TSTP Solution File: NUM501+1 by Zipperpin---2.1.9999

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Zipperpin---2.1.9999
% Problem  : NUM501+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : NO INFORMATION
% Format   : NO INFORMATION
% Command  : python3 /export/starexec/sandbox/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox/tmp/tmp.jaOB1ZRLG6 true

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 12:41:55 EDT 2023

% Result   : Theorem 7.35s 1.64s
% Output   : Refutation 7.35s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   22
%            Number of leaves      :   24
% Syntax   : Number of formulae    :   91 (  29 unt;  12 typ;   0 def)
%            Number of atoms       :  212 (  63 equ;   0 cnn)
%            Maximal formula atoms :    8 (   2 avg)
%            Number of connectives :  567 ( 113   ~; 103   |;  18   &; 321   @)
%                                         (   3 <=>;   9  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   12 (   5 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :    8 (   8   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   14 (  12 usr;   8 con; 0-2 aty)
%            Number of variables   :   65 (   0   ^;  64   !;   1   ?;  65   :)

% Comments : 
%------------------------------------------------------------------------------
thf(aNaturalNumber0_type,type,
    aNaturalNumber0: $i > $o ).

thf(xp_type,type,
    xp: $i ).

thf(sdtsldt0_type,type,
    sdtsldt0: $i > $i > $i ).

thf(sz10_type,type,
    sz10: $i ).

thf(sdtasdt0_type,type,
    sdtasdt0: $i > $i > $i ).

thf(isPrime0_type,type,
    isPrime0: $i > $o ).

thf(sz00_type,type,
    sz00: $i ).

thf(doDivides0_type,type,
    doDivides0: $i > $i > $o ).

thf(xk_type,type,
    xk: $i ).

thf(xn_type,type,
    xn: $i ).

thf(xr_type,type,
    xr: $i ).

thf(xm_type,type,
    xm: $i ).

thf(mSortsB_02,axiom,
    ! [W0: $i,W1: $i] :
      ( ( ( aNaturalNumber0 @ W0 )
        & ( aNaturalNumber0 @ W1 ) )
     => ( aNaturalNumber0 @ ( sdtasdt0 @ W0 @ W1 ) ) ) ).

thf(zip_derived_cl5,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ( aNaturalNumber0 @ ( sdtasdt0 @ X0 @ X1 ) ) ),
    inference(cnf,[status(esa)],[mSortsB_02]) ).

thf(m__2306,axiom,
    ( xk
    = ( sdtsldt0 @ ( sdtasdt0 @ xn @ xm ) @ xp ) ) ).

thf(zip_derived_cl82,plain,
    ( xk
    = ( sdtsldt0 @ ( sdtasdt0 @ xn @ xm ) @ xp ) ),
    inference(cnf,[status(esa)],[m__2306]) ).

thf(mDefQuot,axiom,
    ! [W0: $i,W1: $i] :
      ( ( ( aNaturalNumber0 @ W0 )
        & ( aNaturalNumber0 @ W1 ) )
     => ( ( ( W0 != sz00 )
          & ( doDivides0 @ W0 @ W1 ) )
       => ! [W2: $i] :
            ( ( W2
              = ( sdtsldt0 @ W1 @ W0 ) )
          <=> ( ( aNaturalNumber0 @ W2 )
              & ( W1
                = ( sdtasdt0 @ W0 @ W2 ) ) ) ) ) ) ).

thf(zip_derived_cl52,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ( X0 = sz00 )
      | ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ( X2
       != ( sdtsldt0 @ X1 @ X0 ) )
      | ( aNaturalNumber0 @ X2 )
      | ~ ( doDivides0 @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[mDefQuot]) ).

thf(zip_derived_cl1176,plain,
    ! [X0: $i] :
      ( ( X0 != xk )
      | ~ ( doDivides0 @ xp @ ( sdtasdt0 @ xn @ xm ) )
      | ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) )
      | ~ ( aNaturalNumber0 @ xp )
      | ( xp = sz00 ) ),
    inference('sup-',[status(thm)],[zip_derived_cl82,zip_derived_cl52]) ).

