TSTP Solution File: NUM434+1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : NUM434+1 : TPTP v8.2.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Mon Jun 24 12:51:55 EDT 2024

% Result   : Theorem 28.14s 4.70s
% Output   : CNFRefutation 28.14s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
fof(f2,axiom,
    aInteger0(sz00),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',mIntZero) ).

fof(f4,axiom,
    ! [X0] :
      ( aInteger0(X0)
     => aInteger0(smndt0(X0)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',mIntNeg) ).

fof(f5,axiom,
    ! [X0,X1] :
      ( ( aInteger0(X1)
        & aInteger0(X0) )
     => aInteger0(sdtpldt0(X0,X1)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',mIntPlus) ).

fof(f6,axiom,
    ! [X0,X1] :
      ( ( aInteger0(X1)
        & aInteger0(X0) )
     => aInteger0(sdtasdt0(X0,X1)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',mIntMult) ).

fof(f15,axiom,
    ! [X0] :
      ( aInteger0(X0)
     => ( sz00 = sdtasdt0(sz00,X0)
        & sz00 = sdtasdt0(X0,sz00) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',mMulZero) ).

fof(f17,axiom,
    ! [X0,X1] :
      ( ( aInteger0(X1)
        & aInteger0(X0) )
     => ( sz00 = sdtasdt0(X0,X1)
       => ( sz00 = X1
          | sz00 = X0 ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',mZeroDiv) ).

fof(f18,axiom,
    ! [X0] :
      ( aInteger0(X0)
     => ! [X1] :
          ( aDivisorOf0(X1,X0)
        <=> ( ? [X2] :
                ( sdtasdt0(X1,X2) = X0
                & aInteger0(X2) )
            & sz00 != X1
            & aInteger0(X1) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',mDivisor) ).

fof(f19,axiom,
    ! [X0,X1,X2] :
      ( ( sz00 != X2
        & aInteger0(X2)
        & aInteger0(X1)
        & aInteger0(X0) )
     => ( sdteqdtlpzmzozddtrp0(X0,X1,X2)
      <=> aDivisorOf0(X2,sdtpldt0(X0,smndt0(X1))) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',mEquMod) ).

fof(f23,axiom,
    ( sz00 != xq
    & aInteger0(xq)
    & sz00 != xp
    & aInteger0(xp)
    & aInteger0(xb)
    & aInteger0(xa) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',m__979) ).

fof(f24,axiom,
    sdteqdtlpzmzozddtrp0(xa,xb,sdtasdt0(xp,xq)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',m__1003) ).

fof(f25,conjecture,
    ? [X0] :
      ( sdtasdt0(sdtasdt0(xp,xq),X0) = sdtpldt0(xa,smndt0(xb))
      & aInteger0(X0) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',m__) ).

fof(f26,negated_conjecture,
    ~ ? [X0] :
        ( sdtasdt0(sdtasdt0(xp,xq),X0) = sdtpldt0(xa,smndt0(xb))
        & aInteger0(X0) ),
    inference(negated_conjecture,[],[f25]) ).

fof(f28,plain,
    ! [X0] :
      ( aInteger0(smndt0(X0))
      | ~ aInteger0(X0) ),
    inference(ennf_transformation,[],[f4]) ).

fof(f29,plain,
    ! [X0,X1] :
      ( aInteger0(sdtpldt0(X0,X1))
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(ennf_transformation,[],[f5]) ).

fof(f30,plain,
    ! [X0,X1] :
      ( aInteger0(sdtpldt0(X0,X1))
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(flattening,[],[f29]) ).

fof(f31,plain,
    ! [X0,X1] :
      ( aInteger0(sdtasdt0(X0,X1))
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(ennf_transformation,[],[f6]) ).

fof(f32,plain,
    ! [X0,X1] :
      ( aInteger0(sdtasdt0(X0,X1))
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(flattening,[],[f31]) ).

fof(f46,plain,
    ! [X0] :
      ( ( sz00 = sdtasdt0(sz00,X0)
        & sz00 = sdtasdt0(X0,sz00) )
      | ~ aInteger0(X0) ),
    inference(ennf_transformation,[],[f15]) ).

fof(f48,plain,
    ! [X0,X1] :
      ( sz00 = X1
      | sz00 = X0
      | sz00 != sdtasdt0(X0,X1)
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(ennf_transformation,[],[f17]) ).

