TSTP Solution File: NUM478+1 by E---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E---3.1
% Problem  : NUM478+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 18:55:57 EDT 2023

% Result   : Theorem 4.47s 1.04s
% Output   : CNFRefutation 4.47s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   13
%            Number of leaves      :   12
% Syntax   : Number of formulae    :   63 (  22 unt;   0 def)
%            Number of atoms       :  212 (  77 equ)
%            Maximal formula atoms :   19 (   3 avg)
%            Number of connectives :  262 ( 113   ~; 116   |;  20   &)
%                                         (   2 <=>;  11  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   4 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    4 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   5 con; 0-2 aty)
%            Number of variables   :   80 (   0 sgn;  33   !;   1   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(mDefDiv,axiom,
    ! [X1,X2] :
      ( ( aNaturalNumber0(X1)
        & aNaturalNumber0(X2) )
     => ( doDivides0(X1,X2)
      <=> ? [X3] :
            ( aNaturalNumber0(X3)
            & X2 = sdtasdt0(X1,X3) ) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',mDefDiv) ).

fof(mSortsB_02,axiom,
    ! [X1,X2] :
      ( ( aNaturalNumber0(X1)
        & aNaturalNumber0(X2) )
     => aNaturalNumber0(sdtasdt0(X1,X2)) ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',mSortsB_02) ).

fof(mDefQuot,axiom,
    ! [X1,X2] :
      ( ( aNaturalNumber0(X1)
        & aNaturalNumber0(X2) )
     => ( ( X1 != sz00
          & doDivides0(X1,X2) )
       => ! [X3] :
            ( X3 = sdtsldt0(X2,X1)
          <=> ( aNaturalNumber0(X3)
              & X2 = sdtasdt0(X1,X3) ) ) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',mDefQuot) ).

fof(m__1524,hypothesis,
    ( aNaturalNumber0(xl)
    & aNaturalNumber0(xm) ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',m__1524) ).

fof(m__1524_04,hypothesis,
    ( xl != sz00
    & doDivides0(xl,xm) ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',m__1524_04) ).

fof(mMulCanc,axiom,
    ! [X1] :
      ( aNaturalNumber0(X1)
     => ( X1 != sz00
       => ! [X2,X3] :
            ( ( aNaturalNumber0(X2)
              & aNaturalNumber0(X3) )
           => ( ( sdtasdt0(X1,X2) = sdtasdt0(X1,X3)
                | sdtasdt0(X2,X1) = sdtasdt0(X3,X1) )
             => X2 = X3 ) ) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',mMulCanc) ).

fof(m__1553,hypothesis,
    aNaturalNumber0(xn),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',m__1553) ).

fof(m_MulUnit,axiom,
    ! [X1] :
      ( aNaturalNumber0(X1)
     => ( sdtasdt0(X1,sz10) = X1
        & X1 = sdtasdt0(sz10,X1) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',m_MulUnit) ).

fof(mMulAsso,axiom,
    ! [X1,X2,X3] :
      ( ( aNaturalNumber0(X1)
        & aNaturalNumber0(X2)
        & aNaturalNumber0(X3) )
     => sdtasdt0(sdtasdt0(X1,X2),X3) = sdtasdt0(X1,sdtasdt0(X2,X3)) ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',mMulAsso) ).

fof(mSortsC_01,axiom,
    ( aNaturalNumber0(sz10)
    & sz10 != sz00 ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',mSortsC_01) ).

fof(m__,conjecture,
    sdtasdt0(xn,sdtsldt0(xm,xl)) = sdtsldt0(sdtasdt0(xn,xm),xl),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',m__) ).

fof(mMulComm,axiom,
    ! [X1,X2] :
      ( ( aNaturalNumber0(X1)
        & aNaturalNumber0(X2) )
     => sdtasdt0(X1,X2) = sdtasdt0(X2,X1) ),
    file('/export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p',mMulComm) ).

fof(c_0_12,plain,
    ! [X60,X61,X63] :
      ( ( aNaturalNumber0(esk2_2(X60,X61))
        | ~ doDivides0(X60,X61)
        | ~ aNaturalNumber0(X60)
        | ~ aNaturalNumber0(X61) )
      & ( X61 = sdtasdt0(X60,esk2_2(X60,X61))
        | ~ doDivides0(X60,X61)
        | ~ aNaturalNumber0(X60)
        | ~ aNaturalNumber0(X61) )
      & ( ~ aNaturalNumber0(X63)
        | X61 != sdtasdt0(X60,X63)
        | doDivides0(X60,X61)
        | ~ aNaturalNumber0(X60)
        | ~ aNaturalNumber0(X61) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mDefDiv])])])])]) ).

