TSTP Solution File: NUM587+1 by Zipperpin---2.1.9999

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Zipperpin---2.1.9999
% Problem  : NUM587+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : NO INFORMATION
% Format   : NO INFORMATION
% Command  : python3 /export/starexec/sandbox/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox/tmp/tmp.nItygs622Q true

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 12:42:33 EDT 2023

% Result   : Theorem 1.41s 0.93s
% Output   : Refutation 1.41s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    6
%            Number of leaves      :   28
% Syntax   : Number of formulae    :   48 (  18 unt;  22 typ;   0 def)
%            Number of atoms       :   41 (   9 equ;   0 cnn)
%            Maximal formula atoms :    5 (   1 avg)
%            Number of connectives :  206 (  11   ~;   6   |;   6   &; 180   @)
%                                         (   1 <=>;   2  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   5 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   19 (  19   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   24 (  22 usr;  11 con; 0-2 aty)
%            Number of variables   :    8 (   0   ^;   8   !;   0   ?;   8   :)

% Comments : 
%------------------------------------------------------------------------------
thf(aSet0_type,type,
    aSet0: $i > $o ).

thf(szDzozmdt0_type,type,
    szDzozmdt0: $i > $i ).

thf(xi_type,type,
    xi: $i ).

thf(aFunction0_type,type,
    aFunction0: $i > $o ).

thf(slbdtsldtrb0_type,type,
    slbdtsldtrb0: $i > $i > $i ).

thf(xC_type,type,
    xC: $i ).

thf(xx_type,type,
    xx: $i ).

thf(sdtlpdtrp0_type,type,
    sdtlpdtrp0: $i > $i > $i ).

thf(xN_type,type,
    xN: $i ).

thf(xc_type,type,
    xc: $i ).

thf(xS_type,type,
    xS: $i ).

thf(xQ_type,type,
    xQ: $i ).

thf(sdtmndt0_type,type,
    sdtmndt0: $i > $i > $i ).

thf(szmzizndt0_type,type,
    szmzizndt0: $i > $i ).

thf(aSubsetOf0_type,type,
    aSubsetOf0: $i > $i > $o ).

thf(isFinite0_type,type,
    isFinite0: $i > $o ).

thf(sdtpldt0_type,type,
    sdtpldt0: $i > $i > $i ).

thf(xT_type,type,
    xT: $i ).

thf(xK_type,type,
    xK: $i ).

thf(aElementOf0_type,type,
    aElementOf0: $i > $i > $o ).

thf(xk_type,type,
    xk: $i ).

thf(sdtlcdtrc0_type,type,
    sdtlcdtrc0: $i > $i > $i ).

thf(m__3453,axiom,
    ( ( aSubsetOf0 @ ( sdtlcdtrc0 @ xc @ ( szDzozmdt0 @ xc ) ) @ xT )
    & ( ( szDzozmdt0 @ xc )
      = ( slbdtsldtrb0 @ xS @ xK ) )
    & ( aFunction0 @ xc ) ) ).

thf(zip_derived_cl102,plain,
    aSubsetOf0 @ ( sdtlcdtrc0 @ xc @ ( szDzozmdt0 @ xc ) ) @ xT,
    inference(cnf,[status(esa)],[m__3453]) ).

thf(zip_derived_cl103,plain,
    ( ( szDzozmdt0 @ xc )
    = ( slbdtsldtrb0 @ xS @ xK ) ),
    inference(cnf,[status(esa)],[m__3453]) ).

thf(zip_derived_cl212,plain,
    aSubsetOf0 @ ( sdtlcdtrc0 @ xc @ ( slbdtsldtrb0 @ xS @ xK ) ) @ xT,
    inference(demod,[status(thm)],[zip_derived_cl102,zip_derived_cl103]) ).

thf(mDefSub,axiom,
    ! [W0: $i] :
      ( ( aSet0 @ W0 )
     => ! [W1: $i] :
          ( ( aSubsetOf0 @ W1 @ W0 )
        <=> ( ( aSet0 @ W1 )
            & ! [W2: $i] :
                ( ( aElementOf0 @ W2 @ W1 )
               => ( aElementOf0 @ W2 @ W0 ) ) ) ) ) ).

thf(zip_derived_cl9,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ~ ( aSubsetOf0 @ X0 @ X1 )
      | ( aElementOf0 @ X2 @ X1 )
      | ~ ( aElementOf0 @ X2 @ X0 )
      | ~ ( aSet0 @ X1 ) ),
    inference(cnf,[status(esa)],[mDefSub]) ).

