TSTP Solution File: REL002+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : REL002+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:11:46 EDT 2022

% Result   : Theorem 1.84s 2.07s
% Output   : Refutation 1.90s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   12
% Syntax   : Number of clauses     :   67 (  67 unt;   0 nHn;  14 RR)
%            Number of literals    :   67 (  66 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   4 con; 0-2 aty)
%            Number of variables   :   77 (   5 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    join(dollar_c1,top) != top,
    file('REL002+1.p',unknown),
    [] ).

cnf(3,axiom,
    join(A,B) = join(B,A),
    file('REL002+1.p',unknown),
    [] ).

cnf(4,axiom,
    join(A,join(B,C)) = join(join(A,B),C),
    file('REL002+1.p',unknown),
    [] ).

cnf(6,plain,
    join(join(A,B),C) = join(A,join(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[4])]),
    [iquote('copy,4,flip.1')] ).

cnf(7,axiom,
    A = join(complement(join(complement(A),complement(B))),complement(join(complement(A),B))),
    file('REL002+1.p',unknown),
    [] ).

cnf(8,plain,
    join(complement(join(complement(A),complement(B))),complement(join(complement(A),B))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[7])]),
    [iquote('copy,7,flip.1')] ).

cnf(10,axiom,
    meet(A,B) = complement(join(complement(A),complement(B))),
    file('REL002+1.p',unknown),
    [] ).

cnf(12,plain,
    complement(join(complement(A),complement(B))) = meet(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(13,axiom,
    composition(A,composition(B,C)) = composition(composition(A,B),C),
    file('REL002+1.p',unknown),
    [] ).

cnf(14,plain,
    composition(composition(A,B),C) = composition(A,composition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[13])]),
    [iquote('copy,13,flip.1')] ).

cnf(16,axiom,
    composition(A,one) = A,
    file('REL002+1.p',unknown),
    [] ).

cnf(22,axiom,
    converse(converse(A)) = A,
    file('REL002+1.p',unknown),
    [] ).

cnf(25,axiom,
    converse(composition(A,B)) = composition(converse(B),converse(A)),
    file('REL002+1.p',unknown),
    [] ).

cnf(27,axiom,
    join(composition(converse(A),complement(composition(A,B))),complement(B)) = complement(B),
    file('REL002+1.p',unknown),
    [] ).

cnf(29,axiom,
    top = join(A,complement(A)),
    file('REL002+1.p',unknown),
    [] ).

cnf(30,plain,
    join(A,complement(A)) = top,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[29])]),
    [iquote('copy,29,flip.1')] ).

cnf(32,axiom,
    zero = meet(A,complement(A)),
    file('REL002+1.p',unknown),
    [] ).

cnf(34,plain,
    meet(A,complement(A)) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[32])]),
    [iquote('copy,32,flip.1')] ).

cnf(35,plain,
    join(meet(A,B),complement(join(complement(A),B))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[8]),12]),
    [iquote('back_demod,8,demod,12')] ).

cnf(37,plain,
    join(complement(A),A) = top,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,30])]),
    [iquote('para_into,3.1.1,30.1.1,flip.1')] ).

cnf(39,plain,
    join(top,dollar_c1) != top,
    inference(para_from,[status(thm),theory(equality)],[3,1]),
    [iquote('para_from,3.1.1,1.1.1')] ).

cnf(40,plain,
    complement(join(meet(A,B),complement(C))) = meet(join(complement(A),complement(B)),C),
    inference(para_into,[status(thm),theory(equality)],[12,12]),
    [iquote('para_into,11.1.1.1.1,11.1.1')] ).

cnf(44,plain,
    complement(top) = meet(complement(A),A),
    inference(para_into,[status(thm),theory(equality)],[12,37]),
    [iquote('para_into,11.1.1.1,37.1.1')] ).

cnf(46,plain,
    complement(top) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,30]),34]),
    [iquote('para_into,11.1.1.1,30.1.1,demod,34')] ).

cnf(47,plain,
    meet(A,B) = meet(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,3]),12]),
    [iquote('para_into,11.1.1.1,3.1.1,demod,12')] ).