fof(c_0_13,plain,
    ! [X6,X7] :
      ( ~ aNaturalNumber0(X6)
      | ~ aNaturalNumber0(X7)
      | aNaturalNumber0(sdtasdt0(X6,X7)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mSortsB_02])]) ).

fof(c_0_14,plain,
    ! [X64,X65,X66] :
      ( ( aNaturalNumber0(X66)
        | X66 != sdtsldt0(X65,X64)
        | X64 = sz00
        | ~ doDivides0(X64,X65)
        | ~ aNaturalNumber0(X64)
        | ~ aNaturalNumber0(X65) )
      & ( X65 = sdtasdt0(X64,X66)
        | X66 != sdtsldt0(X65,X64)
        | X64 = sz00
        | ~ doDivides0(X64,X65)
        | ~ aNaturalNumber0(X64)
        | ~ aNaturalNumber0(X65) )
      & ( ~ aNaturalNumber0(X66)
        | X65 != sdtasdt0(X64,X66)
        | X66 = sdtsldt0(X65,X64)
        | X64 = sz00
        | ~ doDivides0(X64,X65)
        | ~ aNaturalNumber0(X64)
        | ~ aNaturalNumber0(X65) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mDefQuot])])])]) ).

cnf(c_0_15,plain,
    ( doDivides0(X3,X2)
    | ~ aNaturalNumber0(X1)
    | X2 != sdtasdt0(X3,X1)
    | ~ aNaturalNumber0(X3)
    | ~ aNaturalNumber0(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_16,plain,
    ( aNaturalNumber0(sdtasdt0(X1,X2))
    | ~ aNaturalNumber0(X1)
    | ~ aNaturalNumber0(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_13]) ).

cnf(c_0_17,plain,
    ( X1 = sdtsldt0(X2,X3)
    | X3 = sz00
    | ~ aNaturalNumber0(X1)
    | X2 != sdtasdt0(X3,X1)
    | ~ doDivides0(X3,X2)
    | ~ aNaturalNumber0(X3)
    | ~ aNaturalNumber0(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_14]) ).

cnf(c_0_18,plain,
    ( doDivides0(X1,sdtasdt0(X1,X2))
    | ~ aNaturalNumber0(X1)
    | ~ aNaturalNumber0(X2) ),
    inference(csr,[status(thm)],[inference(er,[status(thm)],[c_0_15]),c_0_16]) ).

cnf(c_0_19,plain,
    ( sdtsldt0(sdtasdt0(X1,X2),X1) = X2
    | X1 = sz00
    | ~ aNaturalNumber0(X1)
    | ~ aNaturalNumber0(X2) ),
    inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(er,[status(thm)],[c_0_17]),c_0_16]),c_0_18]) ).

cnf(c_0_20,hypothesis,
    aNaturalNumber0(xl),
    inference(split_conjunct,[status(thm)],[m__1524]) ).

cnf(c_0_21,hypothesis,
    xl != sz00,
    inference(split_conjunct,[status(thm)],[m__1524_04]) ).

cnf(c_0_22,plain,
    ( X1 = sdtasdt0(X2,X3)
    | X2 = sz00
    | X3 != sdtsldt0(X1,X2)
    | ~ doDivides0(X2,X1)
    | ~ aNaturalNumber0(X2)
    | ~ aNaturalNumber0(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_14]) ).

cnf(c_0_23,hypothesis,
    ( sdtsldt0(sdtasdt0(xl,X1),xl) = X1
    | ~ aNaturalNumber0(X1) ),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_19,c_0_20]),c_0_21]) ).

cnf(c_0_24,plain,
    ( X1 = sdtasdt0(X2,esk2_2(X2,X1))
    | ~ doDivides0(X2,X1)
    | ~ aNaturalNumber0(X2)
    | ~ aNaturalNumber0(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_25,plain,
    ( aNaturalNumber0(X1)
    | X3 = sz00
    | X1 != sdtsldt0(X2,X3)
    | ~ doDivides0(X3,X2)
    | ~ aNaturalNumber0(X3)
    | ~ aNaturalNumber0(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_14]) ).

