TSTP Solution File: NUN072+2 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : NUN072+2 : TPTP v8.1.2. Released v7.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 12:51:51 EDT 2023

% Result   : Theorem 24.87s 3.60s
% Output   : Proof 24.87s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : NUN072+2 : TPTP v8.1.2. Released v7.3.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.35  % Computer : n019.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 300
% 0.14/0.35  % DateTime : Sun Aug 27 09:55:28 EDT 2023
% 0.14/0.35  % CPUTime  : 
% 24.87/3.60  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 24.87/3.60  
% 24.87/3.60  % SZS status Theorem
% 24.87/3.60  
% 24.87/3.62  % SZS output start Proof
% 24.87/3.62  Take the following subset of the input axioms:
% 24.87/3.63    fof(axiom_1, axiom, ?[Y24]: ![X19]: ((~r1(X19) & X19!=Y24) | (r1(X19) & X19=Y24))).
% 24.87/3.63    fof(axiom_1a, axiom, ![X1, X8]: ?[Y4]: (?[Y5]: (?[Y15]: (r2(X8, Y15) & r3(X1, Y15, Y5)) & Y5=Y4) & ?[Y7]: (r2(Y7, Y4) & r3(X1, X8, Y7)))).
% 24.87/3.63    fof(axiom_2, axiom, ![X11]: ?[Y21]: ![X12]: ((~r2(X11, X12) & X12!=Y21) | (r2(X11, X12) & X12=Y21))).
% 24.87/3.63    fof(axiom_2a, axiom, ![X2, X9]: ?[Y2]: (?[Y3]: (?[Y14]: (r2(X9, Y14) & r4(X2, Y14, Y3)) & Y3=Y2) & ?[Y6]: (r3(Y6, X2, Y2) & r4(X2, X9, Y6)))).
% 24.87/3.63    fof(axiom_3, axiom, ![X13, X14]: ?[Y22]: ![X15]: ((~r3(X13, X14, X15) & X15!=Y22) | (r3(X13, X14, X15) & X15=Y22))).
% 24.87/3.63    fof(axiom_4, axiom, ![X16, X17]: ?[Y23]: ![X18]: ((~r4(X16, X17, X18) & X18!=Y23) | (r4(X16, X17, X18) & X18=Y23))).
% 24.87/3.63    fof(axiom_4a, axiom, ![X4]: ?[Y9]: (?[Y16]: (r1(Y16) & r3(X4, Y16, Y9)) & Y9=X4)).
% 24.87/3.63    fof(axiom_5a, axiom, ![X5]: ?[Y8]: (?[Y17]: (r1(Y17) & r4(X5, Y17, Y8)) & ?[Y18]: (r1(Y18) & Y8=Y18))).
% 24.87/3.63    fof(axiom_7a, axiom, ![X7, Y10]: (![Y20]: (~r1(Y20) | Y20!=Y10) | ~r2(X7, Y10))).
% 24.87/3.63    fof(onetimestwoeqtwo, conjecture, ?[Y1]: (?[Y2_2]: (?[Y4_2]: (r2(Y4_2, Y2_2) & ?[Y7_2]: (r1(Y7_2) & r2(Y7_2, Y4_2))) & ?[Y5_2]: (r4(Y5_2, Y2_2, Y1) & ?[Y8_2]: (r1(Y8_2) & r2(Y8_2, Y5_2)))) & ?[Y3_2]: (Y1=Y3_2 & ?[Y6_2]: (r2(Y6_2, Y3_2) & ?[Y9_2]: (r1(Y9_2) & r2(Y9_2, Y6_2)))))).
% 24.87/3.63  
% 24.87/3.63  Now clausify the problem and encode Horn clauses using encoding 3 of
% 24.87/3.63  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 24.87/3.63  We repeatedly replace C & s=t => u=v by the two clauses:
% 24.87/3.63    fresh(y, y, x1...xn) = u
% 24.87/3.63    C => fresh(s, t, x1...xn) = v
% 24.87/3.63  where fresh is a fresh function symbol and x1..xn are the free
% 24.87/3.63  variables of u and v.
% 24.87/3.63  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 24.87/3.63  input problem has no model of domain size 1).
% 24.87/3.63  
% 24.87/3.63  The encoding turns the above axioms into the following unit equations and goals:
% 24.87/3.63  
% 24.87/3.63  Axiom 1 (axiom_4a): y9(X) = X.