cnf(48,plain,
    meet(complement(A),A) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[44])]),46]),
    [iquote('copy,44,flip.1,demod,46')] ).

cnf(52,plain,
    meet(join(complement(A),complement(B)),meet(A,B)) = zero,
    inference(para_from,[status(thm),theory(equality)],[12,34]),
    [iquote('para_from,11.1.1,33.1.1.2')] ).

cnf(54,plain,
    join(complement(A),join(complement(B),meet(A,B))) = top,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[12,30]),6]),
    [iquote('para_from,11.1.1,30.1.1.2,demod,6')] ).

cnf(57,plain,
    complement(join(complement(A),zero)) = meet(A,top),
    inference(para_from,[status(thm),theory(equality)],[46,12]),
    [iquote('para_from,45.1.1,11.1.1.1.2')] ).

cnf(62,plain,
    join(top,zero) = top,
    inference(para_from,[status(thm),theory(equality)],[46,30]),
    [iquote('para_from,45.1.1,30.1.1.2')] ).

cnf(64,plain,
    complement(join(zero,complement(A))) = meet(top,A),
    inference(para_from,[status(thm),theory(equality)],[46,12]),
    [iquote('para_from,45.1.1,11.1.1.1.1')] ).

cnf(77,plain,
    join(top,join(zero,A)) = join(top,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[62,6])]),
    [iquote('para_from,62.1.1,5.1.1.1,flip.1')] ).

cnf(83,plain,
    composition(A,composition(one,B)) = composition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,16])]),
    [iquote('para_into,14.1.1.1,16.1.1,flip.1')] ).

cnf(87,plain,
    complement(join(zero,zero)) = meet(top,top),
    inference(para_into,[status(thm),theory(equality)],[57,46]),
    [iquote('para_into,56.1.1.1.1,45.1.1')] ).

cnf(99,plain,
    meet(meet(top,top),join(zero,zero)) = zero,
    inference(para_from,[status(thm),theory(equality)],[87,48]),
    [iquote('para_from,87.1.1,48.1.1.1')] ).

cnf(166,plain,
    composition(converse(one),converse(A)) = converse(A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[25,16])]),
    [iquote('para_into,25.1.1.1,16.1.1,flip.1')] ).

cnf(173,plain,
    composition(converse(one),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[166,22]),22]),
    [iquote('para_into,166.1.1.2,21.1.1,demod,22')] ).

cnf(175,plain,
    composition(one,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[173,83]),173])]),
    [iquote('para_into,172.1.1,83.1.1,demod,173,flip.1')] ).

cnf(176,plain,
    converse(one) = one,
    inference(para_into,[status(thm),theory(equality)],[173,16]),
    [iquote('para_into,172.1.1,16.1.1')] ).

cnf(183,plain,
    join(complement(A),complement(A)) = complement(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,176]),175,175]),
    [iquote('para_into,27.1.1.1.1,176.1.1,demod,175,175')] ).

cnf(215,plain,
    join(zero,zero) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[183,46]),46,46]),
    [iquote('para_into,182.1.1.1,45.1.1,demod,46,46')] ).

cnf(226,plain,
    meet(meet(top,top),zero) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[99]),215]),
    [iquote('back_demod,99,demod,215')] ).

cnf(228,plain,
    complement(zero) = meet(top,top),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[87]),215]),
    [iquote('back_demod,87,demod,215')] ).

cnf(243,plain,
    complement(complement(A)) = meet(A,A),
    inference(para_from,[status(thm),theory(equality)],[183,12]),
    [iquote('para_from,182.1.1,11.1.1.1')] ).

cnf(263,plain,
    join(zero,meet(A,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[35,34]),183,243]),
    [iquote('para_into,35.1.1.1,33.1.1,demod,183,243')] ).

cnf(275,plain,
    join(meet(A,A),zero) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[35,37]),46]),
    [iquote('para_into,35.1.1.2.1,37.1.1,demod,46')] ).