thf(m__1860,axiom,
    ( ( doDivides0 @ xp @ ( sdtasdt0 @ xn @ xm ) )
    & ( isPrime0 @ xp ) ) ).

thf(zip_derived_cl74,plain,
    doDivides0 @ xp @ ( sdtasdt0 @ xn @ xm ),
    inference(cnf,[status(esa)],[m__1860]) ).

thf(m__1837,axiom,
    ( ( aNaturalNumber0 @ xp )
    & ( aNaturalNumber0 @ xm )
    & ( aNaturalNumber0 @ xn ) ) ).

thf(zip_derived_cl70,plain,
    aNaturalNumber0 @ xp,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl1178,plain,
    ! [X0: $i] :
      ( ( X0 != xk )
      | ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) )
      | ( xp = sz00 ) ),
    inference(demod,[status(thm)],[zip_derived_cl1176,zip_derived_cl74,zip_derived_cl70]) ).

thf(zip_derived_cl75,plain,
    isPrime0 @ xp,
    inference(cnf,[status(esa)],[m__1860]) ).

thf(mDefPrime,axiom,
    ! [W0: $i] :
      ( ( aNaturalNumber0 @ W0 )
     => ( ( isPrime0 @ W0 )
      <=> ( ( W0 != sz00 )
          & ( W0 != sz10 )
          & ! [W1: $i] :
              ( ( ( aNaturalNumber0 @ W1 )
                & ( doDivides0 @ W1 @ W0 ) )
             => ( ( W1 = sz10 )
                | ( W1 = W0 ) ) ) ) ) ) ).

thf(zip_derived_cl66,plain,
    ! [X0: $i] :
      ( ~ ( isPrime0 @ X0 )
      | ( X0 != sz00 )
      | ~ ( aNaturalNumber0 @ X0 ) ),
    inference(cnf,[status(esa)],[mDefPrime]) ).

thf(zip_derived_cl676,plain,
    ( ~ ( aNaturalNumber0 @ xp )
    | ( xp != sz00 ) ),
    inference('dp-resolution',[status(thm)],[zip_derived_cl75,zip_derived_cl66]) ).

thf(zip_derived_cl688,plain,
    ( ~ ( aNaturalNumber0 @ sz00 )
    | ( xp != sz00 ) ),
    inference(local_rewriting,[status(thm)],[zip_derived_cl676]) ).

thf(mSortsC,axiom,
    aNaturalNumber0 @ sz00 ).

thf(zip_derived_cl1,plain,
    aNaturalNumber0 @ sz00,
    inference(cnf,[status(esa)],[mSortsC]) ).

thf(zip_derived_cl689,plain,
    xp != sz00,
    inference(demod,[status(thm)],[zip_derived_cl688,zip_derived_cl1]) ).

thf(zip_derived_cl1179,plain,
    ! [X0: $i] :
      ( ( X0 != xk )
      | ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) ) ),
    inference('simplify_reflect-',[status(thm)],[zip_derived_cl1178,zip_derived_cl689]) ).

thf(zip_derived_cl1250,plain,
    ! [X0: $i] :
      ( ~ ( aNaturalNumber0 @ xm )
      | ~ ( aNaturalNumber0 @ xn )
      | ( aNaturalNumber0 @ X0 )
      | ( X0 != xk ) ),
    inference('sup-',[status(thm)],[zip_derived_cl5,zip_derived_cl1179]) ).

thf(zip_derived_cl71,plain,
    aNaturalNumber0 @ xm,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl72,plain,
    aNaturalNumber0 @ xn,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl1253,plain,
    ! [X0: $i] :
      ( ( aNaturalNumber0 @ X0 )
      | ( X0 != xk ) ),
    inference(demod,[status(thm)],[zip_derived_cl1250,zip_derived_cl71,zip_derived_cl72]) ).