% 24.87/3.63  Axiom 2 (axiom_5a): y8(X) = y18(X).
% 24.87/3.63  Axiom 3 (axiom_4a_1): r1(y16(X)) = true2.
% 24.87/3.63  Axiom 4 (axiom_5a_1): r1(y17(X)) = true2.
% 24.87/3.63  Axiom 5 (axiom_5a_2): r1(y18(X)) = true2.
% 24.87/3.63  Axiom 6 (axiom_1a): y5(X, Y) = y4(X, Y).
% 24.87/3.63  Axiom 7 (axiom_2a): y3(X, Y) = y2(X, Y).
% 24.87/3.63  Axiom 8 (axiom_1_1): fresh10(X, X, Y) = y24.
% 24.87/3.63  Axiom 9 (axiom_1): fresh9(X, X, Y) = true2.
% 24.87/3.63  Axiom 10 (axiom_1): fresh9(X, y24, X) = r1(X).
% 24.87/3.63  Axiom 11 (axiom_1a_1): r2(X, y15(Y, X)) = true2.
% 24.87/3.63  Axiom 12 (axiom_2a_1): r2(X, y14(Y, X)) = true2.
% 24.87/3.63  Axiom 13 (axiom_1_1): fresh10(r1(X), true2, X) = X.
% 24.87/3.63  Axiom 14 (axiom_2): fresh8(X, X, Y, Z) = true2.
% 24.87/3.63  Axiom 15 (axiom_2_1): fresh5(X, X, Y, Z) = Z.
% 24.87/3.63  Axiom 16 (axiom_1a_3): r3(X, Y, y7(X, Y)) = true2.
% 24.87/3.63  Axiom 17 (axiom_4a_2): r3(X, y16(X), y9(X)) = true2.
% 24.87/3.63  Axiom 18 (axiom_2a_3): r4(X, Y, y6(X, Y)) = true2.
% 24.87/3.63  Axiom 19 (axiom_5a_3): r4(X, y17(X), y8(X)) = true2.
% 24.87/3.63  Axiom 20 (axiom_2): fresh8(X, y21(Y), Y, X) = r2(Y, X).
% 24.87/3.63  Axiom 21 (axiom_3_1): fresh4(X, X, Y, Z, W) = W.
% 24.87/3.63  Axiom 22 (axiom_4_1): fresh3(X, X, Y, Z, W) = W.
% 24.87/3.63  Axiom 23 (axiom_1a_2): r2(y7(X, Y), y4(X, Y)) = true2.
% 24.87/3.63  Axiom 24 (axiom_2_1): fresh5(r2(X, Y), true2, X, Y) = y21(X).
% 24.87/3.63  Axiom 25 (axiom_1a_4): r3(X, y15(X, Y), y5(X, Y)) = true2.
% 24.87/3.63  Axiom 26 (axiom_2a_2): r3(y6(X, Y), X, y2(X, Y)) = true2.
% 24.87/3.63  Axiom 27 (axiom_2a_4): r4(X, y14(X, Y), y3(X, Y)) = true2.
% 24.87/3.63  Axiom 28 (axiom_3_1): fresh4(r3(X, Y, Z), true2, X, Y, Z) = y22(X, Y).
% 24.87/3.63  Axiom 29 (axiom_4_1): fresh3(r4(X, Y, Z), true2, X, Y, Z) = y23(X, Y).
% 24.87/3.63  
% 24.87/3.63  Lemma 30: r1(y24) = true2.
% 24.87/3.63  Proof:
% 24.87/3.63    r1(y24)
% 24.87/3.63  = { by axiom 10 (axiom_1) R->L }
% 24.87/3.63    fresh9(y24, y24, y24)
% 24.87/3.63  = { by axiom 9 (axiom_1) }
% 24.87/3.63    true2
% 24.87/3.63  
% 24.87/3.63  Lemma 31: y15(X, Y) = y21(Y).
% 24.87/3.63  Proof:
% 24.87/3.63    y15(X, Y)
% 24.87/3.63  = { by axiom 15 (axiom_2_1) R->L }
% 24.87/3.63    fresh5(true2, true2, Y, y15(X, Y))
% 24.87/3.63  = { by axiom 11 (axiom_1a_1) R->L }
% 24.87/3.63    fresh5(r2(Y, y15(X, Y)), true2, Y, y15(X, Y))
% 24.87/3.63  = { by axiom 24 (axiom_2_1) }
% 24.87/3.63    y21(Y)
% 24.87/3.63  
% 24.87/3.63  Lemma 32: y4(X, y24) = y21(X).
