TSTP Solution File: NUM848+2 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : NUM848+2 : TPTP v8.1.0. Released v4.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:10:05 EDT 2022

% Result   : Theorem 2.00s 2.18s
% Output   : Refutation 2.00s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    5
%            Number of leaves      :    7
% Syntax   : Number of clauses     :   15 (  15 unt;   0 nHn;  10 RR)
%            Number of literals    :   15 (  14 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :    7 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)) != vplus(vmul(vd436,vd437),vmul(vd436,vsucc(vd439))),
    file('NUM848+2.p',unknown),
    [] ).

cnf(2,plain,
    vplus(vmul(vd436,vd437),vmul(vd436,vsucc(vd439))) != vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(4,axiom,
    A = A,
    file('NUM848+2.p',unknown),
    [] ).

cnf(6,axiom,
    vplus(vplus(vmul(vd436,vd437),vmul(vd436,vd439)),vd436) = vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)),
    file('NUM848+2.p',unknown),
    [] ).

cnf(7,axiom,
    vplus(vmul(vd436,vplus(vd437,vd439)),vd436) = vplus(vplus(vmul(vd436,vd437),vmul(vd436,vd439)),vd436),
    file('NUM848+2.p',unknown),
    [] ).

cnf(9,plain,
    vplus(vmul(vd436,vplus(vd437,vd439)),vd436) = vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)),
    inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[7]),6]),
    [iquote('copy,7,demod,6')] ).

cnf(10,axiom,
    vmul(vd436,vsucc(vplus(vd437,vd439))) = vplus(vmul(vd436,vplus(vd437,vd439)),vd436),
    file('NUM848+2.p',unknown),
    [] ).

cnf(11,plain,
    vmul(vd436,vsucc(vplus(vd437,vd439))) = vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)),
    inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10]),9]),
    [iquote('copy,10,demod,9')] ).

cnf(24,axiom,
    vmul(A,vsucc(B)) = vplus(vmul(A,B),A),
    file('NUM848+2.p',unknown),
    [] ).

cnf(31,axiom,
    vplus(v1,A) = vsucc(A),
    file('NUM848+2.p',unknown),
    [] ).

cnf(33,plain,
    vsucc(A) = vplus(v1,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[31])]),
    [iquote('copy,31,flip.1')] ).

cnf(41,plain,
    vplus(vmul(A,B),A) = vmul(A,vplus(v1,B)),
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[24])]),33]),
    [iquote('copy,24,flip.1,demod,33')] ).

cnf(43,plain,
    vplus(vmul(vd436,vd437),vmul(vd436,vplus(v1,vd439))) = vmul(vd436,vplus(v1,vplus(vd437,vd439))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[11]),33,41])]),
    [iquote('back_demod,11,demod,33,41,flip.1')] ).

cnf(46,plain,
    vmul(vd436,vplus(v1,vplus(vd437,vd439))) != vmul(vd436,vplus(v1,vplus(vd437,vd439))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[2]),33,43,41,43]),
    [iquote('back_demod,2,demod,33,43,41,43')] ).