thf(zip_derived_cl240,plain,
    ! [X0: $i] :
      ( ~ ( aSet0 @ xT )
      | ~ ( aElementOf0 @ X0 @ ( sdtlcdtrc0 @ xc @ ( slbdtsldtrb0 @ xS @ xK ) ) )
      | ( aElementOf0 @ X0 @ xT ) ),
    inference('sup-',[status(thm)],[zip_derived_cl212,zip_derived_cl9]) ).

thf(m__3291,axiom,
    ( ( isFinite0 @ xT )
    & ( aSet0 @ xT ) ) ).

thf(zip_derived_cl98,plain,
    aSet0 @ xT,
    inference(cnf,[status(esa)],[m__3291]) ).

thf(zip_derived_cl243,plain,
    ! [X0: $i] :
      ( ~ ( aElementOf0 @ X0 @ ( sdtlcdtrc0 @ xc @ ( slbdtsldtrb0 @ xS @ xK ) ) )
      | ( aElementOf0 @ X0 @ xT ) ),
    inference(demod,[status(thm)],[zip_derived_cl240,zip_derived_cl98]) ).

thf(m__,conjecture,
    aElementOf0 @ xx @ xT ).

thf(zf_stmt_0,negated_conjecture,
    ~ ( aElementOf0 @ xx @ xT ),
    inference('cnf.neg',[status(esa)],[m__]) ).

thf(zip_derived_cl134,plain,
    ~ ( aElementOf0 @ xx @ xT ),
    inference(cnf,[status(esa)],[zf_stmt_0]) ).

thf(m__4237,axiom,
    ( ( ( sdtlpdtrp0 @ ( sdtlpdtrp0 @ xC @ xi ) @ xQ )
      = xx )
    & ( aElementOf0 @ xQ @ ( slbdtsldtrb0 @ ( sdtmndt0 @ ( sdtlpdtrp0 @ xN @ xi ) @ ( szmzizndt0 @ ( sdtlpdtrp0 @ xN @ xi ) ) ) @ xk ) ) ) ).

thf(zip_derived_cl130,plain,
    ( ( sdtlpdtrp0 @ ( sdtlpdtrp0 @ xC @ xi ) @ xQ )
    = xx ),
    inference(cnf,[status(esa)],[m__4237]) ).

thf(zip_derived_cl150,plain,
    ~ ( aElementOf0 @ ( sdtlpdtrp0 @ ( sdtlpdtrp0 @ xC @ xi ) @ xQ ) @ xT ),
    inference(demod,[status(thm)],[zip_derived_cl134,zip_derived_cl130]) ).

thf(zip_derived_cl130_001,plain,
    ( ( sdtlpdtrp0 @ ( sdtlpdtrp0 @ xC @ xi ) @ xQ )
    = xx ),
    inference(cnf,[status(esa)],[m__4237]) ).

thf(m__4263,axiom,
    ( ( aElementOf0 @ ( sdtlpdtrp0 @ xc @ ( sdtpldt0 @ xQ @ ( szmzizndt0 @ ( sdtlpdtrp0 @ xN @ xi ) ) ) ) @ ( sdtlcdtrc0 @ xc @ ( szDzozmdt0 @ xc ) ) )
    & ( xx
      = ( sdtlpdtrp0 @ xc @ ( sdtpldt0 @ xQ @ ( szmzizndt0 @ ( sdtlpdtrp0 @ xN @ xi ) ) ) ) ) ) ).

thf(zip_derived_cl133,plain,
    ( xx
    = ( sdtlpdtrp0 @ xc @ ( sdtpldt0 @ xQ @ ( szmzizndt0 @ ( sdtlpdtrp0 @ xN @ xi ) ) ) ) ),
    inference(cnf,[status(esa)],[m__4263]) ).

thf(zip_derived_cl151,plain,
    ( ( sdtlpdtrp0 @ ( sdtlpdtrp0 @ xC @ xi ) @ xQ )
    = ( sdtlpdtrp0 @ xc @ ( sdtpldt0 @ xQ @ ( szmzizndt0 @ ( sdtlpdtrp0 @ xN @ xi ) ) ) ) ),
    inference(demod,[status(thm)],[zip_derived_cl130,zip_derived_cl133]) ).