% 24.87/3.63  Proof:
% 24.87/3.63    y4(X, y24)
% 24.87/3.63  = { by axiom 15 (axiom_2_1) R->L }
% 24.87/3.63    fresh5(true2, true2, y7(X, y24), y4(X, y24))
% 24.87/3.63  = { by axiom 23 (axiom_1a_2) R->L }
% 24.87/3.63    fresh5(r2(y7(X, y24), y4(X, y24)), true2, y7(X, y24), y4(X, y24))
% 24.87/3.63  = { by axiom 24 (axiom_2_1) }
% 24.87/3.63    y21(y7(X, y24))
% 24.87/3.63  = { by axiom 21 (axiom_3_1) R->L }
% 24.87/3.63    y21(fresh4(true2, true2, X, y24, y7(X, y24)))
% 24.87/3.63  = { by axiom 16 (axiom_1a_3) R->L }
% 24.87/3.63    y21(fresh4(r3(X, y24, y7(X, y24)), true2, X, y24, y7(X, y24)))
% 24.87/3.63  = { by axiom 28 (axiom_3_1) }
% 24.87/3.63    y21(y22(X, y24))
% 24.87/3.63  = { by axiom 8 (axiom_1_1) R->L }
% 24.87/3.63    y21(y22(X, fresh10(true2, true2, y16(X))))
% 24.87/3.63  = { by axiom 3 (axiom_4a_1) R->L }
% 24.87/3.63    y21(y22(X, fresh10(r1(y16(X)), true2, y16(X))))
% 24.87/3.63  = { by axiom 13 (axiom_1_1) }
% 24.87/3.63    y21(y22(X, y16(X)))
% 24.87/3.63  = { by axiom 28 (axiom_3_1) R->L }
% 24.87/3.63    y21(fresh4(r3(X, y16(X), X), true2, X, y16(X), X))
% 24.87/3.63  = { by axiom 1 (axiom_4a) R->L }
% 24.87/3.63    y21(fresh4(r3(X, y16(X), y9(X)), true2, X, y16(X), X))
% 24.87/3.63  = { by axiom 17 (axiom_4a_2) }
% 24.87/3.63    y21(fresh4(true2, true2, X, y16(X), X))
% 24.87/3.63  = { by axiom 21 (axiom_3_1) }
% 24.87/3.63    y21(X)
% 24.87/3.63  
% 24.87/3.63  Lemma 33: y6(X, Y) = y23(X, Y).
% 24.87/3.63  Proof:
% 24.87/3.63    y6(X, Y)
% 24.87/3.63  = { by axiom 22 (axiom_4_1) R->L }
% 24.87/3.63    fresh3(true2, true2, X, Y, y6(X, Y))
% 24.87/3.63  = { by axiom 18 (axiom_2a_3) R->L }
% 24.87/3.63    fresh3(r4(X, Y, y6(X, Y)), true2, X, Y, y6(X, Y))
% 24.87/3.63  = { by axiom 29 (axiom_4_1) }
% 24.87/3.63    y23(X, Y)
% 24.87/3.63  
% 24.87/3.63  Lemma 34: r2(X, y21(X)) = true2.
% 24.87/3.63  Proof:
% 24.87/3.63    r2(X, y21(X))
% 24.87/3.63  = { by axiom 20 (axiom_2) R->L }
% 24.87/3.63    fresh8(y21(X), y21(X), X, y21(X))
% 24.87/3.63  = { by axiom 14 (axiom_2) }
% 24.87/3.63    true2
% 24.87/3.63  
% 24.87/3.63  Lemma 35: y22(X, y21(Y)) = y4(X, Y).