fof(f49,plain,
    ! [X0,X1] :
      ( sz00 = X1
      | sz00 = X0
      | sz00 != sdtasdt0(X0,X1)
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(flattening,[],[f48]) ).

fof(f50,plain,
    ! [X0] :
      ( ! [X1] :
          ( aDivisorOf0(X1,X0)
        <=> ( ? [X2] :
                ( sdtasdt0(X1,X2) = X0
                & aInteger0(X2) )
            & sz00 != X1
            & aInteger0(X1) ) )
      | ~ aInteger0(X0) ),
    inference(ennf_transformation,[],[f18]) ).

fof(f51,plain,
    ! [X0,X1,X2] :
      ( ( sdteqdtlpzmzozddtrp0(X0,X1,X2)
      <=> aDivisorOf0(X2,sdtpldt0(X0,smndt0(X1))) )
      | sz00 = X2
      | ~ aInteger0(X2)
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(ennf_transformation,[],[f19]) ).

fof(f52,plain,
    ! [X0,X1,X2] :
      ( ( sdteqdtlpzmzozddtrp0(X0,X1,X2)
      <=> aDivisorOf0(X2,sdtpldt0(X0,smndt0(X1))) )
      | sz00 = X2
      | ~ aInteger0(X2)
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(flattening,[],[f51]) ).

fof(f59,plain,
    ! [X0] :
      ( sdtasdt0(sdtasdt0(xp,xq),X0) != sdtpldt0(xa,smndt0(xb))
      | ~ aInteger0(X0) ),
    inference(ennf_transformation,[],[f26]) ).

fof(f60,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( aDivisorOf0(X1,X0)
            | ! [X2] :
                ( sdtasdt0(X1,X2) != X0
                | ~ aInteger0(X2) )
            | sz00 = X1
            | ~ aInteger0(X1) )
          & ( ( ? [X2] :
                  ( sdtasdt0(X1,X2) = X0
                  & aInteger0(X2) )
              & sz00 != X1
              & aInteger0(X1) )
            | ~ aDivisorOf0(X1,X0) ) )
      | ~ aInteger0(X0) ),
    inference(nnf_transformation,[],[f50]) ).

fof(f61,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( aDivisorOf0(X1,X0)
            | ! [X2] :
                ( sdtasdt0(X1,X2) != X0
                | ~ aInteger0(X2) )
            | sz00 = X1
            | ~ aInteger0(X1) )
          & ( ( ? [X2] :
                  ( sdtasdt0(X1,X2) = X0
                  & aInteger0(X2) )
              & sz00 != X1
              & aInteger0(X1) )
            | ~ aDivisorOf0(X1,X0) ) )
      | ~ aInteger0(X0) ),
    inference(flattening,[],[f60]) ).

fof(f62,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( aDivisorOf0(X1,X0)
            | ! [X2] :
                ( sdtasdt0(X1,X2) != X0
                | ~ aInteger0(X2) )
            | sz00 = X1
            | ~ aInteger0(X1) )
          & ( ( ? [X3] :
                  ( sdtasdt0(X1,X3) = X0
                  & aInteger0(X3) )
              & sz00 != X1
              & aInteger0(X1) )
            | ~ aDivisorOf0(X1,X0) ) )
      | ~ aInteger0(X0) ),
    inference(rectify,[],[f61]) ).

fof(f63,plain,
    ! [X0,X1] :
      ( ? [X3] :
          ( sdtasdt0(X1,X3) = X0
          & aInteger0(X3) )
     => ( sdtasdt0(X1,sK0(X0,X1)) = X0
        & aInteger0(sK0(X0,X1)) ) ),
    introduced(choice_axiom,[]) ).

fof(f64,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( aDivisorOf0(X1,X0)
            | ! [X2] :
                ( sdtasdt0(X1,X2) != X0
                | ~ aInteger0(X2) )
            | sz00 = X1
            | ~ aInteger0(X1) )
          & ( ( sdtasdt0(X1,sK0(X0,X1)) = X0
              & aInteger0(sK0(X0,X1))
              & sz00 != X1
              & aInteger0(X1) )
            | ~ aDivisorOf0(X1,X0) ) )
      | ~ aInteger0(X0) ),
    inference(skolemisation,[status(esa),new_symbols(skolem,[sK0])],[f62,f63]) ).

