.78  = { by lemma 44 R->L }
% 11.11/1.78    complement(join(join(complement(Z), complement(Y)), meet(join(zero, complement(X)), top)))
% 11.11/1.78  = { by lemma 40 R->L }
% 11.11/1.78    complement(join(join(complement(Z), complement(Y)), complement(join(zero, complement(join(zero, complement(X)))))))
% 11.11/1.78  = { by lemma 54 }
% 11.11/1.78    meet(join(zero, complement(join(zero, complement(X)))), complement(join(complement(Z), complement(Y))))
% 11.11/1.78  = { by lemma 29 }
% 11.11/1.78    meet(complement(join(zero, complement(X))), complement(join(complement(Z), complement(Y))))
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    meet(complement(join(complement(Z), complement(Y))), complement(join(zero, complement(X))))
% 11.11/1.78  = { by axiom 10 (maddux4_definiton_of_meet) R->L }
% 11.11/1.78    meet(meet(Z, Y), complement(join(zero, complement(X))))
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    meet(complement(join(zero, complement(X))), meet(Z, Y))
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    meet(complement(join(zero, complement(X))), meet(Y, Z))
% 11.11/1.78  = { by lemma 40 }
% 11.11/1.78    meet(meet(X, top), meet(Y, Z))
% 11.11/1.78  = { by lemma 44 }
% 11.11/1.78    meet(X, meet(Y, Z))
% 11.11/1.78  
% 11.11/1.78  Lemma 58: join(complement(X), meet(complement(Y), Z)) = complement(meet(X, join(Y, complement(Z)))).
% 11.11/1.78  Proof:
% 11.11/1.78    join(complement(X), meet(complement(Y), Z))
% 11.11/1.78  = { by lemma 39 }
% 11.11/1.78    join(complement(X), meet(Z, complement(Y)))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    join(meet(Z, complement(Y)), complement(X))
% 11.11/1.78  = { by lemma 54 R->L }
% 11.11/1.78    join(complement(join(Y, complement(Z))), complement(X))
% 11.11/1.78  = { by lemma 53 }
% 11.11/1.78    complement(meet(join(Y, complement(Z)), X))
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    complement(meet(X, join(Y, complement(Z))))
% 11.11/1.78  
% 11.11/1.78  Lemma 59: complement(meet(Y, join(X, complement(Y)))) = complement(meet(X, join(Y, complement(X)))).
% 11.11/1.78  Proof:
% 11.11/1.78    complement(meet(Y, join(X, complement(Y))))
% 11.11/1.78  = { by lemma 58 R->L }
% 11.11/1.78    join(complement(Y), meet(complement(X), Y))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    join(meet(complement(X), Y), complement(Y))
% 11.11/1.78  = { by lemma 43 R->L }
% 11.11/1.78    join(meet(complement(X), Y), join(meet(complement(Y), X), meet(complement(Y), complement(X))))
% 11.11/1.78  = { by lemma 39 R->L }
% 11.11/1.78    join(meet(complement(X), Y), join(meet(complement(Y), X), meet(complement(X), complement(Y))))
% 11.11/1.78  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.78    join(meet(complement(X), Y), join(meet(complement(X), complement(Y)), meet(complement(Y), X)))
% 11.11/1.78  = { by axiom 7 (maddux2_join_associativity) }
% 11.11/1.79    join(join(meet(complement(X), Y), meet(complement(X), complement(Y))), meet(complement(Y), X))
% 11.11/1.79  = { by lemma 43 }
% 11.11/1.79    join(complement(X), meet(complement(Y), X))
% 11.11/1.79  = { by lemma 58 }
% 11.11/1.79    complement(meet(X, join(Y, complement(X))))
% 11.11/1.79  
% 11.11/1.79  Lemma 60: meet(Y, join(X, complement(Y))) = meet(X, join(Y, complement(X))).
