TSTP Solution File: NUM401+1 by Princess---230619

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Princess---230619
% Problem  : NUM401+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp
% Command  : princess -inputFormat=tptp +threads -portfolio=casc +printProof -timeoutSec=%d %s

% Computer : n031.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 11:47:35 EDT 2023

% Result   : Theorem 59.73s 8.63s
% Output   : Proof 60.40s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : NUM401+1 : TPTP v8.1.2. Released v3.2.0.
% 0.00/0.13  % Command  : princess -inputFormat=tptp +threads -portfolio=casc +printProof -timeoutSec=%d %s
% 0.13/0.35  % Computer : n031.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Fri Aug 25 15:54:22 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.21/0.61  ________       _____
% 0.21/0.61  ___  __ \_________(_)________________________________
% 0.21/0.61  __  /_/ /_  ___/_  /__  __ \  ___/  _ \_  ___/_  ___/
% 0.21/0.61  _  ____/_  /   _  / _  / / / /__ /  __/(__  )_(__  )
% 0.21/0.61  /_/     /_/    /_/  /_/ /_/\___/ \___//____/ /____/
% 0.21/0.61  
% 0.21/0.61  A Theorem Prover for First-Order Logic modulo Linear Integer Arithmetic
% 0.21/0.61  (2023-06-19)
% 0.21/0.61  
% 0.21/0.61  (c) Philipp Rümmer, 2009-2023
% 0.21/0.61  Contributors: Peter Backeman, Peter Baumgartner, Angelo Brillout, Zafer Esen,
% 0.21/0.61                Amanda Stjerna.
% 0.21/0.61  Free software under BSD-3-Clause.
% 0.21/0.61  
% 0.21/0.61  For more information, visit http://www.philipp.ruemmer.org/princess.shtml
% 0.21/0.61  
% 0.21/0.61  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.21/0.63  Running up to 7 provers in parallel.
% 0.21/0.64  Prover 0: Options:  +triggersInConjecture +genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=0 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1042961893
% 0.21/0.64  Prover 2: Options:  +triggersInConjecture +genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMinimalAndEmpty -realRatSaturationRounds=1 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=-1065072994
% 0.21/0.64  Prover 3: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1922548996
% 0.21/0.64  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-1571432423
% 0.21/0.64  Prover 6: Options:  -triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=none +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximalOutermost -realRatSaturationRounds=0 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=-1399714365
% 0.21/0.64  Prover 4: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=1868514696
% 0.21/0.64  Prover 5: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=none +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -realRatSaturationRounds=1 -ignoreQuantifiers -constructProofs=never -generateTriggers=complete -randomSeed=1259561288
% 2.97/1.10  Prover 4: Preprocessing ...
% 2.97/1.11  Prover 1: Preprocessing ...
% 3.39/1.14  Prover 6: Preprocessing ...
% 3.39/1.15  Prover 2: Preprocessing ...
% 3.39/1.15  Prover 0: Preprocessing ...
% 3.39/1.15  Prover 5: Preprocessing ...
% 3.53/1.16  Prover 3: Preprocessing ...
% 7.03/1.71  Prover 1: Warning: ignoring some quantifiers
% 7.03/1.71  Prover 5: Proving ...
% 7.74/1.76  Prover 1: Constructing countermodel ...
% 7.74/1.78  Prover 2: Proving ...
% 7.74/1.79  Prover 3: Warning: ignoring some quantifiers
% 7.74/1.80  Prover 6: Proving ...
% 7.74/1.82  Prover 3: Constructing countermodel ...
% 7.74/1.83  Prover 4: Warning: ignoring some quantifiers
% 8.65/1.90  Prover 4: Constructing countermodel ...
% 8.65/1.92  Prover 0: Proving ...
% 15.03/2.76  Prover 3: gave up
% 15.03/2.77  Prover 7: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-236303470
% 15.03/2.81  Prover 7: Preprocessing ...
% 16.45/2.95  Prover 7: Warning: ignoring some quantifiers
% 16.45/2.96  Prover 7: Constructing countermodel ...
% 27.00/4.33  Prover 1: gave up
% 27.13/4.35  Prover 8: Options:  +triggersInConjecture +genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-200781089
% 27.13/4.41  Prover 8: Preprocessing ...
% 28.11/4.59  Prover 8: Warning: ignoring some quantifiers
% 28.11/4.60  Prover 8: Constructing countermodel ...
% 35.42/5.50  Prover 8: gave up
% 36.08/5.51  Prover 9: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allMinimal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1423531889
% 36.08/5.56  Prover 9: Preprocessing ...
% 37.80/5.77  Prover 9: Warning: ignoring some quantifiers
% 37.80/5.77  Prover 9: Constructing countermodel ...
% 58.53/8.55  Prover 7: Found proof (size 154)
% 58.53/8.55  Prover 7: proved (5780ms)
% 58.53/8.56  Prover 2: stopped
% 58.53/8.56  Prover 6: stopped
% 58.53/8.56  Prover 4: stopped
% 58.53/8.57  Prover 0: stopped
% 58.53/8.57  Prover 10: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=919308125
% 58.53/8.57  Prover 5: stopped
% 59.73/8.60  Prover 10: Preprocessing ...