cnf(290,plain,
    join(zero,meet(meet(top,top),top)) = meet(top,top),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[226,35]),57]),
    [iquote('para_from,226.1.1,35.1.1.1,demod,57')] ).

cnf(302,plain,
    meet(top,complement(A)) = complement(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[243,64]),263])]),
    [iquote('para_from,242.1.1,64.1.1.1.2,demod,263,flip.1')] ).

cnf(304,plain,
    meet(complement(A),top) = complement(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[243,57]),275])]),
    [iquote('para_from,242.1.1,56.1.1.1.1,demod,275,flip.1')] ).

cnf(312,plain,
    join(complement(A),meet(A,A)) = top,
    inference(para_from,[status(thm),theory(equality)],[243,30]),
    [iquote('para_from,242.1.1,30.1.1.2')] ).

cnf(317,plain,
    join(top,meet(A,A)) = join(top,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[263,77])]),
    [iquote('para_from,262.1.1,77.1.1.2,flip.1')] ).

cnf(364,plain,
    meet(top,meet(A,B)) = meet(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[302,12]),12]),
    [iquote('para_into,302.1.1.2,11.1.1,demod,12')] ).

cnf(368,plain,
    meet(meet(A,A),top) = meet(A,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[304,243]),243]),
    [iquote('para_into,304.1.1.1,242.1.1,demod,243')] ).

cnf(378,plain,
    meet(top,top) = top,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[290]),368,263])]),
    [iquote('back_demod,290,demod,368,263,flip.1')] ).

cnf(383,plain,
    complement(zero) = top,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[228]),378]),
    [iquote('back_demod,228,demod,378')] ).

cnf(387,plain,
    join(complement(A),complement(join(meet(A,A),top))) = complement(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[304,35]),243]),
    [iquote('para_from,304.1.1,35.1.1.1,demod,243')] ).

cnf(390,plain,
    complement(join(meet(A,B),top)) = meet(join(complement(A),complement(B)),zero),
    inference(para_from,[status(thm),theory(equality)],[383,40]),
    [iquote('para_from,383.1.1,40.1.1.1.2')] ).

cnf(399,plain,
    join(complement(A),meet(complement(A),zero)) = complement(A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[387]),390,183]),
    [iquote('back_demod,387,demod,390,183')] ).

cnf(556,plain,
    meet(join(complement(A),top),meet(A,zero)) = zero,
    inference(para_into,[status(thm),theory(equality)],[52,383]),
    [iquote('para_into,52.1.1.1.2,383.1.1')] ).

cnf(620,plain,
    join(top,join(complement(A),meet(zero,A))) = top,
    inference(para_into,[status(thm),theory(equality)],[54,383]),
    [iquote('para_into,54.1.1.1,383.1.1')] ).

cnf(649,plain,
    join(complement(A),top) = top,
    inference(para_into,[status(thm),theory(equality)],[54,312]),
    [iquote('para_into,54.1.1.2,312.1.1')] ).

cnf(655,plain,
    meet(A,zero) = zero,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[556]),649,364]),
    [iquote('back_demod,556,demod,649,364')] ).

cnf(657,plain,
    join(complement(A),zero) = complement(A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[399]),655]),
    [iquote('back_demod,399,demod,655')] ).

cnf(699,plain,
    meet(zero,A) = zero,
    inference(para_into,[status(thm),theory(equality)],[655,47]),
    [iquote('para_into,654.1.1,47.1.1')] ).

cnf(700,plain,
    join(top,complement(A)) = top,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[620]),699,657]),
    [iquote('back_demod,620,demod,699,657')] ).

cnf(722,plain,
    join(top,A) = top,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[700,243]),317]),
    [iquote('para_into,700.1.1.2,242.1.1,demod,317')] ).