cnf(47,plain,
    $false,
    inference(binary,[status(thm)],[46,4]),
    [iquote('binary,46.1,4.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : NUM848+2 : TPTP v8.1.0. Released v4.1.0.
% 0.07/0.13  % Command  : otter-tptp-script %s
% 0.14/0.34  % Computer : n025.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 300
% 0.14/0.34  % DateTime : Wed Jul 27 09:55:30 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 2.00/2.18  ----- Otter 3.3f, August 2004 -----
% 2.00/2.18  The process was started by sandbox2 on n025.cluster.edu,
% 2.00/2.18  Wed Jul 27 09:55:30 2022
% 2.00/2.18  The command was "./otter".  The process ID is 18330.
% 2.00/2.18  
% 2.00/2.18  set(prolog_style_variables).
% 2.00/2.18  set(auto).
% 2.00/2.18     dependent: set(auto1).
% 2.00/2.18     dependent: set(process_input).
% 2.00/2.18     dependent: clear(print_kept).
% 2.00/2.18     dependent: clear(print_new_demod).
% 2.00/2.18     dependent: clear(print_back_demod).
% 2.00/2.18     dependent: clear(print_back_sub).
% 2.00/2.18     dependent: set(control_memory).
% 2.00/2.18     dependent: assign(max_mem, 12000).
% 2.00/2.18     dependent: assign(pick_given_ratio, 4).
% 2.00/2.18     dependent: assign(stats_level, 1).
% 2.00/2.18     dependent: assign(max_seconds, 10800).
% 2.00/2.18  clear(print_given).
% 2.00/2.18  
% 2.00/2.18  formula_list(usable).
% 2.00/2.18  all A (A=A).
% 2.00/2.18  vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436))!=vplus(vmul(vd436,vd437),vmul(vd436,vsucc(vd439))).
% 2.00/2.18  vplus(vplus(vmul(vd436,vd437),vmul(vd436,vd439)),vd436)=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  vplus(vmul(vd436,vplus(vd437,vd439)),vd436)=vplus(vplus(vmul(vd436,vd437),vmul(vd436,vd439)),vd436).
% 2.00/2.18  vmul(vd436,vsucc(vplus(vd437,vd439)))=vplus(vmul(vd436,vplus(vd437,vd439)),vd436).
% 2.00/2.18  vmul(vd436,vplus(vd437,vsucc(vd439)))=vmul(vd436,vsucc(vplus(vd437,vd439))).
% 2.00/2.18  vmul(vd436,vplus(vd437,vd439))=vplus(vmul(vd436,vd437),vmul(vd436,vd439)).
% 2.00/2.18  vplus(vmul(vd436,vd437),vd436)=vplus(vmul(vd436,vd437),vmul(vd436,v1)).
% 2.00/2.18  vmul(vd436,vsucc(vd437))=vplus(vmul(vd436,vd437),vd436).
% 2.00/2.18  all Vd396 Vd397 (vmul(Vd396,vsucc(Vd397))=vplus(vmul(Vd396,Vd397),Vd396)&vmul(Vd396,v1)=Vd396).
% 2.00/2.18  all Vd386 Vd387 (less(Vd386,vplus(Vd387,v1))->le_q(Vd386,Vd387)).
% 2.00/2.18  all Vd78 Vd79 (vplus(Vd79,Vd78)=vplus(Vd78,Vd79)).
% 2.00/2.18  all Vd68 Vd69 (vplus(vsucc(Vd68),Vd69)=vsucc(vplus(Vd68,Vd69))).
% 2.00/2.18  all Vd59 (vplus(v1,Vd59)=vsucc(Vd59)).
% 2.00/2.18  all Vd46 Vd47 Vd48 (vplus(vplus(Vd46,Vd47),Vd48)=vplus(Vd46,vplus(Vd47,Vd48))).
% 2.00/2.18  all Vd42 Vd43 (vplus(Vd42,vsucc(Vd43))=vsucc(vplus(Vd42,Vd43))&vplus(Vd42,v1)=vsucc(Vd42)).
% 2.00/2.18  all Vd24 (Vd24!=v1->Vd24=vsucc(vskolem2(Vd24))).
% 2.00/2.18  end_of_list.
% 2.00/2.18  
% 2.00/2.18  -------> usable clausifies to:
% 2.00/2.18  