% 24.87/3.63  Proof:
% 24.87/3.63    y22(X, y21(Y))
% 24.87/3.63  = { by lemma 31 R->L }
% 24.87/3.63    y22(X, y15(X, Y))
% 24.87/3.63  = { by axiom 28 (axiom_3_1) R->L }
% 24.87/3.63    fresh4(r3(X, y15(X, Y), y4(X, Y)), true2, X, y15(X, Y), y4(X, Y))
% 24.87/3.63  = { by axiom 6 (axiom_1a) R->L }
% 24.87/3.63    fresh4(r3(X, y15(X, Y), y5(X, Y)), true2, X, y15(X, Y), y4(X, Y))
% 24.87/3.63  = { by axiom 25 (axiom_1a_4) }
% 24.87/3.63    fresh4(true2, true2, X, y15(X, Y), y4(X, Y))
% 24.87/3.63  = { by axiom 21 (axiom_3_1) }
% 24.87/3.63    y4(X, Y)
% 24.87/3.63  
% 24.87/3.63  Lemma 36: y23(X, y21(Y)) = y2(X, Y).
% 24.87/3.63  Proof:
% 24.87/3.63    y23(X, y21(Y))
% 24.87/3.63  = { by axiom 24 (axiom_2_1) R->L }
% 24.87/3.63    y23(X, fresh5(r2(Y, y14(X, Y)), true2, Y, y14(X, Y)))
% 24.87/3.63  = { by axiom 12 (axiom_2a_1) }
% 24.87/3.63    y23(X, fresh5(true2, true2, Y, y14(X, Y)))
% 24.87/3.63  = { by axiom 15 (axiom_2_1) }
% 24.87/3.63    y23(X, y14(X, Y))
% 24.87/3.63  = { by axiom 29 (axiom_4_1) R->L }
% 24.87/3.63    fresh3(r4(X, y14(X, Y), y2(X, Y)), true2, X, y14(X, Y), y2(X, Y))
% 24.87/3.63  = { by axiom 7 (axiom_2a) R->L }
% 24.87/3.63    fresh3(r4(X, y14(X, Y), y3(X, Y)), true2, X, y14(X, Y), y2(X, Y))
% 24.87/3.63  = { by axiom 27 (axiom_2a_4) }
% 24.87/3.63    fresh3(true2, true2, X, y14(X, Y), y2(X, Y))
% 24.87/3.63  = { by axiom 22 (axiom_4_1) }
% 24.87/3.63    y2(X, Y)
% 24.87/3.63  
% 24.87/3.63  Lemma 37: y22(y23(X, Y), X) = y2(X, Y).
% 24.87/3.63  Proof:
% 24.87/3.63    y22(y23(X, Y), X)
% 24.87/3.63  = { by lemma 33 R->L }
% 24.87/3.63    y22(y6(X, Y), X)
% 24.87/3.63  = { by axiom 28 (axiom_3_1) R->L }
% 24.87/3.63    fresh4(r3(y6(X, Y), X, y2(X, Y)), true2, y6(X, Y), X, y2(X, Y))
% 24.87/3.63  = { by axiom 26 (axiom_2a_2) }
% 24.87/3.63    fresh4(true2, true2, y6(X, Y), X, y2(X, Y))
% 24.87/3.63  = { by axiom 21 (axiom_3_1) }
% 24.87/3.63    y2(X, Y)
% 24.87/3.63  
% 24.87/3.63  Goal 1 (onetimestwoeqtwo): tuple(r1(X), r1(Y), r1(Z), r2(W, V), r2(X, W), r2(Y, U), r2(T, S), r2(Z, T), r4(U, V, S)) = tuple(true2, true2, true2, true2, true2, true2, true2, true2, true2).