% 11.11/1.79  Proof:
% 11.11/1.79    meet(Y, join(X, complement(Y)))
% 11.11/1.79  = { by lemma 44 R->L }
% 11.11/1.79    meet(Y, meet(join(X, complement(Y)), top))
% 11.11/1.79  = { by lemma 57 R->L }
% 11.11/1.79    meet(meet(Y, join(X, complement(Y))), top)
% 11.11/1.79  = { by lemma 40 R->L }
% 11.11/1.79    complement(join(zero, complement(meet(Y, join(X, complement(Y))))))
% 11.11/1.79  = { by lemma 59 }
% 11.11/1.79    complement(join(zero, complement(meet(X, join(Y, complement(X))))))
% 11.11/1.79  = { by lemma 40 }
% 11.11/1.79    meet(meet(X, join(Y, complement(X))), top)
% 11.11/1.79  = { by lemma 57 }
% 11.11/1.79    meet(X, meet(join(Y, complement(X)), top))
% 11.11/1.79  = { by lemma 44 }
% 11.11/1.79    meet(X, join(Y, complement(X)))
% 11.11/1.79  
% 11.11/1.79  Lemma 61: meet(X, meet(Y, complement(X))) = zero.
% 11.11/1.79  Proof:
% 11.11/1.79    meet(X, meet(Y, complement(X)))
% 11.11/1.79  = { by lemma 39 }
% 11.11/1.79    meet(X, meet(complement(X), Y))
% 11.11/1.79  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.79    complement(join(complement(X), complement(meet(complement(X), Y))))
% 11.11/1.79  = { by lemma 39 }
% 11.11/1.79    complement(join(complement(X), complement(meet(Y, complement(X)))))
% 11.11/1.79  = { by lemma 53 R->L }
% 11.11/1.79    complement(join(complement(X), join(complement(Y), complement(complement(X)))))
% 11.11/1.79  = { by lemma 16 }
% 11.11/1.79    complement(join(complement(Y), top))
% 11.11/1.79  = { by lemma 31 }
% 11.11/1.79    complement(top)
% 11.11/1.79  = { by lemma 15 }
% 11.11/1.79    zero
% 11.11/1.79  
% 11.11/1.79  Lemma 62: meet(X, join(Y, complement(X))) = meet(X, Y).
% 11.11/1.79  Proof:
% 11.11/1.79    meet(X, join(Y, complement(X)))
% 11.11/1.79  = { by lemma 60 }
% 11.11/1.79    meet(Y, join(X, complement(Y)))
% 11.11/1.79  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.79    meet(Y, join(complement(Y), X))
% 11.11/1.79  = { by lemma 39 }
% 11.11/1.79    meet(join(complement(Y), X), Y)
% 11.11/1.79  = { by lemma 24 R->L }
% 11.11/1.79    meet(join(complement(Y), X), join(meet(Y, X), complement(join(complement(Y), X))))
% 11.11/1.79  = { by lemma 60 R->L }
% 11.11/1.79    meet(meet(Y, X), join(join(complement(Y), X), complement(meet(Y, X))))
% 11.11/1.79  = { by lemma 57 }
% 11.11/1.79    meet(Y, meet(X, join(join(complement(Y), X), complement(meet(Y, X)))))
% 11.11/1.79  = { by axiom 7 (maddux2_join_associativity) R->L }
% 11.11/1.79    meet(Y, meet(X, join(complement(Y), join(X, complement(meet(Y, X))))))
% 11.11/1.79  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.79    meet(Y, meet(X, join(join(X, complement(meet(Y, X))), complement(Y))))
% 11.11/1.79  = { by axiom 7 (maddux2_join_associativity) R->L }
% 11.11/1.79    meet(Y, meet(X, join(X, join(complement(meet(Y, X)), complement(Y)))))
% 11.11/1.79  = { by axiom 1 (maddux1_join_commutativity) }
% 11.11/1.79    meet(Y, meet(X, join(X, join(complement(Y), complement(meet(Y, X))))))
% 11.11/1.79  = { by lemma 44 R->L }
% 11.11/1.79    meet(Y, meet(X, join(X, meet(join(complement(Y), complement(meet(Y, X))), top))))
% 11.11/1.79  = { by lemma 40 R->L }