% 2.00/2.18  list(usable).
% 2.00/2.18  0 [] A=A.
% 2.00/2.18  0 [] vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436))!=vplus(vmul(vd436,vd437),vmul(vd436,vsucc(vd439))).
% 2.00/2.18  0 [] vplus(vplus(vmul(vd436,vd437),vmul(vd436,vd439)),vd436)=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  0 [] vplus(vmul(vd436,vplus(vd437,vd439)),vd436)=vplus(vplus(vmul(vd436,vd437),vmul(vd436,vd439)),vd436).
% 2.00/2.18  0 [] vmul(vd436,vsucc(vplus(vd437,vd439)))=vplus(vmul(vd436,vplus(vd437,vd439)),vd436).
% 2.00/2.18  0 [] vmul(vd436,vplus(vd437,vsucc(vd439)))=vmul(vd436,vsucc(vplus(vd437,vd439))).
% 2.00/2.18  0 [] vmul(vd436,vplus(vd437,vd439))=vplus(vmul(vd436,vd437),vmul(vd436,vd439)).
% 2.00/2.18  0 [] vplus(vmul(vd436,vd437),vd436)=vplus(vmul(vd436,vd437),vmul(vd436,v1)).
% 2.00/2.18  0 [] vmul(vd436,vsucc(vd437))=vplus(vmul(vd436,vd437),vd436).
% 2.00/2.18  0 [] vmul(Vd396,vsucc(Vd397))=vplus(vmul(Vd396,Vd397),Vd396).
% 2.00/2.18  0 [] vmul(Vd396,v1)=Vd396.
% 2.00/2.18  0 [] -less(Vd386,vplus(Vd387,v1))|le_q(Vd386,Vd387).
% 2.00/2.18  0 [] vplus(Vd79,Vd78)=vplus(Vd78,Vd79).
% 2.00/2.18  0 [] vplus(vsucc(Vd68),Vd69)=vsucc(vplus(Vd68,Vd69)).
% 2.00/2.18  0 [] vplus(v1,Vd59)=vsucc(Vd59).
% 2.00/2.18  0 [] vplus(vplus(Vd46,Vd47),Vd48)=vplus(Vd46,vplus(Vd47,Vd48)).
% 2.00/2.18  0 [] vplus(Vd42,vsucc(Vd43))=vsucc(vplus(Vd42,Vd43)).
% 2.00/2.18  0 [] vplus(Vd42,v1)=vsucc(Vd42).
% 2.00/2.18  0 [] Vd24=v1|Vd24=vsucc(vskolem2(Vd24)).
% 2.00/2.18  end_of_list.
% 2.00/2.18  
% 2.00/2.18  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=2.
% 2.00/2.18  
% 2.00/2.18  This ia a non-Horn set with equality.  The strategy will be
% 2.00/2.18  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 2.00/2.18  deletion, with positive clauses in sos and nonpositive
% 2.00/2.18  clauses in usable.
% 2.00/2.18  
% 2.00/2.18     dependent: set(knuth_bendix).
% 2.00/2.18     dependent: set(anl_eq).
% 2.00/2.18     dependent: set(para_from).
% 2.00/2.18     dependent: set(para_into).
% 2.00/2.18     dependent: clear(para_from_right).
% 2.00/2.18     dependent: clear(para_into_right).
% 2.00/2.18     dependent: set(para_from_vars).
% 2.00/2.18     dependent: set(eq_units_both_ways).
% 2.00/2.18     dependent: set(dynamic_demod_all).
% 2.00/2.18     dependent: set(dynamic_demod).
% 2.00/2.18     dependent: set(order_eq).
% 2.00/2.18     dependent: set(back_demod).
% 2.00/2.18     dependent: set(lrpo).
% 2.00/2.18     dependent: set(hyper_res).
% 2.00/2.18     dependent: set(unit_deletion).
% 2.00/2.18     dependent: set(factor).
% 2.00/2.18  
% 2.00/2.18  ------------> process usable:
% 2.00/2.18  ** KEPT (pick-wt=18): 2 [copy,1,flip.1] vplus(vmul(vd436,vd437),vmul(vd436,vsucc(vd439)))!=vplus(vmul(vd436,vd437),vplus(vmul(vd
% 2.00/2.18  -------- PROOF -------- 
% 2.00/2.18  436,vd439),vd436)).
% 2.00/2.18  ** KEPT (pick-wt=8): 3 [] -less(A,vplus(B,v1))|le_q(A,B).
% 2.00/2.18  