% 59.73/8.61  Prover 10: stopped
% 59.73/8.63  Prover 9: stopped
% 59.73/8.63  
% 59.73/8.63  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 59.73/8.63  
% 59.73/8.64  % SZS output start Proof for theBenchmark
% 59.73/8.65  Assumptions after simplification:
% 59.73/8.65  ---------------------------------
% 59.73/8.65  
% 59.73/8.65    (cc1_ordinal1)
% 59.73/8.65     ! [v0: $i] : ( ~ $i(v0) |  ~ ordinal(v0) | epsilon_connected(v0)) &  ! [v0:
% 59.73/8.65      $i] : ( ~ $i(v0) |  ~ ordinal(v0) | epsilon_transitive(v0))
% 59.73/8.65  
% 59.73/8.65    (commutativity_k2_xboole_0)
% 60.15/8.67     ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ (set_union2(v1, v0) = v2) |  ~
% 60.15/8.67      $i(v1) |  ~ $i(v0) | (set_union2(v0, v1) = v2 & $i(v2))) &  ! [v0: $i] :  !
% 60.15/8.67    [v1: $i] :  ! [v2: $i] : ( ~ (set_union2(v0, v1) = v2) |  ~ $i(v1) |  ~ $i(v0)
% 60.15/8.67      | (set_union2(v1, v0) = v2 & $i(v2)))
% 60.15/8.67  
% 60.15/8.68    (connectedness_r1_ordinal1)
% 60.15/8.68     ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ ordinal(v1) |  ~
% 60.15/8.68      ordinal(v0) | ordinal_subset(v1, v0) | ordinal_subset(v0, v1))
% 60.15/8.68  
% 60.15/8.68    (d10_xboole_0)
% 60.15/8.68     ! [v0: $i] :  ! [v1: $i] : (v1 = v0 |  ~ $i(v1) |  ~ $i(v0) |  ~ subset(v1,
% 60.15/8.68        v0) |  ~ subset(v0, v1)) &  ? [v0: $i] : ( ~ $i(v0) | subset(v0, v0))
% 60.15/8.68  
% 60.15/8.68    (d1_ordinal1)
% 60.15/8.68     ! [v0: $i] :  ! [v1: $i] : ( ~ (succ(v0) = v1) |  ~ $i(v0) |  ? [v2: $i] :
% 60.15/8.68      (singleton(v0) = v2 & set_union2(v0, v2) = v1 & $i(v2) & $i(v1))) &  ! [v0:
% 60.15/8.68      $i] :  ! [v1: $i] : ( ~ (singleton(v0) = v1) |  ~ $i(v0) |  ? [v2: $i] :
% 60.15/8.68      (succ(v0) = v2 & set_union2(v0, v1) = v2 & $i(v2)))
% 60.15/8.68  
% 60.15/8.68    (d1_tarski)
% 60.15/8.68     ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v2 = v0 |  ~ (singleton(v0) = v1) |
% 60.15/8.68       ~ $i(v2) |  ~ $i(v1) |  ~ $i(v0) |  ~ in(v2, v1)) &  ? [v0: $i] :  ! [v1:
% 60.15/8.68      $i] :  ! [v2: $i] : (v2 = v0 |  ~ (singleton(v1) = v2) |  ~ $i(v1) |  ~
% 60.15/8.68      $i(v0) |  ? [v3: $i] : ($i(v3) & ( ~ (v3 = v1) |  ~ in(v1, v0)) & (v3 = v1 |
% 60.15/8.68          in(v3, v0)))) &  ! [v0: $i] :  ! [v1: $i] : ( ~ (singleton(v0) = v1) | 
% 60.15/8.68      ~ $i(v1) |  ~ $i(v0) | in(v0, v1))
% 60.15/8.68  
% 60.15/8.68    (d2_ordinal1)
% 60.15/8.68     ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ epsilon_transitive(v0)
% 60.15/8.68      |  ~ in(v1, v0) | subset(v1, v0)) &  ? [v0: $i] : ( ~ $i(v0) |
% 60.15/8.68      epsilon_transitive(v0) |  ? [v1: $i] : ($i(v1) & in(v1, v0) &  ~ subset(v1,
% 60.15/8.68          v0)))
% 60.15/8.68  
% 60.15/8.68    (d2_xboole_0)
% 60.15/8.69     ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : ( ~ (set_union2(v0,
% 60.15/8.69          v1) = v2) |  ~ $i(v3) |  ~ $i(v2) |  ~ $i(v1) |  ~ $i(v0) |  ~ in(v3,
% 60.15/8.69        v2) | in(v3, v1) | in(v3, v0)) &  ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :
% 60.15/8.69     ! [v3: $i] : ( ~ (set_union2(v0, v1) = v2) |  ~ $i(v3) |  ~ $i(v2) |  ~
% 60.15/8.69      $i(v1) |  ~ $i(v0) |  ~ in(v3, v1) | in(v3, v2)) &  ! [v0: $i] :  ! [v1: $i]
% 60.15/8.69    :  ! [v2: $i] :  ! [v3: $i] : ( ~ (set_union2(v0, v1) = v2) |  ~ $i(v3) |  ~