% 11.11/1.79    meet(Y, meet(X, join(X, complement(join(zero, complement(join(complement(Y), complement(meet(Y, X)))))))))
% 11.11/1.79  = { by lemma 56 R->L }
% 11.11/1.79    meet(Y, meet(X, complement(meet(join(zero, complement(join(complement(Y), complement(meet(Y, X))))), complement(X)))))
% 11.11/1.79  = { by lemma 55 R->L }
% 11.11/1.79    meet(Y, complement(join(complement(X), meet(join(zero, complement(join(complement(Y), complement(meet(Y, X))))), complement(X)))))
% 11.11/1.79  = { by lemma 29 R->L }
% 11.11/1.79    meet(Y, join(zero, complement(join(complement(X), meet(join(zero, complement(join(complement(Y), complement(meet(Y, X))))), complement(X))))))
% 11.11/1.79  = { by lemma 61 R->L }
% 11.11/1.79    meet(Y, join(meet(X, meet(join(zero, complement(join(complement(Y), complement(meet(Y, X))))), complement(X))), complement(join(complement(X), meet(join(zero, complement(join(complement(Y), complement(meet(Y, X))))), complement(X))))))
% 11.11/1.79  = { by lemma 24 }
% 11.11/1.79    meet(Y, X)
% 11.11/1.79  = { by lemma 39 R->L }
% 11.11/1.79    meet(X, Y)
% 11.11/1.79  
% 11.11/1.79  Lemma 63: meet(X, join(complement(X), Y)) = meet(X, Y).
% 11.11/1.79  Proof:
% 11.11/1.79    meet(X, join(complement(X), Y))
% 11.11/1.79  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.79    meet(X, join(Y, complement(X)))
% 11.11/1.79  = { by lemma 62 }
% 11.11/1.79    meet(X, Y)
% 11.11/1.79  
% 11.11/1.79  Lemma 64: meet(one, composition(converse(complement(X)), X)) = zero.
% 11.11/1.79  Proof:
% 11.11/1.79    meet(one, composition(converse(complement(X)), X))
% 11.11/1.79  = { by lemma 39 }
% 11.11/1.79    meet(composition(converse(complement(X)), X), one)
% 11.11/1.79  = { by lemma 48 R->L }
% 11.11/1.79    meet(composition(converse(complement(X)), X), complement(complement(one)))
% 11.11/1.79  = { by lemma 20 R->L }
% 11.11/1.79    meet(composition(converse(complement(X)), X), complement(join(complement(one), composition(converse(join(zero, complement(X))), complement(composition(join(zero, complement(X)), one))))))
% 11.11/1.79  = { by axiom 3 (composition_identity) }
% 11.11/1.79    meet(composition(converse(complement(X)), X), complement(join(complement(one), composition(converse(join(zero, complement(X))), complement(join(zero, complement(X)))))))
% 11.11/1.79  = { by lemma 40 }
% 11.11/1.79    meet(composition(converse(complement(X)), X), complement(join(complement(one), composition(converse(join(zero, complement(X))), meet(X, top)))))
% 11.11/1.79  = { by lemma 29 }
% 11.11/1.79    meet(composition(converse(complement(X)), X), complement(join(complement(one), composition(converse(complement(X)), meet(X, top)))))
% 11.11/1.79  = { by lemma 44 }
% 11.11/1.79    meet(composition(converse(complement(X)), X), complement(join(complement(one), composition(converse(complement(X)), X))))
% 11.11/1.79  = { by lemma 55 }
% 11.11/1.79    meet(composition(converse(complement(X)), X), meet(one, complement(composition(converse(complement(X)), X))))
% 11.11/1.79  = { by lemma 61 }
% 11.11/1.79    zero
% 11.11/1.79  
% 11.11/1.79  Goal 1 (goals): converse(meet(x0, x1)) = meet(converse(x0), converse(x1)).