% 2.00/2.18  ------------> process sos:
% 2.00/2.18  ** KEPT (pick-wt=3): 4 [] A=A.
% 2.00/2.18  ** KEPT (pick-wt=19): 5 [] vplus(vplus(vmul(vd436,vd437),vmul(vd436,vd439)),vd436)=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  ---> New Demodulator: 6 [new_demod,5] vplus(vplus(vmul(vd436,vd437),vmul(vd436,vd439)),vd436)=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  ** KEPT (pick-wt=17): 8 [copy,7,demod,6] vplus(vmul(vd436,vplus(vd437,vd439)),vd436)=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  ---> New Demodulator: 9 [new_demod,8] vplus(vmul(vd436,vplus(vd437,vd439)),vd436)=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  ** KEPT (pick-wt=16): 11 [copy,10,demod,9] vmul(vd436,vsucc(vplus(vd437,vd439)))=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  ---> New Demodulator: 12 [new_demod,11] vmul(vd436,vsucc(vplus(vd437,vd439)))=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  ** KEPT (pick-wt=16): 14 [copy,13,demod,12] vmul(vd436,vplus(vd437,vsucc(vd439)))=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  ---> New Demodulator: 15 [new_demod,14] vmul(vd436,vplus(vd437,vsucc(vd439)))=vplus(vmul(vd436,vd437),vplus(vmul(vd436,vd439),vd436)).
% 2.00/2.18  ** KEPT (pick-wt=13): 17 [copy,16,flip.1] vplus(vmul(vd436,vd437),vmul(vd436,vd439))=vmul(vd436,vplus(vd437,vd439)).
% 2.00/2.18  ---> New Demodulator: 18 [new_demod,17] vplus(vmul(vd436,vd437),vmul(vd436,vd439))=vmul(vd436,vplus(vd437,vd439)).
% 2.00/2.18  ** KEPT (pick-wt=13): 20 [copy,19,flip.1] vplus(vmul(vd436,vd437),vmul(vd436,v1))=vplus(vmul(vd436,vd437),vd436).
% 2.00/2.18  ---> New Demodulator: 21 [new_demod,20] vplus(vmul(vd436,vd437),vmul(vd436,v1))=vplus(vmul(vd436,vd437),vd436).
% 2.00/2.18  ** KEPT (pick-wt=10): 22 [] vmul(vd436,vsucc(vd437))=vplus(vmul(vd436,vd437),vd436).
% 2.00/2.18  ---> New Demodulator: 23 [new_demod,22] vmul(vd436,vsucc(vd437))=vplus(vmul(vd436,vd437),vd436).
% 2.00/2.18  ** KEPT (pick-wt=10): 24 [] vmul(A,vsucc(B))=vplus(vmul(A,B),A).
% 2.00/2.18  ** KEPT (pick-wt=5): 25 [] vmul(A,v1)=A.
% 2.00/2.18  ---> New Demodulator: 26 [new_demod,25] vmul(A,v1)=A.
% 2.00/2.18  ** KEPT (pick-wt=7): 27 [] vplus(A,B)=vplus(B,A).
% 2.00/2.18  ** KEPT (pick-wt=9): 29 [copy,28,flip.1] vsucc(vplus(A,B))=vplus(vsucc(A),B).
% 2.00/2.18  ---> New Demodulator: 30 [new_demod,29] vsucc(vplus(A,B))=vplus(vsucc(A),B).
% 2.00/2.18  ** KEPT (pick-wt=6): 32 [copy,31,flip.1] vsucc(A)=vplus(v1,A).
% 2.00/2.18  ---> New Demodulator: 33 [new_demod,32] vsucc(A)=vplus(v1,A).
% 2.00/2.18  ** KEPT (pick-wt=11): 34 [] vplus(vplus(A,B),C)=vplus(A,vplus(B,C)).
% 2.00/2.18  ---> New Demodulator: 35 [new_demod,34] vplus(vplus(A,B),C)=vplus(A,vplus(B,C)).
% 2.00/2.18  ** KEPT (pick-wt=11): 37 [copy,36,demod,33,33] vplus(A,vplus(v1,B))=vplus(v1,vplus(A,B)).
% 2.00/2.18    Following clause subsumed by 27 during input processing: 0 [demod,33] vplus(A,v1)=vplus(v1,A).