thf(mDefDiv,axiom,
    ! [W0: $i,W1: $i] :
      ( ( ( aNaturalNumber0 @ W0 )
        & ( aNaturalNumber0 @ W1 ) )
     => ( ( doDivides0 @ W0 @ W1 )
      <=> ? [W2: $i] :
            ( ( W1
              = ( sdtasdt0 @ W0 @ W2 ) )
            & ( aNaturalNumber0 @ W2 ) ) ) ) ).

thf(zip_derived_cl51,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ( doDivides0 @ X0 @ X1 )
      | ~ ( aNaturalNumber0 @ X2 )
      | ( X1
       != ( sdtasdt0 @ X0 @ X2 ) ) ),
    inference(cnf,[status(esa)],[mDefDiv]) ).

thf(zip_derived_cl822,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( aNaturalNumber0 @ X0 )
      | ( doDivides0 @ X1 @ ( sdtasdt0 @ X1 @ X0 ) )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ X1 @ X0 ) )
      | ~ ( aNaturalNumber0 @ X1 ) ),
    inference(eq_res,[status(thm)],[zip_derived_cl51]) ).

thf(zip_derived_cl5_001,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ( aNaturalNumber0 @ ( sdtasdt0 @ X0 @ X1 ) ) ),
    inference(cnf,[status(esa)],[mSortsB_02]) ).

thf(zip_derived_cl3535,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( aNaturalNumber0 @ X1 )
      | ( doDivides0 @ X1 @ ( sdtasdt0 @ X1 @ X0 ) )
      | ~ ( aNaturalNumber0 @ X0 ) ),
    inference(clc,[status(thm)],[zip_derived_cl822,zip_derived_cl5]) ).

thf(zip_derived_cl5_002,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ( aNaturalNumber0 @ ( sdtasdt0 @ X0 @ X1 ) ) ),
    inference(cnf,[status(esa)],[mSortsB_02]) ).

thf(zip_derived_cl82_003,plain,
    ( xk
    = ( sdtsldt0 @ ( sdtasdt0 @ xn @ xm ) @ xp ) ),
    inference(cnf,[status(esa)],[m__2306]) ).

thf(zip_derived_cl53,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ( X0 = sz00 )
      | ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ( X2
       != ( sdtsldt0 @ X1 @ X0 ) )
      | ( X1
        = ( sdtasdt0 @ X0 @ X2 ) )
      | ~ ( doDivides0 @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[mDefQuot]) ).

thf(zip_derived_cl1364,plain,
    ! [X0: $i] :
      ( ( X0 != xk )
      | ~ ( doDivides0 @ xp @ ( sdtasdt0 @ xn @ xm ) )
      | ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ xp @ X0 ) )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) )
      | ~ ( aNaturalNumber0 @ xp )
      | ( xp = sz00 ) ),
    inference('sup-',[status(thm)],[zip_derived_cl82,zip_derived_cl53]) ).

thf(zip_derived_cl74_004,plain,
    doDivides0 @ xp @ ( sdtasdt0 @ xn @ xm ),
    inference(cnf,[status(esa)],[m__1860]) ).

thf(zip_derived_cl70_005,plain,
    aNaturalNumber0 @ xp,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl1366,plain,
    ! [X0: $i] :
      ( ( X0 != xk )
      | ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ xp @ X0 ) )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) )
      | ( xp = sz00 ) ),
    inference(demod,[status(thm)],[zip_derived_cl1364,zip_derived_cl74,zip_derived_cl70]) ).

thf(zip_derived_cl689_006,plain,
    xp != sz00,
    inference(demod,[status(thm)],[zip_derived_cl688,zip_derived_cl1]) ).

thf(zip_derived_cl1367,plain,
    ! [X0: $i] :
      ( ( X0 != xk )
      | ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ xp @ X0 ) )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) ) ),
    inference('simplify_reflect-',[status(thm)],[zip_derived_cl1366,zip_derived_cl689]) ).

thf(mMulComm,axiom,
    ! [W0: $i,W1: $i] :
      ( ( ( aNaturalNumber0 @ W0 )
        & ( aNaturalNumber0 @ W1 ) )
     => ( ( sdtasdt0 @ W0 @ W1 )
        = ( sdtasdt0 @ W1 @ W0 ) ) ) ).