fof(c_0_26,plain,
    ! [X27,X28,X29] :
      ( ( sdtasdt0(X27,X28) != sdtasdt0(X27,X29)
        | X28 = X29
        | ~ aNaturalNumber0(X28)
        | ~ aNaturalNumber0(X29)
        | X27 = sz00
        | ~ aNaturalNumber0(X27) )
      & ( sdtasdt0(X28,X27) != sdtasdt0(X29,X27)
        | X28 = X29
        | ~ aNaturalNumber0(X28)
        | ~ aNaturalNumber0(X29)
        | X27 = sz00
        | ~ aNaturalNumber0(X27) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mMulCanc])])])]) ).

cnf(c_0_27,plain,
    ( sdtasdt0(X1,sdtsldt0(X2,X1)) = X2
    | X1 = sz00
    | ~ doDivides0(X1,X2)
    | ~ aNaturalNumber0(X1)
    | ~ aNaturalNumber0(X2) ),
    inference(er,[status(thm)],[c_0_22]) ).

cnf(c_0_28,hypothesis,
    doDivides0(xl,xm),
    inference(split_conjunct,[status(thm)],[m__1524_04]) ).

cnf(c_0_29,hypothesis,
    aNaturalNumber0(xm),
    inference(split_conjunct,[status(thm)],[m__1524]) ).

cnf(c_0_30,hypothesis,
    ( sdtsldt0(X1,xl) = esk2_2(xl,X1)
    | ~ doDivides0(xl,X1)
    | ~ aNaturalNumber0(esk2_2(xl,X1))
    | ~ aNaturalNumber0(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_24]),c_0_20])]) ).

cnf(c_0_31,plain,
    ( aNaturalNumber0(esk2_2(X1,X2))
    | ~ doDivides0(X1,X2)
    | ~ aNaturalNumber0(X1)
    | ~ aNaturalNumber0(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_12]) ).

cnf(c_0_32,plain,
    ( X1 = sz00
    | aNaturalNumber0(sdtsldt0(X2,X1))
    | ~ doDivides0(X1,X2)
    | ~ aNaturalNumber0(X1)
    | ~ aNaturalNumber0(X2) ),
    inference(er,[status(thm)],[c_0_25]) ).

cnf(c_0_33,plain,
    ( X2 = X3
    | X1 = sz00
    | sdtasdt0(X1,X2) != sdtasdt0(X1,X3)
    | ~ aNaturalNumber0(X2)
    | ~ aNaturalNumber0(X3)
    | ~ aNaturalNumber0(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_26]) ).

cnf(c_0_34,hypothesis,
    aNaturalNumber0(xn),
    inference(split_conjunct,[status(thm)],[m__1553]) ).

fof(c_0_35,plain,
    ! [X19] :
      ( ( sdtasdt0(X19,sz10) = X19
        | ~ aNaturalNumber0(X19) )
      & ( X19 = sdtasdt0(sz10,X19)
        | ~ aNaturalNumber0(X19) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[m_MulUnit])])]) ).

fof(c_0_36,plain,
    ! [X16,X17,X18] :
      ( ~ aNaturalNumber0(X16)
      | ~ aNaturalNumber0(X17)
      | ~ aNaturalNumber0(X18)
      | sdtasdt0(sdtasdt0(X16,X17),X18) = sdtasdt0(X16,sdtasdt0(X17,X18)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mMulAsso])]) ).

cnf(c_0_37,hypothesis,
    sdtasdt0(xl,sdtsldt0(xm,xl)) = xm,
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_27,c_0_28]),c_0_20]),c_0_29])]),c_0_21]) ).

cnf(c_0_38,hypothesis,
    ( sdtsldt0(X1,xl) = esk2_2(xl,X1)
    | ~ doDivides0(xl,X1)
    | ~ aNaturalNumber0(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_30,c_0_31]),c_0_20])]) ).

cnf(c_0_39,hypothesis,
    aNaturalNumber0(sdtsldt0(xm,xl)),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_28]),c_0_20]),c_0_29])]),c_0_21]) ).