thf(zip_derived_cl224,plain,
    ~ ( aElementOf0 @ ( sdtlpdtrp0 @ xc @ ( sdtpldt0 @ xQ @ ( szmzizndt0 @ ( sdtlpdtrp0 @ xN @ xi ) ) ) ) @ xT ),
    inference(demod,[status(thm)],[zip_derived_cl150,zip_derived_cl151]) ).

thf(zip_derived_cl489,plain,
    ~ ( aElementOf0 @ ( sdtlpdtrp0 @ xc @ ( sdtpldt0 @ xQ @ ( szmzizndt0 @ ( sdtlpdtrp0 @ xN @ xi ) ) ) ) @ ( sdtlcdtrc0 @ xc @ ( slbdtsldtrb0 @ xS @ xK ) ) ),
    inference('sup-',[status(thm)],[zip_derived_cl243,zip_derived_cl224]) ).

thf(zip_derived_cl132,plain,
    aElementOf0 @ ( sdtlpdtrp0 @ xc @ ( sdtpldt0 @ xQ @ ( szmzizndt0 @ ( sdtlpdtrp0 @ xN @ xi ) ) ) ) @ ( sdtlcdtrc0 @ xc @ ( szDzozmdt0 @ xc ) ),
    inference(cnf,[status(esa)],[m__4263]) ).

thf(zip_derived_cl103_002,plain,
    ( ( szDzozmdt0 @ xc )
    = ( slbdtsldtrb0 @ xS @ xK ) ),
    inference(cnf,[status(esa)],[m__3453]) ).

thf(zip_derived_cl499,plain,
    aElementOf0 @ ( sdtlpdtrp0 @ xc @ ( sdtpldt0 @ xQ @ ( szmzizndt0 @ ( sdtlpdtrp0 @ xN @ xi ) ) ) ) @ ( sdtlcdtrc0 @ xc @ ( slbdtsldtrb0 @ xS @ xK ) ),
    inference(demod,[status(thm)],[zip_derived_cl132,zip_derived_cl103]) ).

thf(zip_derived_cl507,plain,
    $false,
    inference(demod,[status(thm)],[zip_derived_cl489,zip_derived_cl499]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : NUM587+1 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.13  % Command  : python3 /export/starexec/sandbox/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox/tmp/tmp.nItygs622Q true
% 0.12/0.34  % Computer : n012.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.18/0.34  % CPULimit : 300
% 0.18/0.34  % WCLimit  : 300
% 0.18/0.34  % DateTime : Fri Aug 25 14:40:11 EDT 2023
% 0.18/0.34  % CPUTime  : 
% 0.18/0.34  % Running portfolio for 300 s
% 0.18/0.34  % File         : /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.18/0.34  % Number of cores: 8
% 0.18/0.34  % Python version: Python 3.6.8
% 0.18/0.35  % Running in FO mode
% 0.20/0.61  % Total configuration time : 435
% 0.20/0.61  % Estimated wc time : 1092
% 0.20/0.61  % Estimated cpu time (7 cpus) : 156.0
% 0.20/0.71  % /export/starexec/sandbox/solver/bin/fo/fo6_bce.sh running for 75s
% 0.20/0.72  % /export/starexec/sandbox/solver/bin/fo/fo3_bce.sh running for 75s
% 0.20/0.76  % /export/starexec/sandbox/solver/bin/fo/fo7.sh running for 63s
% 0.20/0.76  % /export/starexec/sandbox/solver/bin/fo/fo13.sh running for 50s
% 0.20/0.77  % /export/starexec/sandbox/solver/bin/fo/fo5.sh running for 50s
% 0.20/0.77  % /export/starexec/sandbox/solver/bin/fo/fo4.sh running for 50s
% 0.20/0.77  % /export/starexec/sandbox/solver/bin/fo/fo1_av.sh running for 75s
% 1.06/0.85  % /export/starexec/sandbox/solver/bin/fo/fo1_lcnf.sh running for 50s
% 1.41/0.93  % Solved by fo/fo7.sh.
% 1.41/0.93  % done 240 iterations in 0.130s
% 1.41/0.93  % SZS status Theorem for '/export/starexec/sandbox/benchmark/theBenchmark.p'
% 1.41/0.93  % SZS output start Refutation
% See solution above
% 1.41/0.93  
% 1.41/0.93  
% 1.41/0.93  % Terminating...
% 1.69/1.04  % Runner terminated.
% 1.69/1.06  % Zipperpin 1.5 exiting
%------------------------------------------------------------------------------