fof(f65,plain,
    ! [X0,X1,X2] :
      ( ( ( sdteqdtlpzmzozddtrp0(X0,X1,X2)
          | ~ aDivisorOf0(X2,sdtpldt0(X0,smndt0(X1))) )
        & ( aDivisorOf0(X2,sdtpldt0(X0,smndt0(X1)))
          | ~ sdteqdtlpzmzozddtrp0(X0,X1,X2) ) )
      | sz00 = X2
      | ~ aInteger0(X2)
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(nnf_transformation,[],[f52]) ).

fof(f66,plain,
    aInteger0(sz00),
    inference(cnf_transformation,[],[f2]) ).

fof(f68,plain,
    ! [X0] :
      ( aInteger0(smndt0(X0))
      | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f28]) ).

fof(f69,plain,
    ! [X0,X1] :
      ( aInteger0(sdtpldt0(X0,X1))
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f30]) ).

fof(f70,plain,
    ! [X0,X1] :
      ( aInteger0(sdtasdt0(X0,X1))
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f32]) ).

fof(f83,plain,
    ! [X0] :
      ( sz00 = sdtasdt0(X0,sz00)
      | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f46]) ).

fof(f87,plain,
    ! [X0,X1] :
      ( sz00 = X1
      | sz00 = X0
      | sz00 != sdtasdt0(X0,X1)
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f49]) ).

fof(f90,plain,
    ! [X0,X1] :
      ( aInteger0(sK0(X0,X1))
      | ~ aDivisorOf0(X1,X0)
      | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f64]) ).

fof(f91,plain,
    ! [X0,X1] :
      ( sdtasdt0(X1,sK0(X0,X1)) = X0
      | ~ aDivisorOf0(X1,X0)
      | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f64]) ).

fof(f93,plain,
    ! [X2,X0,X1] :
      ( aDivisorOf0(X2,sdtpldt0(X0,smndt0(X1)))
      | ~ sdteqdtlpzmzozddtrp0(X0,X1,X2)
      | sz00 = X2
      | ~ aInteger0(X2)
      | ~ aInteger0(X1)
      | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f65]) ).

fof(f98,plain,
    aInteger0(xa),
    inference(cnf_transformation,[],[f23]) ).

fof(f99,plain,
    aInteger0(xb),
    inference(cnf_transformation,[],[f23]) ).

fof(f100,plain,
    aInteger0(xp),
    inference(cnf_transformation,[],[f23]) ).

fof(f101,plain,
    sz00 != xp,
    inference(cnf_transformation,[],[f23]) ).

fof(f102,plain,
    aInteger0(xq),
    inference(cnf_transformation,[],[f23]) ).

fof(f103,plain,
    sz00 != xq,
    inference(cnf_transformation,[],[f23]) ).

fof(f104,plain,
    sdteqdtlpzmzozddtrp0(xa,xb,sdtasdt0(xp,xq)),
    inference(cnf_transformation,[],[f24]) ).

fof(f105,plain,
    ! [X0] :
      ( sdtasdt0(sdtasdt0(xp,xq),X0) != sdtpldt0(xa,smndt0(xb))
      | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f59]) ).

cnf(c_49,plain,
    aInteger0(sz00),
    inference(cnf_transformation,[],[f66]) ).

cnf(c_51,plain,
    ( ~ aInteger0(X0)
    | aInteger0(smndt0(X0)) ),
    inference(cnf_transformation,[],[f68]) ).

cnf(c_52,plain,
    ( ~ aInteger0(X0)
    | ~ aInteger0(X1)
    | aInteger0(sdtpldt0(X0,X1)) ),
    inference(cnf_transformation,[],[f69]) ).

cnf(c_53,plain,
    ( ~ aInteger0(X0)
    | ~ aInteger0(X1)
    | aInteger0(sdtasdt0(X0,X1)) ),
    inference(cnf_transformation,[],[f70]) ).

cnf(c_67,plain,
    ( ~ aInteger0(X0)
    | sdtasdt0(X0,sz00) = sz00 ),
    inference(cnf_transformation,[],[f83]) ).

cnf(c_70,plain,
    ( sdtasdt0(X0,X1) != sz00
    | ~ aInteger0(X0)
    | ~ aInteger0(X1)
    | X0 = sz00
    | X1 = sz00 ),
    inference(cnf_transformation,[],[f87]) ).