cnf(724,plain,
    $false,
    inference(binary,[status(thm)],[722,39]),
    [iquote('binary,722.1,39.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : REL002+1 : TPTP v8.1.0. Released v4.0.0.
% 0.07/0.13  % Command  : otter-tptp-script %s
% 0.12/0.34  % Computer : n020.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Wed Jul 27 10:06:23 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 1.84/2.05  ----- Otter 3.3f, August 2004 -----
% 1.84/2.05  The process was started by sandbox on n020.cluster.edu,
% 1.84/2.05  Wed Jul 27 10:06:23 2022
% 1.84/2.05  The command was "./otter".  The process ID is 11182.
% 1.84/2.05  
% 1.84/2.05  set(prolog_style_variables).
% 1.84/2.05  set(auto).
% 1.84/2.05     dependent: set(auto1).
% 1.84/2.05     dependent: set(process_input).
% 1.84/2.05     dependent: clear(print_kept).
% 1.84/2.05     dependent: clear(print_new_demod).
% 1.84/2.05     dependent: clear(print_back_demod).
% 1.84/2.05     dependent: clear(print_back_sub).
% 1.84/2.05     dependent: set(control_memory).
% 1.84/2.05     dependent: assign(max_mem, 12000).
% 1.84/2.05     dependent: assign(pick_given_ratio, 4).
% 1.84/2.05     dependent: assign(stats_level, 1).
% 1.84/2.05     dependent: assign(max_seconds, 10800).
% 1.84/2.05  clear(print_given).
% 1.84/2.05  
% 1.84/2.05  formula_list(usable).
% 1.84/2.05  all A (A=A).
% 1.84/2.05  all X0 X1 (join(X0,X1)=join(X1,X0)).
% 1.84/2.05  all X0 X1 X2 (join(X0,join(X1,X2))=join(join(X0,X1),X2)).
% 1.84/2.05  all X0 X1 (X0=join(complement(join(complement(X0),complement(X1))),complement(join(complement(X0),X1)))).
% 1.84/2.05  all X0 X1 (meet(X0,X1)=complement(join(complement(X0),complement(X1)))).
% 1.84/2.05  all X0 X1 X2 (composition(X0,composition(X1,X2))=composition(composition(X0,X1),X2)).
% 1.84/2.05  all X0 (composition(X0,one)=X0).
% 1.84/2.05  all X0 X1 X2 (composition(join(X0,X1),X2)=join(composition(X0,X2),composition(X1,X2))).
% 1.84/2.05  all X0 (converse(converse(X0))=X0).
% 1.84/2.05  all X0 X1 (converse(join(X0,X1))=join(converse(X0),converse(X1))).
% 1.84/2.05  all X0 X1 (converse(composition(X0,X1))=composition(converse(X1),converse(X0))).
% 1.84/2.05  all X0 X1 (join(composition(converse(X0),complement(composition(X0,X1))),complement(X1))=complement(X1)).
% 1.84/2.05  all X0 (top=join(X0,complement(X0))).
% 1.84/2.05  all X0 (zero=meet(X0,complement(X0))).
% 1.84/2.05  -(all X0 (join(X0,top)=top)).
% 1.84/2.05  end_of_list.
% 1.84/2.05  
% 1.84/2.05  -------> usable clausifies to:
% 1.84/2.05  
% 1.84/2.05  list(usable).
% 1.84/2.05  0 [] A=A.
% 1.84/2.05  0 [] join(X0,X1)=join(X1,X0).
% 1.84/2.05  0 [] join(X0,join(X1,X2))=join(join(X0,X1),X2).
% 1.84/2.05  0 [] X0=join(complement(join(complement(X0),complement(X1))),complement(join(complement(X0),X1))).
% 1.84/2.05  0 [] meet(X0,X1)=complement(join(complement(X0),complement(X1))).
% 1.84/2.05  0 [] composition(X0,composition(X1,X2))=composition(composition(X0,X1),X2).
% 1.84/2.05  0 [] composition(X0,one)=X0.
% 1.84/2.05  0 [] composition(join(X0,X1),X2)=join(composition(X0,X2),composition(X1,X2)).
% 1.84/2.05  0 [] converse(converse(X0))=X0.
% 1.84/2.05  0 [] converse(join(X0,X1))=join(converse(X0),converse(X1)).