cnf(c_0_40,hypothesis,
    ( X1 = xn
    | X2 = sz00
    | sdtasdt0(X2,X1) != sdtasdt0(X2,xn)
    | ~ aNaturalNumber0(X1)
    | ~ aNaturalNumber0(X2) ),
    inference(spm,[status(thm)],[c_0_33,c_0_34]) ).

cnf(c_0_41,plain,
    ( X1 = sdtasdt0(sz10,X1)
    | ~ aNaturalNumber0(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_42,plain,
    aNaturalNumber0(sz10),
    inference(split_conjunct,[status(thm)],[mSortsC_01]) ).

cnf(c_0_43,plain,
    sz10 != sz00,
    inference(split_conjunct,[status(thm)],[mSortsC_01]) ).

fof(c_0_44,negated_conjecture,
    sdtasdt0(xn,sdtsldt0(xm,xl)) != sdtsldt0(sdtasdt0(xn,xm),xl),
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[m__])]) ).

fof(c_0_45,plain,
    ! [X14,X15] :
      ( ~ aNaturalNumber0(X14)
      | ~ aNaturalNumber0(X15)
      | sdtasdt0(X14,X15) = sdtasdt0(X15,X14) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[mMulComm])]) ).

cnf(c_0_46,plain,
    ( sdtasdt0(sdtasdt0(X1,X2),X3) = sdtasdt0(X1,sdtasdt0(X2,X3))
    | ~ aNaturalNumber0(X1)
    | ~ aNaturalNumber0(X2)
    | ~ aNaturalNumber0(X3) ),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

cnf(c_0_47,hypothesis,
    sdtasdt0(xl,esk2_2(xl,xm)) = xm,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_37,c_0_38]),c_0_28]),c_0_29])]) ).

cnf(c_0_48,hypothesis,
    aNaturalNumber0(esk2_2(xl,xm)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39,c_0_38]),c_0_28]),c_0_29])]) ).

cnf(c_0_49,hypothesis,
    ( sdtasdt0(sz10,xn) = xn
    | ~ aNaturalNumber0(sdtasdt0(sz10,xn)) ),
    inference(er,[status(thm)],[inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40,c_0_41]),c_0_42])]),c_0_43])]) ).

cnf(c_0_50,negated_conjecture,
    sdtasdt0(xn,sdtsldt0(xm,xl)) != sdtsldt0(sdtasdt0(xn,xm),xl),
    inference(split_conjunct,[status(thm)],[c_0_44]) ).

cnf(c_0_51,plain,
    ( sdtasdt0(X1,X2) = sdtasdt0(X2,X1)
    | ~ aNaturalNumber0(X1)
    | ~ aNaturalNumber0(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_45]) ).

cnf(c_0_52,hypothesis,
    ( sdtasdt0(xl,sdtasdt0(sdtsldt0(xm,xl),X1)) = sdtasdt0(xm,X1)
    | ~ aNaturalNumber0(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_37]),c_0_39]),c_0_20])]) ).

cnf(c_0_53,hypothesis,
    sdtsldt0(xm,xl) = esk2_2(xl,xm),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_47]),c_0_48])]) ).

cnf(c_0_54,plain,
    ( aNaturalNumber0(sdtasdt0(X1,sdtasdt0(X2,X3)))
    | ~ aNaturalNumber0(X3)
    | ~ aNaturalNumber0(X2)
    | ~ aNaturalNumber0(X1) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_16,c_0_46]),c_0_16]) ).

cnf(c_0_55,hypothesis,
    sdtasdt0(sz10,xn) = xn,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49,c_0_16]),c_0_34]),c_0_42])]) ).

cnf(c_0_56,negated_conjecture,
    sdtsldt0(sdtasdt0(xm,xn),xl) != sdtasdt0(xn,sdtsldt0(xm,xl)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50,c_0_51]),c_0_34]),c_0_29])]) ).

cnf(c_0_57,hypothesis,
    ( sdtsldt0(sdtasdt0(xm,X1),xl) = sdtasdt0(esk2_2(xl,xm),X1)
    | ~ aNaturalNumber0(sdtasdt0(esk2_2(xl,xm),X1))
    | ~ aNaturalNumber0(X1) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_52]),c_0_53]),c_0_53]) ).