cnf(c_72,plain,
    ( ~ aDivisorOf0(X0,X1)
    | ~ aInteger0(X1)
    | sdtasdt0(X0,sK0(X1,X0)) = X1 ),
    inference(cnf_transformation,[],[f91]) ).

cnf(c_73,plain,
    ( ~ aDivisorOf0(X0,X1)
    | ~ aInteger0(X1)
    | aInteger0(sK0(X1,X0)) ),
    inference(cnf_transformation,[],[f90]) ).

cnf(c_77,plain,
    ( ~ sdteqdtlpzmzozddtrp0(X0,X1,X2)
    | ~ aInteger0(X0)
    | ~ aInteger0(X1)
    | ~ aInteger0(X2)
    | X2 = sz00
    | aDivisorOf0(X2,sdtpldt0(X0,smndt0(X1))) ),
    inference(cnf_transformation,[],[f93]) ).

cnf(c_81,negated_conjecture,
    sz00 != xq,
    inference(cnf_transformation,[],[f103]) ).

cnf(c_82,plain,
    aInteger0(xq),
    inference(cnf_transformation,[],[f102]) ).

cnf(c_83,negated_conjecture,
    sz00 != xp,
    inference(cnf_transformation,[],[f101]) ).

cnf(c_84,plain,
    aInteger0(xp),
    inference(cnf_transformation,[],[f100]) ).

cnf(c_85,plain,
    aInteger0(xb),
    inference(cnf_transformation,[],[f99]) ).

cnf(c_86,plain,
    aInteger0(xa),
    inference(cnf_transformation,[],[f98]) ).

cnf(c_87,plain,
    sdteqdtlpzmzozddtrp0(xa,xb,sdtasdt0(xp,xq)),
    inference(cnf_transformation,[],[f104]) ).

cnf(c_88,negated_conjecture,
    ( sdtasdt0(sdtasdt0(xp,xq),X0) != sdtpldt0(xa,smndt0(xb))
    | ~ aInteger0(X0) ),
    inference(cnf_transformation,[],[f105]) ).

cnf(c_91,plain,
    ( ~ aInteger0(sz00)
    | sdtasdt0(sz00,sz00) = sz00 ),
    inference(instantiation,[status(thm)],[c_67]) ).

cnf(c_106,plain,
    ( sdtasdt0(sz00,sz00) != sz00
    | ~ aInteger0(sz00)
    | sz00 = sz00 ),
    inference(instantiation,[status(thm)],[c_70]) ).

cnf(c_125,plain,
    sdtasdt0(xp,xq) = sP0_iProver_def,
    definition ).

cnf(c_126,plain,
    smndt0(xb) = sP1_iProver_def,
    definition ).

cnf(c_127,plain,
    sdtpldt0(xa,sP1_iProver_def) = sP2_iProver_def,
    definition ).

cnf(c_128,negated_conjecture,
    ( sdtasdt0(sP0_iProver_def,X0) != sP2_iProver_def
    | ~ aInteger0(X0) ),
    inference(demodulation,[status(thm)],[c_88,c_126,c_127,c_125]) ).

cnf(c_132,plain,
    X0 = X0,
    theory(equality) ).

cnf(c_134,plain,
    ( X0 != X1
    | X2 != X1
    | X2 = X0 ),
    theory(equality) ).

cnf(c_135,plain,
    ( X0 != X1
    | ~ aInteger0(X1)
    | aInteger0(X0) ),
    theory(equality) ).

cnf(c_149,plain,
    ( sz00 != X0
    | xq != X0
    | sz00 = xq ),
    inference(instantiation,[status(thm)],[c_134]) ).

cnf(c_150,plain,
    ( sz00 != sz00
    | xq != sz00
    | sz00 = xq ),
    inference(instantiation,[status(thm)],[c_149]) ).

cnf(c_151,plain,
    ( sz00 != X0
    | xp != X0
    | sz00 = xp ),
    inference(instantiation,[status(thm)],[c_134]) ).

cnf(c_152,plain,
    ( sz00 != sz00
    | xp != sz00
    | sz00 = xp ),
    inference(instantiation,[status(thm)],[c_151]) ).

cnf(c_201,plain,
    ( ~ aInteger0(xb)
    | aInteger0(sP1_iProver_def) ),
    inference(superposition,[status(thm)],[c_126,c_51]) ).