% 1.84/2.05  0 [] converse(composition(X0,X1))=composition(converse(X1),converse(X0)).
% 1.84/2.05  0 [] join(composition(converse(X0),complement(composition(X0,X1))),complement(X1))=complement(X1).
% 1.84/2.05  0 [] top=join(X0,complement(X0)).
% 1.84/2.05  0 [] zero=meet(X0,complement(X0)).
% 1.84/2.05  0 [] join($c1,top)!=top.
% 1.84/2.05  end_of_list.
% 1.84/2.05  
% 1.84/2.05  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.84/2.05  
% 1.84/2.05  All clauses are units, and equality is present; the
% 1.84/2.05  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.84/2.05  
% 1.84/2.05     dependent: set(knuth_bendix).
% 1.84/2.05     dependent: set(anl_eq).
% 1.84/2.05     dependent: set(para_from).
% 1.84/2.05     dependent: set(para_into).
% 1.84/2.05     dependent: clear(para_from_right).
% 1.84/2.05     dependent: clear(para_into_right).
% 1.84/2.05     dependent: set(para_from_vars).
% 1.84/2.05     dependent: set(eq_units_both_ways).
% 1.84/2.05     dependent: set(dynamic_demod_all).
% 1.84/2.05     dependent: set(dynamic_demod).
% 1.84/2.05     dependent: set(order_eq).
% 1.84/2.05     dependent: set(back_demod).
% 1.84/2.05     dependent: set(lrpo).
% 1.84/2.05  
% 1.84/2.05  ------------> process usable:
% 1.84/2.05  ** KEPT (pick-wt=5): 1 [] join($c1,top)!=top.
% 1.84/2.05  
% 1.84/2.05  ------------> process sos:
% 1.84/2.05  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.84/2.05  ** KEPT (pick-wt=7): 3 [] join(A,B)=join(B,A).
% 1.84/2.05  ** KEPT (pick-wt=11): 5 [copy,4,flip.1] join(join(A,B),C)=join(A,join(B,C)).
% 1.84/2.05  ---> New Demodulator: 6 [new_demod,5] join(join(A,B),C)=join(A,join(B,C)).
% 1.84/2.05  ** KEPT (pick-wt=14): 8 [copy,7,flip.1] join(complement(join(complement(A),complement(B))),complement(join(complement(A),B)))=A.
% 1.84/2.05  ---> New Demodulator: 9 [new_demod,8] join(complement(join(complement(A),complement(B))),complement(join(complement(A),B)))=A.
% 1.84/2.05  ** KEPT (pick-wt=10): 11 [copy,10,flip.1] complement(join(complement(A),complement(B)))=meet(A,B).
% 1.84/2.05  ---> New Demodulator: 12 [new_demod,11] complement(join(complement(A),complement(B)))=meet(A,B).
% 1.84/2.05  ** KEPT (pick-wt=11): 14 [copy,13,flip.1] composition(composition(A,B),C)=composition(A,composition(B,C)).
% 1.84/2.05  ---> New Demodulator: 15 [new_demod,14] composition(composition(A,B),C)=composition(A,composition(B,C)).
% 1.84/2.05  ** KEPT (pick-wt=5): 16 [] composition(A,one)=A.
% 1.84/2.05  ---> New Demodulator: 17 [new_demod,16] composition(A,one)=A.
% 1.84/2.07  ** KEPT (pick-wt=13): 19 [copy,18,flip.1] join(composition(A,B),composition(C,B))=composition(join(A,C),B).
% 1.84/2.07  ---> New Demodulator: 20 [new_demod,19] join(composition(A,B),composition(C,B))=composition(join(A,C),B).
% 1.84/2.07  ** KEPT (pick-wt=5): 21 [] converse(converse(A))=A.
% 1.84/2.07  ---> New Demodulator: 22 [new_demod,21] converse(converse(A))=A.
% 1.84/2.07  ** KEPT (pick-wt=10): 23 [] converse(join(A,B))=join(converse(A),converse(B)).
% 1.84/2.07  ---> New Demodulator: 24 [new_demod,23] converse(join(A,B))=join(converse(A),converse(B)).
% 1.84/2.07  ** KEPT (pick-wt=10): 25 [] converse(composition(A,B))=composition(converse(B),converse(A)).