% 11.11/1.79  Proof:
% 11.11/1.79    converse(meet(x0, x1))
% 11.11/1.79  = { by axiom 2 (converse_idempotence) R->L }
% 11.11/1.79    converse(meet(x0, converse(converse(x1))))
% 11.11/1.79  = { by lemma 39 }
% 11.11/1.79    converse(meet(converse(converse(x1)), x0))
% 11.11/1.79  = { by lemma 24 R->L }
% 11.11/1.79    join(meet(converse(meet(converse(converse(x1)), x0)), converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0))))), complement(join(complement(converse(meet(converse(converse(x1)), x0))), converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0)))))))
% 11.11/1.79  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.79    join(meet(converse(meet(converse(converse(x1)), x0)), converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0))))), complement(join(converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0)))), complement(converse(meet(converse(converse(x1)), x0))))))
% 11.11/1.79  = { by axiom 6 (converse_additivity) }
% 11.11/1.79    join(meet(converse(meet(converse(converse(x1)), x0)), converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0))))), complement(join(join(converse(meet(converse(converse(x1)), x0)), converse(complement(join(complement(converse(converse(x1))), x0)))), complement(converse(meet(converse(converse(x1)), x0))))))
% 11.11/1.79  = { by axiom 7 (maddux2_join_associativity) R->L }
% 11.11/1.79    join(meet(converse(meet(converse(converse(x1)), x0)), converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0))))), complement(join(converse(meet(converse(converse(x1)), x0)), join(converse(complement(join(complement(converse(converse(x1))), x0))), complement(converse(meet(converse(converse(x1)), x0)))))))
% 11.11/1.79  = { by axiom 1 (maddux1_join_commutativity) }
% 11.11/1.79    join(meet(converse(meet(converse(converse(x1)), x0)), converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0))))), complement(join(converse(meet(converse(converse(x1)), x0)), join(complement(converse(meet(converse(converse(x1)), x0))), converse(complement(join(complement(converse(converse(x1))), x0)))))))
% 11.11/1.79  = { by lemma 35 }
% 11.11/1.79    join(meet(converse(meet(converse(converse(x1)), x0)), converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0))))), complement(top))
% 11.11/1.79  = { by lemma 15 }
% 11.11/1.79    join(meet(converse(meet(converse(converse(x1)), x0)), converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0))))), zero)
% 11.11/1.79  = { by lemma 30 }
% 11.11/1.79    meet(converse(meet(converse(converse(x1)), x0)), converse(join(meet(converse(converse(x1)), x0), complement(join(complement(converse(converse(x1))), x0)))))
% 11.11/1.79  = { by lemma 24 }
% 11.11/1.79    meet(converse(meet(converse(converse(x1)), x0)), converse(converse(converse(x1))))
% 11.11/1.79  = { by lemma 39 R->L }
% 11.11/1.79    meet(converse(converse(converse(x1))), converse(meet(converse(converse(x1)), x0)))
% 11.11/1.79  = { by axiom 2 (converse_idempotence) }
% 11.11/1.79    meet(converse(x1), converse(meet(converse(converse(x1)), x0)))
% 11.11/1.79  = { by lemma 39 R->L }
% 11.11/1.79    meet(converse(x1), converse(meet(x0, converse(converse(x1)))))
% 11.11/1.79  = { by lemma 48 R->L }
% 11.11/1.79    meet(converse(x1), converse(meet(x0, complement(complement(converse(converse(x1)))))))
% 11.11/1.79  = { by lemma 44 R->L }
% 11.11/1.79    meet(converse(x1), converse(meet(x0, complement(complement(converse(meet(converse(x1), top)))))))
% 11.11/1.79  = { by lemma 40 R->L }
% 11.11/1.79    meet(converse(x1), converse(meet(x0, complement(complement(converse(complement(join(zero, complement(converse(x1))))))))))
% 11.11/1.79  = { by axiom 2 (converse_idempotence) R->L }
% 11.11/1.79    meet(converse(x1), converse(meet(x0, complement(converse(converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))
% 11.11/1.79  = { by lemma 43 R->L }
% 11.11/1.79    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(converse(complement(converse(complement(join(zero, complement(converse(x1))))))), join(zero, complement(converse(x1)))), meet(converse(complement(converse(complement(join(zero, complement(converse(x1))))))), complement(join(zero, complement(converse(x1)))))))))))
% 11.11/1.79  = { by lemma 39 R->L }