% 2.00/2.18  ** KEPT (pick-wt=9): 39 [copy,38,demod,33,flip.2] A=v1|vplus(v1,vskolem2(A))=A.
% 2.00/2.18    Following clause subsumed by 4 during input processing: 0 [copy,4,flip.1] A=A.
% 2.00/2.18  >>>> Starting back demodulation with 6.
% 2.00/2.18  >>>> Starting back demodulation with 9.
% 2.00/2.18  >>>> Starting back demodulation with 12.
% 2.00/2.18  >>>> Starting back demodulation with 15.
% 2.00/2.18  >>>> Starting back demodulation with 18.
% 2.00/2.18      >> back demodulating 5 with 18.
% 2.00/2.18  >>>> Starting back demodulation with 21.
% 2.00/2.18  >>>> Starting back demodulation with 23.
% 2.00/2.18  ** KEPT (pick-wt=11): 40 [copy,24,flip.1,demod,33] vplus(vmul(A,B),A)=vmul(A,vplus(v1,B)).
% 2.00/2.18  ---> New Demodulator: 41 [new_demod,40] vplus(vmul(A,B),A)=vmul(A,vplus(v1,B)).
% 2.00/2.18  24 back subsumes 22.
% 2.00/2.18  >>>> Starting back demodulation with 26.
% 2.00/2.18      >> back demodulating 20 with 26.
% 2.00/2.18    Following clause subsumed by 27 during input processing: 0 [copy,27,flip.1] vplus(A,B)=vplus(B,A).
% 2.00/2.18  >>>> Starting back demodulation with 30.
% 2.00/2.18      >> back demodulating 11 with 30.
% 2.00/2.18  >>>> Starting back demodulation with 33.
% 2.00/2.18      >> back demodulating 29 with 33.
% 2.00/2.18      >> back demodulating 24 with 33.
% 2.00/2.18      >> back demodulating 14 with 33.
% 2.00/2.18      >> back demodulating 2 with 33.
% 2.00/2.18  
% 2.00/2.18  ----> UNIT CONFLICT at   0.00 sec ----> 47 [binary,46.1,4.1] $F.
% 2.00/2.18  
% 2.00/2.18  Length of proof is 7.  Level of proof is 4.
% 2.00/2.18  
% 2.00/2.18  ---------------- PROOF ----------------
% 2.00/2.18  % SZS status Theorem
% 2.00/2.18  % SZS output start Refutation
% See solution above
% 2.00/2.18  ------------ end of proof -------------
% 2.00/2.18  
% 2.00/2.18  
% 2.00/2.18  Search stopped by max_proofs option.
% 2.00/2.18  
% 2.00/2.18  
% 2.00/2.18  Search stopped by max_proofs option.
% 2.00/2.18  
% 2.00/2.18  ============ end of search ============
% 2.00/2.18  
% 2.00/2.18  -------------- statistics -------------
% 2.00/2.18  clauses given                  0
% 2.00/2.18  clauses generated              0
% 2.00/2.18  clauses kept                  22
% 2.00/2.18  clauses forward subsumed       7
% 2.00/2.18  clauses back subsumed          1
% 2.00/2.18  Kbytes malloced              976
% 2.00/2.18  
% 2.00/2.18  ----------- times (seconds) -----------
% 2.00/2.18  user CPU time          0.00          (0 hr, 0 min, 0 sec)
% 2.00/2.18  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.00/2.18  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.00/2.18  
% 2.00/2.18  That finishes the proof of the theorem.
% 2.00/2.18  
% 2.00/2.18  Process 18330 finished Wed Jul 27 09:55:32 2022
% 2.00/2.18  Otter interrupted
% 2.00/2.18  PROOF FOUND
%------------------------------------------------------------------------------