% 1.84/2.07  ---> New Demodulator: 26 [new_demod,25] converse(composition(A,B))=composition(converse(B),converse(A)).
% 1.84/2.07  ** KEPT (pick-wt=13): 27 [] join(composition(converse(A),complement(composition(A,B))),complement(B))=complement(B).
% 1.84/2.07  ---> New Demodulator: 28 [new_demod,27] join(composition(converse(A),complement(composition(A,B))),complement(B))=complement(B).
% 1.84/2.07  ** KEPT (pick-wt=6): 30 [copy,29,flip.1] join(A,complement(A))=top.
% 1.84/2.07  ---> New Demodulator: 31 [new_demod,30] join(A,complement(A))=top.
% 1.84/2.07  ** KEPT (pick-wt=6): 33 [copy,32,flip.1] meet(A,complement(A))=zero.
% 1.84/2.07  ---> New Demodulator: 34 [new_demod,33] meet(A,complement(A))=zero.
% 1.84/2.07    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.84/2.07    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] join(A,B)=join(B,A).
% 1.84/2.07  >>>> Starting back demodulation with 6.
% 1.84/2.07  >>>> Starting back demodulation with 9.
% 1.84/2.07  >>>> Starting back demodulation with 12.
% 1.84/2.07      >> back demodulating 8 with 12.
% 1.84/2.07  >>>> Starting back demodulation with 15.
% 1.84/2.07  >>>> Starting back demodulation with 17.
% 1.84/2.07  >>>> Starting back demodulation with 20.
% 1.84/2.07  >>>> Starting back demodulation with 22.
% 1.84/2.07  >>>> Starting back demodulation with 24.
% 1.84/2.07  >>>> Starting back demodulation with 26.
% 1.84/2.07  >>>> Starting back demodulation with 28.
% 1.84/2.07  >>>> Starting back demodulation with 31.
% 1.84/2.07  >>>> Starting back demodulation with 34.
% 1.84/2.07  >>>> Starting back demodulation with 36.
% 1.84/2.07  
% 1.84/2.07  ======= end of input processing =======
% 1.84/2.07  
% 1.84/2.07  =========== start of search ===========
% 1.84/2.07  
% 1.84/2.07  -------- PROOF -------- 
% 1.84/2.07  
% 1.84/2.07  ----> UNIT CONFLICT at   0.01 sec ----> 724 [binary,722.1,39.1] $F.
% 1.84/2.07  
% 1.84/2.07  Length of proof is 54.  Level of proof is 14.
% 1.84/2.07  
% 1.84/2.07  ---------------- PROOF ----------------
% 1.84/2.07  % SZS status Theorem
% 1.84/2.07  % SZS output start Refutation
% See solution above
% 1.90/2.07  ------------ end of proof -------------
% 1.90/2.07  
% 1.90/2.07  
% 1.90/2.07  Search stopped by max_proofs option.
% 1.90/2.07  
% 1.90/2.07  
% 1.90/2.07  Search stopped by max_proofs option.
% 1.90/2.07  
% 1.90/2.07  ============ end of search ============
% 1.90/2.07  
% 1.90/2.07  -------------- statistics -------------
% 1.90/2.07  clauses given                 70
% 1.90/2.07  clauses generated            847
% 1.90/2.07  clauses kept                 366
% 1.90/2.07  clauses forward subsumed     623
% 1.90/2.07  clauses back subsumed          0
% 1.90/2.07  Kbytes malloced             3906
% 1.90/2.07  
% 1.90/2.07  ----------- times (seconds) -----------
% 1.90/2.07  user CPU time          0.02          (0 hr, 0 min, 0 sec)
% 1.90/2.07  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.90/2.07  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.90/2.07  
% 1.90/2.07  That finishes the proof of the theorem.
% 1.90/2.07  
% 1.90/2.07  Process 11182 finished Wed Jul 27 10:06:25 2022
% 1.90/2.07  Otter interrupted
% 1.90/2.07  PROOF FOUND
%------------------------------------------------------------------------------