cnf(c_0_58,hypothesis,
    ( aNaturalNumber0(sdtasdt0(X1,xn))
    | ~ aNaturalNumber0(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_54,c_0_55]),c_0_34]),c_0_42])]) ).

cnf(c_0_59,negated_conjecture,
    sdtsldt0(sdtasdt0(xm,xn),xl) != sdtasdt0(xn,esk2_2(xl,xm)),
    inference(rw,[status(thm)],[c_0_56,c_0_53]) ).

cnf(c_0_60,hypothesis,
    sdtsldt0(sdtasdt0(xm,xn),xl) = sdtasdt0(esk2_2(xl,xm),xn),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57,c_0_58]),c_0_34]),c_0_48])]) ).

cnf(c_0_61,negated_conjecture,
    sdtasdt0(esk2_2(xl,xm),xn) != sdtasdt0(xn,esk2_2(xl,xm)),
    inference(rw,[status(thm)],[c_0_59,c_0_60]) ).

cnf(c_0_62,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61,c_0_51]),c_0_34]),c_0_48])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem    : NUM478+1 : TPTP v8.1.2. Released v4.0.0.
% 0.06/0.13  % Command    : run_E %s %d THM
% 0.11/0.33  % Computer : n015.cluster.edu
% 0.11/0.33  % Model    : x86_64 x86_64
% 0.11/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.33  % Memory   : 8042.1875MB
% 0.11/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.33  % CPULimit   : 2400
% 0.11/0.33  % WCLimit    : 300
% 0.11/0.33  % DateTime   : Mon Oct  2 15:18:31 EDT 2023
% 0.11/0.33  % CPUTime    : 
% 0.17/0.46  Running first-order theorem proving
% 0.17/0.46  Running: /export/starexec/sandbox2/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --auto-schedule=8 --cpu-limit=300 /export/starexec/sandbox2/tmp/tmp.dp1Cigj54p/E---3.1_16423.p
% 4.47/1.04  # Version: 3.1pre001
% 4.47/1.04  # Preprocessing class: FSLSSMSSSSSNFFN.
% 4.47/1.04  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 4.47/1.04  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 4.47/1.04  # Starting new_bool_3 with 300s (1) cores
% 4.47/1.04  # Starting new_bool_1 with 300s (1) cores
% 4.47/1.04  # Starting sh5l with 300s (1) cores
% 4.47/1.04  # G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with pid 16527 completed with status 0
% 4.47/1.04  # Result found by G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S
% 4.47/1.04  # Preprocessing class: FSLSSMSSSSSNFFN.
% 4.47/1.04  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 4.47/1.04  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 4.47/1.04  # No SInE strategy applied
% 4.47/1.04  # Search class: FGUSF-FFMM22-SFFFFFNN
% 4.47/1.04  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 4.47/1.04  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_S4d with 811s (1) cores
% 4.47/1.04  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 151s (1) cores
% 4.47/1.04  # Starting G-E--_208_C02CMA_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with 136s (1) cores
% 4.47/1.04  # Starting new_bool_3 with 136s (1) cores
% 4.47/1.04  # Starting new_bool_1 with 136s (1) cores
% 4.47/1.04  # G-E--_208_C02CMA_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with pid 16536 completed with status 0
% 4.47/1.04  # Result found by G-E--_208_C02CMA_F1_SE_CS_SP_PS_S5PRR_RG_S04AN
% 4.47/1.04  # Preprocessing class: FSLSSMSSSSSNFFN.
% 4.47/1.04  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 4.47/1.04  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 1500s (5) cores
% 4.47/1.04  # No SInE strategy applied
% 4.47/1.04  # Search class: FGUSF-FFMM22-SFFFFFNN
% 4.47/1.04  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 4.47/1.04  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_S4d with 811s (1) cores
% 4.47/1.04  # Starting G-E--_207_C18_F1_SE_CS_SP_PI_PS_S5PRR_S2S with 151s (1) cores
% 4.47/1.04  # Starting G-E--_208_C02CMA_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with 136s (1) cores
% 4.47/1.04  # Preprocessing time       : 0.002 s
% 4.47/1.04  # Presaturation interreduction done
% 4.47/1.04  
% 4.47/1.04  # Proof found!
% 4.47/1.04  # SZS status Theorem