cnf(c_204,plain,
    sdteqdtlpzmzozddtrp0(xa,xb,sP0_iProver_def),
    inference(superposition,[status(thm)],[c_125,c_87]) ).

cnf(c_217,plain,
    ( sdtasdt0(X0,xq) != sz00
    | ~ aInteger0(X0)
    | ~ aInteger0(xq)
    | X0 = sz00
    | xq = sz00 ),
    inference(instantiation,[status(thm)],[c_70]) ).

cnf(c_504,plain,
    ( ~ aInteger0(xa)
    | ~ aInteger0(sP1_iProver_def)
    | aInteger0(sP2_iProver_def) ),
    inference(superposition,[status(thm)],[c_127,c_52]) ).

cnf(c_542,plain,
    ( ~ aInteger0(xq)
    | ~ aInteger0(xp)
    | aInteger0(sP0_iProver_def) ),
    inference(superposition,[status(thm)],[c_125,c_53]) ).

cnf(c_592,plain,
    ( sdtasdt0(xp,xq) != sz00
    | ~ aInteger0(xq)
    | ~ aInteger0(xp)
    | xq = sz00
    | xp = sz00 ),
    inference(instantiation,[status(thm)],[c_217]) ).

cnf(c_739,plain,
    ( ~ aInteger0(sP2_iProver_def)
    | aInteger0(sdtpldt0(xa,sP1_iProver_def)) ),
    inference(resolution,[status(thm)],[c_135,c_127]) ).

cnf(c_1084,plain,
    ( X0 != X1
    | X1 = X0 ),
    inference(resolution,[status(thm)],[c_134,c_132]) ).

cnf(c_1087,plain,
    ( X0 != sP0_iProver_def
    | sdtasdt0(xp,xq) = X0 ),
    inference(resolution,[status(thm)],[c_134,c_125]) ).

cnf(c_1088,plain,
    ( sz00 != sP0_iProver_def
    | sdtasdt0(xp,xq) = sz00 ),
    inference(instantiation,[status(thm)],[c_1087]) ).

cnf(c_1347,plain,
    sP2_iProver_def = sdtpldt0(xa,sP1_iProver_def),
    inference(resolution,[status(thm)],[c_1084,c_127]) ).

cnf(c_1861,plain,
    ( X0 != X1
    | ~ aDivisorOf0(X2,X1)
    | ~ aInteger0(X1)
    | sdtasdt0(X2,sK0(X1,X2)) = X0 ),
    inference(resolution,[status(thm)],[c_72,c_134]) ).

cnf(c_2757,plain,
    ( ~ sdteqdtlpzmzozddtrp0(X0,xb,X1)
    | ~ aInteger0(X0)
    | ~ aInteger0(X1)
    | ~ aInteger0(xb)
    | X1 = sz00
    | aDivisorOf0(X1,sdtpldt0(X0,sP1_iProver_def)) ),
    inference(superposition,[status(thm)],[c_126,c_77]) ).

cnf(c_9657,plain,
    ( X0 != X1
    | sP0_iProver_def != X1
    | X0 = sP0_iProver_def ),
    inference(instantiation,[status(thm)],[c_134]) ).

cnf(c_9658,plain,
    ( sz00 != sz00
    | sP0_iProver_def != sz00
    | sz00 = sP0_iProver_def ),
    inference(instantiation,[status(thm)],[c_9657]) ).

cnf(c_26733,plain,
    ( sP2_iProver_def != X0
    | ~ aInteger0(sK0(X0,sP0_iProver_def))
    | ~ aDivisorOf0(sP0_iProver_def,X0)
    | ~ aInteger0(X0) ),
    inference(resolution,[status(thm)],[c_1861,c_128]) ).

cnf(c_27352,plain,
    ( sP2_iProver_def != X0
    | ~ aDivisorOf0(sP0_iProver_def,X0)
    | ~ aInteger0(X0) ),
    inference(forward_subsumption_resolution,[status(thm)],[c_26733,c_73]) ).

cnf(c_27365,plain,
    ( ~ aDivisorOf0(sP0_iProver_def,sdtpldt0(xa,sP1_iProver_def))
    | ~ aInteger0(sdtpldt0(xa,sP1_iProver_def)) ),
    inference(resolution,[status(thm)],[c_27352,c_1347]) ).