thf(zip_derived_cl10,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ( ( sdtasdt0 @ X0 @ X1 )
        = ( sdtasdt0 @ X1 @ X0 ) ) ),
    inference(cnf,[status(esa)],[mMulComm]) ).

thf(zip_derived_cl1369,plain,
    ! [X0: $i] :
      ( ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ X0 @ xp ) )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) )
      | ( X0 != xk )
      | ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ xp ) ),
    inference('sup+',[status(thm)],[zip_derived_cl1367,zip_derived_cl10]) ).

thf(zip_derived_cl70_007,plain,
    aNaturalNumber0 @ xp,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl1384,plain,
    ! [X0: $i] :
      ( ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ X0 @ xp ) )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) )
      | ( X0 != xk )
      | ~ ( aNaturalNumber0 @ X0 ) ),
    inference(demod,[status(thm)],[zip_derived_cl1369,zip_derived_cl70]) ).

thf(zip_derived_cl1253_008,plain,
    ! [X0: $i] :
      ( ( aNaturalNumber0 @ X0 )
      | ( X0 != xk ) ),
    inference(demod,[status(thm)],[zip_derived_cl1250,zip_derived_cl71,zip_derived_cl72]) ).

thf(zip_derived_cl2016,plain,
    ! [X0: $i] :
      ( ( X0 != xk )
      | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) )
      | ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ X0 @ xp ) ) ),
    inference(clc,[status(thm)],[zip_derived_cl1384,zip_derived_cl1253]) ).

thf(zip_derived_cl2018,plain,
    ! [X0: $i] :
      ( ~ ( aNaturalNumber0 @ xm )
      | ~ ( aNaturalNumber0 @ xn )
      | ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ X0 @ xp ) )
      | ( X0 != xk ) ),
    inference('sup-',[status(thm)],[zip_derived_cl5,zip_derived_cl2016]) ).

thf(zip_derived_cl71_009,plain,
    aNaturalNumber0 @ xm,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl72_010,plain,
    aNaturalNumber0 @ xn,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl2020,plain,
    ! [X0: $i] :
      ( ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ X0 @ xp ) )
      | ( X0 != xk ) ),
    inference(demod,[status(thm)],[zip_derived_cl2018,zip_derived_cl71,zip_derived_cl72]) ).

thf(m__,conjecture,
    doDivides0 @ xr @ ( sdtasdt0 @ xn @ xm ) ).

thf(zf_stmt_0,negated_conjecture,
    ~ ( doDivides0 @ xr @ ( sdtasdt0 @ xn @ xm ) ),
    inference('cnf.neg',[status(esa)],[m__]) ).

thf(zip_derived_cl90,plain,
    ~ ( doDivides0 @ xr @ ( sdtasdt0 @ xn @ xm ) ),
    inference(cnf,[status(esa)],[zf_stmt_0]) ).

thf(m__2342,axiom,
    ( ( isPrime0 @ xr )
    & ( doDivides0 @ xr @ xk )
    & ( aNaturalNumber0 @ xr ) ) ).

thf(zip_derived_cl88,plain,
    doDivides0 @ xr @ xk,
    inference(cnf,[status(esa)],[m__2342]) ).

thf(mDivTrans,axiom,
    ! [W0: $i,W1: $i,W2: $i] :
      ( ( ( aNaturalNumber0 @ W0 )
        & ( aNaturalNumber0 @ W1 )
        & ( aNaturalNumber0 @ W2 ) )
     => ( ( ( doDivides0 @ W0 @ W1 )
          & ( doDivides0 @ W1 @ W2 ) )
       => ( doDivides0 @ W0 @ W2 ) ) ) ).

thf(zip_derived_cl55,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ~ ( doDivides0 @ X0 @ X1 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X2 )
      | ( doDivides0 @ X0 @ X2 )
      | ~ ( doDivides0 @ X1 @ X2 ) ),
    inference(cnf,[status(esa)],[mDivTrans]) ).