% 4.47/1.04  # SZS output start CNFRefutation
% See solution above
% 4.47/1.04  # Parsed axioms                        : 39
% 4.47/1.04  # Removed by relevancy pruning/SinE    : 0
% 4.47/1.04  # Initial clauses                      : 65
% 4.47/1.04  # Removed in clause preprocessing      : 3
% 4.47/1.04  # Initial clauses in saturation        : 62
% 4.47/1.04  # Processed clauses                    : 3841
% 4.47/1.04  # ...of these trivial                  : 190
% 4.47/1.04  # ...subsumed                          : 2132
% 4.47/1.04  # ...remaining for further processing  : 1519
% 4.47/1.04  # Other redundant clauses eliminated   : 253
% 4.47/1.04  # Clauses deleted for lack of memory   : 0
% 4.47/1.04  # Backward-subsumed                    : 129
% 4.47/1.04  # Backward-rewritten                   : 128
% 4.47/1.04  # Generated clauses                    : 28668
% 4.47/1.04  # ...of the previous two non-redundant : 25710
% 4.47/1.04  # ...aggressively subsumed             : 0
% 4.47/1.04  # Contextual simplify-reflections      : 128
% 4.47/1.04  # Paramodulations                      : 28315
% 4.47/1.04  # Factorizations                       : 1
% 4.47/1.04  # NegExts                              : 0
% 4.47/1.04  # Equation resolutions                 : 278
% 4.47/1.04  # Total rewrite steps                  : 29806
% 4.47/1.04  # Propositional unsat checks           : 0
% 4.47/1.04  #    Propositional check models        : 0
% 4.47/1.04  #    Propositional check unsatisfiable : 0
% 4.47/1.04  #    Propositional clauses             : 0
% 4.47/1.04  #    Propositional clauses after purity: 0
% 4.47/1.04  #    Propositional unsat core size     : 0
% 4.47/1.04  #    Propositional preprocessing time  : 0.000
% 4.47/1.04  #    Propositional encoding time       : 0.000
% 4.47/1.04  #    Propositional solver time         : 0.000
% 4.47/1.04  #    Success case prop preproc time    : 0.000
% 4.47/1.04  #    Success case prop encoding time   : 0.000
% 4.47/1.04  #    Success case prop solver time     : 0.000
% 4.47/1.04  # Current number of processed clauses  : 1122
% 4.47/1.04  #    Positive orientable unit clauses  : 241
% 4.47/1.04  #    Positive unorientable unit clauses: 0
% 4.47/1.04  #    Negative unit clauses             : 24
% 4.47/1.04  #    Non-unit-clauses                  : 857
% 4.47/1.04  # Current number of unprocessed clauses: 21512
% 4.47/1.04  # ...number of literals in the above   : 105528
% 4.47/1.04  # Current number of archived formulas  : 0
% 4.47/1.04  # Current number of archived clauses   : 388
% 4.47/1.04  # Clause-clause subsumption calls (NU) : 106787
% 4.47/1.04  # Rec. Clause-clause subsumption calls : 61537
% 4.47/1.04  # Non-unit clause-clause subsumptions  : 2006
% 4.47/1.04  # Unit Clause-clause subsumption calls : 12038
% 4.47/1.04  # Rewrite failures with RHS unbound    : 0
% 4.47/1.04  # BW rewrite match attempts            : 238
% 4.47/1.04  # BW rewrite match successes           : 45
% 4.47/1.04  # Condensation attempts                : 0
% 4.47/1.04  # Condensation successes               : 0
% 4.47/1.04  # Termbank termtop insertions          : 575781
% 4.47/1.04  
% 4.47/1.04  # -------------------------------------------------
% 4.47/1.04  # User time                : 0.555 s
% 4.47/1.04  # System time              : 0.015 s
% 4.47/1.04  # Total time               : 0.570 s
% 4.47/1.04  # Maximum resident set size: 1896 pages
% 4.47/1.04  
% 4.47/1.04  # -------------------------------------------------
% 4.47/1.04  # User time                : 2.726 s
% 4.47/1.04  # System time              : 0.046 s
% 4.47/1.04  # Total time               : 2.772 s
% 4.47/1.04  # Maximum resident set size: 1732 pages
% 4.47/1.04  % E---3.1 exiting
% 4.47/1.05  % E---3.1 exiting
%------------------------------------------------------------------------------