cnf(c_56349,plain,
    ( ~ sdteqdtlpzmzozddtrp0(X0,xb,sP0_iProver_def)
    | ~ aInteger0(X0)
    | ~ aInteger0(xb)
    | ~ aInteger0(sP0_iProver_def)
    | sP0_iProver_def = sz00
    | aDivisorOf0(sP0_iProver_def,sdtpldt0(X0,sP1_iProver_def)) ),
    inference(instantiation,[status(thm)],[c_2757]) ).

cnf(c_62417,plain,
    ( ~ sdteqdtlpzmzozddtrp0(xa,xb,sP0_iProver_def)
    | ~ aInteger0(xb)
    | ~ aInteger0(xa)
    | ~ aInteger0(sP0_iProver_def)
    | sP0_iProver_def = sz00
    | aDivisorOf0(sP0_iProver_def,sdtpldt0(xa,sP1_iProver_def)) ),
    inference(instantiation,[status(thm)],[c_56349]) ).

cnf(c_62418,plain,
    $false,
    inference(prop_impl_just,[status(thm)],[c_62417,c_27365,c_9658,c_1088,c_739,c_592,c_542,c_504,c_204,c_201,c_152,c_150,c_106,c_91,c_81,c_83,c_49,c_82,c_84,c_85,c_86]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.13  % Problem  : NUM434+1 : TPTP v8.2.0. Released v4.0.0.
% 0.04/0.13  % Command  : run_iprover %s %d THM
% 0.13/0.34  % Computer : n018.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Sat Jun 22 22:45:39 EDT 2024
% 0.13/0.34  % CPUTime  : 
% 0.21/0.49  Running first-order theorem proving
% 0.21/0.49  Running: /export/starexec/sandbox2/solver/bin/run_problem --schedule fof_schedule --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox2/benchmark/theBenchmark.p 300
% 28.14/4.70  % SZS status Started for theBenchmark.p
% 28.14/4.70  % SZS status Theorem for theBenchmark.p
% 28.14/4.70  
% 28.14/4.70  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 28.14/4.70  
% 28.14/4.70  ------  iProver source info
% 28.14/4.70  
% 28.14/4.70  git: date: 2024-06-12 09:56:46 +0000
% 28.14/4.70  git: sha1: 4869ab62f0a3398f9d3a35e6db7918ebd3847e49
% 28.14/4.70  git: non_committed_changes: false
% 28.14/4.70  
% 28.14/4.70  ------ Parsing...
% 28.14/4.70  ------ Clausification by vclausify_rel  & Parsing by iProver...
% 28.14/4.70  
% 28.14/4.70  ------ Preprocessing... sup_sim: 0  sf_s  rm: 1 0s  sf_e 
% 28.14/4.70  
% 28.14/4.70  ------ Preprocessing...
% 28.14/4.70  
% 28.14/4.70  ------ Preprocessing... sf_s  rm: 1 0s  sf_e  sf_s  rm: 0 0s  sf_e 
% 28.14/4.70  ------ Proving...
% 28.14/4.70  ------ Problem Properties 
% 28.14/4.70  
% 28.14/4.70  
% 28.14/4.70  clauses                                 43
% 28.14/4.70  conjectures                             4
% 28.14/4.70  EPR                                     13
% 28.14/4.70  Horn                                    36
% 28.14/4.70  unary                                   12
% 28.14/4.70  binary                                  13
% 28.14/4.70  lits                                    114
% 28.14/4.70  lits eq                                 32
% 28.14/4.70  fd_pure                                 0
% 28.14/4.70  fd_pseudo                               0
% 28.14/4.70  fd_cond                                 7
% 28.14/4.70  fd_pseudo_cond                          0
% 28.14/4.70  AC symbols                              0
% 28.14/4.70  
% 28.14/4.70  ------ Input Options Time Limit: Unbounded
% 28.14/4.70  
% 28.14/4.70  
% 28.14/4.70  ------ 
% 28.14/4.70  Current options:
% 28.14/4.70  ------ 
% 28.14/4.70  
% 28.14/4.70  
% 28.14/4.70  
% 28.14/4.70  
% 28.14/4.70  ------ Proving...
% 28.14/4.70  
% 28.14/4.70  
% 28.14/4.70  % SZS status Theorem for theBenchmark.p
% 28.14/4.70  
% 28.14/4.70  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 28.14/4.70  
% 28.14/4.70  
%------------------------------------------------------------------------------