thf(zip_derived_cl880,plain,
    ! [X0: $i] :
      ( ~ ( doDivides0 @ xk @ X0 )
      | ( doDivides0 @ xr @ X0 )
      | ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ xr )
      | ~ ( aNaturalNumber0 @ xk ) ),
    inference('sup-',[status(thm)],[zip_derived_cl88,zip_derived_cl55]) ).

thf(zip_derived_cl89,plain,
    aNaturalNumber0 @ xr,
    inference(cnf,[status(esa)],[m__2342]) ).

thf(zip_derived_cl886,plain,
    ! [X0: $i] :
      ( ~ ( doDivides0 @ xk @ X0 )
      | ( doDivides0 @ xr @ X0 )
      | ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ xk ) ),
    inference(demod,[status(thm)],[zip_derived_cl880,zip_derived_cl89]) ).

thf(zip_derived_cl6020,plain,
    ( ~ ( aNaturalNumber0 @ xk )
    | ~ ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) )
    | ~ ( doDivides0 @ xk @ ( sdtasdt0 @ xn @ xm ) ) ),
    inference('sup+',[status(thm)],[zip_derived_cl90,zip_derived_cl886]) ).

thf(zip_derived_cl2020_011,plain,
    ! [X0: $i] :
      ( ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ X0 @ xp ) )
      | ( X0 != xk ) ),
    inference(demod,[status(thm)],[zip_derived_cl2018,zip_derived_cl71,zip_derived_cl72]) ).

thf(zip_derived_cl2020_012,plain,
    ! [X0: $i] :
      ( ( ( sdtasdt0 @ xn @ xm )
        = ( sdtasdt0 @ X0 @ xp ) )
      | ( X0 != xk ) ),
    inference(demod,[status(thm)],[zip_derived_cl2018,zip_derived_cl71,zip_derived_cl72]) ).

thf(zip_derived_cl5_013,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ( aNaturalNumber0 @ ( sdtasdt0 @ X0 @ X1 ) ) ),
    inference(cnf,[status(esa)],[mSortsB_02]) ).

thf(zip_derived_cl2046,plain,
    ! [X0: $i] :
      ( ( aNaturalNumber0 @ ( sdtasdt0 @ X0 @ xp ) )
      | ( X0 != xk )
      | ~ ( aNaturalNumber0 @ xm )
      | ~ ( aNaturalNumber0 @ xn ) ),
    inference('sup+',[status(thm)],[zip_derived_cl2020,zip_derived_cl5]) ).

thf(zip_derived_cl71_014,plain,
    aNaturalNumber0 @ xm,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl72_015,plain,
    aNaturalNumber0 @ xn,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl2107,plain,
    ! [X0: $i] :
      ( ( aNaturalNumber0 @ ( sdtasdt0 @ X0 @ xp ) )
      | ( X0 != xk ) ),
    inference(demod,[status(thm)],[zip_derived_cl2046,zip_derived_cl71,zip_derived_cl72]) ).

thf(zip_derived_cl2187,plain,
    ! [X0: $i] :
      ( ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) )
      | ( X0 != xk )
      | ( X0 != xk ) ),
    inference('sup+',[status(thm)],[zip_derived_cl2020,zip_derived_cl2107]) ).

thf(zip_derived_cl2195,plain,
    ! [X0: $i] :
      ( ( X0 != xk )
      | ( aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ) ) ),
    inference(simplify,[status(thm)],[zip_derived_cl2187]) ).

thf(zip_derived_cl2223,plain,
    aNaturalNumber0 @ ( sdtasdt0 @ xn @ xm ),
    inference(eq_res,[status(thm)],[zip_derived_cl2195]) ).

thf(zip_derived_cl6053,plain,
    ( ~ ( aNaturalNumber0 @ xk )
    | ~ ( doDivides0 @ xk @ ( sdtasdt0 @ xn @ xm ) ) ),
    inference(demod,[status(thm)],[zip_derived_cl6020,zip_derived_cl2223]) ).