% 24.87/3.63  The goal is true when:
% 24.87/3.63    X = y24
% 24.87/3.63    Y = y24
% 24.87/3.63    Z = y24
% 24.87/3.63    W = y21(y24)
% 24.87/3.63    V = y15(X, y21(y24))
% 24.87/3.63    U = y21(y24)
% 24.87/3.63    T = y23(y21(y24), y21(y24))
% 24.87/3.63    S = y6(y21(y24), y15(X, y21(y24)))
% 24.87/3.63  
% 24.87/3.63  Proof:
% 24.87/3.63    tuple(r1(y24), r1(y24), r1(y24), r2(y21(y24), y15(X, y21(y24))), r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y6(y21(y24), y15(X, y21(y24)))), r2(y24, y23(y21(y24), y21(y24))), r4(y21(y24), y15(X, y21(y24)), y6(y21(y24), y15(X, y21(y24)))))
% 24.87/3.63  = { by axiom 18 (axiom_2a_3) }
% 24.87/3.63    tuple(r1(y24), r1(y24), r1(y24), r2(y21(y24), y15(X, y21(y24))), r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y6(y21(y24), y15(X, y21(y24)))), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 33 }
% 24.87/3.63    tuple(r1(y24), r1(y24), r1(y24), r2(y21(y24), y15(X, y21(y24))), r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y23(y21(y24), y15(X, y21(y24)))), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by axiom 11 (axiom_1a_1) }
% 24.87/3.63    tuple(r1(y24), r1(y24), r1(y24), true2, r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y23(y21(y24), y15(X, y21(y24)))), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 31 }
% 24.87/3.63    tuple(r1(y24), r1(y24), r1(y24), true2, r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y23(y21(y24), y21(y21(y24)))), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 36 }
% 24.87/3.63    tuple(r1(y24), r1(y24), r1(y24), true2, r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y2(y21(y24), y21(y24))), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 30 }
% 24.87/3.63    tuple(true2, r1(y24), r1(y24), true2, r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y2(y21(y24), y21(y24))), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 30 }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y2(y21(y24), y21(y24))), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 37 R->L }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y22(y23(y21(y24), y21(y24)), y21(y24))), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 35 }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y4(y23(y21(y24), y21(y24)), y24)), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 32 }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, r2(y24, y21(y24)), r2(y24, y21(y24)), r2(y23(y21(y24), y21(y24)), y21(y23(y21(y24), y21(y24)))), r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 34 }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, r2(y24, y21(y24)), r2(y24, y21(y24)), true2, r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 34 }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, r2(y24, y21(y24)), true2, true2, r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 34 }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y23(y21(y24), y21(y24))), true2)
% 24.87/3.63  = { by lemma 36 }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y2(y21(y24), y24)), true2)
% 24.87/3.63  = { by lemma 37 R->L }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(y23(y21(y24), y24), y21(y24))), true2)
% 24.87/3.63  = { by axiom 8 (axiom_1_1) R->L }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(y23(y21(y24), fresh10(true2, true2, y17(y21(y24)))), y21(y24))), true2)
% 24.87/3.63  = { by axiom 4 (axiom_5a_1) R->L }
% 24.87/3.63    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(y23(y21(y24), fresh10(r1(y17(y21(y24))), true2, y17(y21(y24)))), y21(y24))), true2)
% 24.87/3.63  = { by axiom 13 (axiom_1_1) }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(y23(y21(y24), y17(y21(y24))), y21(y24))), true2)
% 24.87/3.64  = { by axiom 29 (axiom_4_1) R->L }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(fresh3(r4(y21(y24), y17(y21(y24)), y8(y21(y24))), true2, y21(y24), y17(y21(y24)), y8(y21(y24))), y21(y24))), true2)
% 24.87/3.64  = { by axiom 19 (axiom_5a_3) }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(fresh3(true2, true2, y21(y24), y17(y21(y24)), y8(y21(y24))), y21(y24))), true2)
% 24.87/3.64  = { by axiom 22 (axiom_4_1) }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(y8(y21(y24)), y21(y24))), true2)
% 24.87/3.64  = { by axiom 13 (axiom_1_1) R->L }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(fresh10(r1(y8(y21(y24))), true2, y8(y21(y24))), y21(y24))), true2)
% 24.87/3.64  = { by axiom 2 (axiom_5a) }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(fresh10(r1(y18(y21(y24))), true2, y8(y21(y24))), y21(y24))), true2)
% 24.87/3.64  = { by axiom 5 (axiom_5a_2) }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(fresh10(true2, true2, y8(y21(y24))), y21(y24))), true2)
% 24.87/3.64  = { by axiom 8 (axiom_1_1) }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y22(y24, y21(y24))), true2)
% 24.87/3.64  = { by lemma 35 }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y4(y24, y24)), true2)
% 24.87/3.64  = { by lemma 32 }
% 24.87/3.64    tuple(true2, true2, r1(y24), true2, true2, true2, true2, r2(y24, y21(y24)), true2)
% 24.87/3.64  = { by lemma 30 }
% 24.87/3.64    tuple(true2, true2, true2, true2, true2, true2, true2, r2(y24, y21(y24)), true2)
% 24.87/3.64  = { by lemma 34 }
% 24.87/3.64    tuple(true2, true2, true2, true2, true2, true2, true2, true2, true2)
% 24.87/3.64  % SZS output end Proof
% 24.87/3.64  
% 24.87/3.64  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------