% 11.11/1.79    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), meet(converse(complement(converse(complement(join(zero, complement(converse(x1))))))), complement(join(zero, complement(converse(x1)))))))))))
% 11.11/1.79  = { by lemma 39 R->L }
% 11.11/1.79    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), meet(complement(join(zero, complement(converse(x1)))), converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))))
% 11.11/1.79  = { by lemma 30 R->L }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), join(meet(complement(join(zero, complement(converse(x1)))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), zero)))))))
% 11.11/1.80  = { by lemma 49 R->L }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), join(meet(complement(join(zero, complement(converse(x1)))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), meet(zero, converse(complement(converse(complement(join(zero, complement(converse(x1)))))))))))))))
% 11.11/1.80  = { by lemma 51 R->L }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), join(meet(complement(join(zero, complement(converse(x1)))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), meet(composition(zero, complement(join(zero, complement(converse(x1))))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))))))))))
% 11.11/1.80  = { by lemma 19 R->L }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), join(meet(composition(one, complement(join(zero, complement(converse(x1))))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), meet(composition(zero, complement(join(zero, complement(converse(x1))))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))))))))))
% 11.11/1.80  = { by lemma 64 R->L }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), join(meet(composition(one, complement(join(zero, complement(converse(x1))))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), meet(composition(meet(one, composition(converse(complement(converse(complement(join(zero, complement(converse(x1))))))), converse(complement(join(zero, complement(converse(x1))))))), complement(join(zero, complement(converse(x1))))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))))))))))
% 11.11/1.80  = { by axiom 14 (modular_law_2) }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), meet(composition(meet(one, composition(converse(complement(converse(complement(join(zero, complement(converse(x1))))))), converse(complement(join(zero, complement(converse(x1))))))), complement(join(zero, complement(converse(x1))))), converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))))
% 11.11/1.80  = { by lemma 64 }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), meet(composition(zero, complement(join(zero, complement(converse(x1))))), converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))))
% 11.11/1.80  = { by lemma 51 }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), meet(zero, converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))))
% 11.11/1.80  = { by lemma 49 }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))), zero))))))
% 11.11/1.80  = { by lemma 30 }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(meet(join(zero, complement(converse(x1))), converse(complement(converse(complement(join(zero, complement(converse(x1)))))))))))))
% 11.11/1.80  = { by axiom 10 (maddux4_definiton_of_meet) }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(complement(join(complement(join(zero, complement(converse(x1)))), complement(converse(complement(converse(complement(join(zero, complement(converse(x1)))))))))))))))
% 11.11/1.80  = { by lemma 29 R->L }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(zero, complement(join(complement(join(zero, complement(converse(x1)))), complement(converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))))))
% 11.11/1.80  = { by lemma 15 R->L }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(complement(top), complement(join(complement(join(zero, complement(converse(x1)))), complement(converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))))))
% 11.11/1.80  = { by lemma 37 R->L }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(complement(converse(top)), complement(join(complement(join(zero, complement(converse(x1)))), complement(converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))))))