thf(zip_derived_cl6124,plain,
    ! [X0: $i] :
      ( ~ ( doDivides0 @ xk @ ( sdtasdt0 @ X0 @ xp ) )
      | ( X0 != xk )
      | ~ ( aNaturalNumber0 @ xk ) ),
    inference('sup-',[status(thm)],[zip_derived_cl2020,zip_derived_cl6053]) ).

thf(zip_derived_cl9703,plain,
    ( ~ ( aNaturalNumber0 @ xp )
    | ~ ( aNaturalNumber0 @ xk )
    | ~ ( aNaturalNumber0 @ xk )
    | ( xk != xk ) ),
    inference('sup-',[status(thm)],[zip_derived_cl3535,zip_derived_cl6124]) ).

thf(zip_derived_cl70_016,plain,
    aNaturalNumber0 @ xp,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl9718,plain,
    ( ~ ( aNaturalNumber0 @ xk )
    | ~ ( aNaturalNumber0 @ xk )
    | ( xk != xk ) ),
    inference(demod,[status(thm)],[zip_derived_cl9703,zip_derived_cl70]) ).

thf(zip_derived_cl9719,plain,
    ~ ( aNaturalNumber0 @ xk ),
    inference(simplify,[status(thm)],[zip_derived_cl9718]) ).

thf(zip_derived_cl9740,plain,
    xk != xk,
    inference('sup-',[status(thm)],[zip_derived_cl1253,zip_derived_cl9719]) ).

thf(zip_derived_cl9741,plain,
    $false,
    inference(simplify,[status(thm)],[zip_derived_cl9740]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : NUM501+1 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.14  % Command  : python3 /export/starexec/sandbox/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox/tmp/tmp.jaOB1ZRLG6 true
% 0.14/0.35  % Computer : n014.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 300
% 0.14/0.35  % DateTime : Fri Aug 25 16:27:33 EDT 2023
% 0.14/0.35  % CPUTime  : 
% 0.14/0.35  % Running portfolio for 300 s
% 0.14/0.35  % File         : /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.22/0.35  % Number of cores: 8
% 0.22/0.36  % Python version: Python 3.6.8
% 0.22/0.36  % Running in FO mode
% 0.22/0.67  % Total configuration time : 435
% 0.22/0.67  % Estimated wc time : 1092
% 0.22/0.67  % Estimated cpu time (7 cpus) : 156.0
% 0.22/0.70  % /export/starexec/sandbox/solver/bin/fo/fo6_bce.sh running for 75s
% 0.22/0.73  % /export/starexec/sandbox/solver/bin/fo/fo3_bce.sh running for 75s
% 0.22/0.75  % /export/starexec/sandbox/solver/bin/fo/fo7.sh running for 63s
% 0.22/0.75  % /export/starexec/sandbox/solver/bin/fo/fo1_av.sh running for 75s
% 0.22/0.76  % /export/starexec/sandbox/solver/bin/fo/fo13.sh running for 50s
% 0.22/0.76  % /export/starexec/sandbox/solver/bin/fo/fo5.sh running for 50s
% 0.22/0.76  % /export/starexec/sandbox/solver/bin/fo/fo4.sh running for 50s
% 7.35/1.64  % Solved by fo/fo3_bce.sh.
% 7.35/1.64  % BCE start: 91
% 7.35/1.64  % BCE eliminated: 1
% 7.35/1.64  % PE start: 90
% 7.35/1.64  logic: eq
% 7.35/1.64  % PE eliminated: -8
% 7.35/1.64  % done 1054 iterations in 0.893s
% 7.35/1.64  % SZS status Theorem for '/export/starexec/sandbox/benchmark/theBenchmark.p'
% 7.35/1.64  % SZS output start Refutation
% See solution above
% 7.35/1.64  
% 7.35/1.64  
% 7.35/1.64  % Terminating...
% 7.90/1.75  % Runner terminated.
% 7.90/1.76  % Zipperpin 1.5 exiting
%------------------------------------------------------------------------------