% 11.11/1.80  = { by lemma 34 R->L }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(complement(join(complement(join(zero, complement(converse(x1)))), converse(complement(converse(complement(join(zero, complement(converse(x1))))))))), complement(join(complement(join(zero, complement(converse(x1)))), complement(converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))))))
% 11.11/1.80  = { by lemma 55 }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(meet(join(zero, complement(converse(x1))), complement(converse(complement(converse(complement(join(zero, complement(converse(x1))))))))), complement(join(complement(join(zero, complement(converse(x1)))), complement(converse(complement(converse(complement(join(zero, complement(converse(x1))))))))))))))))
% 11.11/1.80  = { by lemma 24 }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(join(zero, complement(converse(x1))))))))
% 11.11/1.80  = { by lemma 29 }
% 11.11/1.80    meet(converse(x1), converse(meet(x0, complement(converse(complement(converse(x1)))))))
% 11.11/1.80  = { by lemma 63 R->L }
% 11.11/1.80    meet(converse(x1), join(complement(converse(x1)), converse(meet(x0, complement(converse(complement(converse(x1))))))))
% 11.11/1.80  = { by lemma 33 R->L }
% 11.11/1.80    meet(converse(x1), converse(join(converse(complement(converse(x1))), meet(x0, complement(converse(complement(converse(x1))))))))
% 11.11/1.80  = { by lemma 54 R->L }
% 11.11/1.80    meet(converse(x1), converse(join(converse(complement(converse(x1))), complement(join(converse(complement(converse(x1))), complement(x0))))))
% 11.11/1.80  = { by axiom 1 (maddux1_join_commutativity) R->L }
% 11.11/1.80    meet(converse(x1), converse(join(converse(complement(converse(x1))), complement(join(complement(x0), converse(complement(converse(x1))))))))
% 11.11/1.80  = { by lemma 44 R->L }
% 11.11/1.80    meet(converse(x1), converse(join(converse(complement(converse(x1))), complement(join(complement(x0), meet(converse(complement(converse(x1))), top))))))
% 11.11/1.80  = { by lemma 56 R->L }
% 11.11/1.80    meet(converse(x1), converse(complement(meet(join(complement(x0), meet(converse(complement(converse(x1))), top)), complement(converse(complement(converse(x1))))))))
% 11.11/1.80  = { by lemma 39 R->L }
% 11.11/1.80    meet(converse(x1), converse(complement(meet(complement(converse(complement(converse(x1)))), join(complement(x0), meet(converse(complement(converse(x1))), top))))))
% 11.11/1.80  = { by lemma 29 R->L }
% 11.11/1.80    meet(converse(x1), converse(complement(meet(join(zero, complement(converse(complement(converse(x1))))), join(complement(x0), meet(converse(complement(converse(x1))), top))))))
% 11.11/1.80  = { by lemma 40 R->L }
% 11.11/1.80    meet(converse(x1), converse(complement(meet(join(zero, complement(converse(complement(converse(x1))))), join(complement(x0), complement(join(zero, complement(converse(complement(converse(x1)))))))))))
% 11.11/1.80  = { by lemma 59 R->L }
% 11.11/1.80    meet(converse(x1), converse(complement(meet(complement(x0), join(join(zero, complement(converse(complement(converse(x1))))), complement(complement(x0)))))))
% 11.11/1.80  = { by lemma 62 }
% 11.11/1.80    meet(converse(x1), converse(complement(meet(complement(x0), join(zero, complement(converse(complement(converse(x1)))))))))
% 11.11/1.80  = { by lemma 29 }
% 11.11/1.80    meet(converse(x1), converse(complement(meet(complement(x0), complement(converse(complement(converse(x1))))))))
% 11.11/1.80  = { by lemma 56 }
% 11.11/1.80    meet(converse(x1), converse(join(converse(complement(converse(x1))), complement(complement(x0)))))
% 11.11/1.80  = { by lemma 48 }
% 11.11/1.80    meet(converse(x1), converse(join(converse(complement(converse(x1))), x0)))
% 11.11/1.80  = { by lemma 33 }
% 11.11/1.80    meet(converse(x1), join(complement(converse(x1)), converse(x0)))
% 11.11/1.80  = { by lemma 63 }
% 11.11/1.80    meet(converse(x1), converse(x0))
% 11.11/1.80  = { by lemma 39 R->L }
% 11.11/1.80    meet(converse(x0), converse(x1))
% 11.11/1.80  % SZS output end Proof
% 11.11/1.80  
% 11.11/1.80  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------