% 60.15/8.69      $i(v2) |  ~ $i(v1) |  ~ $i(v0) |  ~ in(v3, v0) | in(v3, v2)) &  ? [v0: $i] :
% 60.15/8.69     ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v3 = v0 |  ~ (set_union2(v1, v2) =
% 60.15/8.69        v3) |  ~ $i(v2) |  ~ $i(v1) |  ~ $i(v0) |  ? [v4: $i] : ($i(v4) & ( ~
% 60.15/8.69          in(v4, v0) | ( ~ in(v4, v2) &  ~ in(v4, v1))) & (in(v4, v2) | in(v4, v1)
% 60.15/8.69          | in(v4, v0))))
% 60.15/8.69  
% 60.15/8.69    (fc2_ordinal1)
% 60.15/8.69    $i(empty_set) & relation_empty_yielding(empty_set) & one_to_one(empty_set) &
% 60.15/8.69    relation(empty_set) & epsilon_connected(empty_set) &
% 60.15/8.69    epsilon_transitive(empty_set) & ordinal(empty_set) & function(empty_set) &
% 60.15/8.69    empty(empty_set)
% 60.15/8.69  
% 60.15/8.69    (rc1_ordinal1)
% 60.15/8.69     ? [v0: $i] : ($i(v0) & epsilon_connected(v0) & epsilon_transitive(v0) &
% 60.15/8.69      ordinal(v0))
% 60.15/8.69  
% 60.15/8.69    (rc1_relat_1)
% 60.15/8.69     ? [v0: $i] : ($i(v0) & relation(v0) & empty(v0))
% 60.15/8.69  
% 60.15/8.69    (rc1_xboole_0)
% 60.15/8.69     ? [v0: $i] : ($i(v0) & empty(v0))
% 60.15/8.69  
% 60.15/8.69    (rc2_funct_1)
% 60.15/8.69     ? [v0: $i] : ($i(v0) & relation(v0) & function(v0) & empty(v0))
% 60.15/8.69  
% 60.15/8.69    (rc2_ordinal1)
% 60.15/8.69     ? [v0: $i] : ($i(v0) & one_to_one(v0) & relation(v0) & epsilon_connected(v0)
% 60.15/8.69      & epsilon_transitive(v0) & ordinal(v0) & function(v0) & empty(v0))
% 60.15/8.69  
% 60.15/8.69    (rc3_ordinal1)
% 60.15/8.69     ? [v0: $i] : ($i(v0) & epsilon_connected(v0) & epsilon_transitive(v0) &
% 60.15/8.69      ordinal(v0) &  ~ empty(v0))
% 60.15/8.69  
% 60.15/8.69    (redefinition_r1_ordinal1)
% 60.15/8.69     ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ subset(v0, v1) |  ~
% 60.15/8.69      ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v1)) &  ! [v0: $i] :  !
% 60.15/8.69    [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ ordinal_subset(v0, v1) |  ~ ordinal(v1)
% 60.15/8.69      |  ~ ordinal(v0) | subset(v0, v1))
% 60.15/8.69  
% 60.15/8.69    (reflexivity_r1_ordinal1)
% 60.15/8.69     ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ ordinal(v1) |  ~
% 60.15/8.69      ordinal(v0) | ordinal_subset(v0, v0))
% 60.15/8.69  
% 60.15/8.69    (t10_ordinal1)
% 60.15/8.69     ! [v0: $i] :  ! [v1: $i] : ( ~ (succ(v0) = v1) |  ~ $i(v0) | in(v0, v1))
% 60.15/8.69  
% 60.15/8.69    (t24_ordinal1)
% 60.15/8.69     ! [v0: $i] :  ! [v1: $i] : (v1 = v0 |  ~ $i(v1) |  ~ $i(v0) |  ~ ordinal(v1)
% 60.15/8.69      |  ~ ordinal(v0) | in(v1, v0) | in(v0, v1))
% 60.15/8.69  
% 60.27/8.70    (t34_ordinal1)
% 60.27/8.70     ? [v0: $i] :  ? [v1: $i] :  ? [v2: $i] : (succ(v1) = v2 & $i(v2) & $i(v1) &
% 60.27/8.70      $i(v0) & ordinal(v1) & ordinal(v0) & ((ordinal_subset(v0, v1) &  ~ in(v0,
% 60.27/8.70            v2)) | (in(v0, v2) &  ~ ordinal_subset(v0, v1))))
% 60.27/8.70  
% 60.27/8.70    (t6_boole)
% 60.27/8.70    $i(empty_set) &  ! [v0: $i] : (v0 = empty_set |  ~ $i(v0) |  ~ empty(v0))
% 60.27/8.70  
% 60.27/8.70    (t7_boole)
% 60.27/8.70     ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ empty(v1) |  ~ in(v0,
% 60.27/8.70        v1))
% 60.27/8.70  
% 60.27/8.70    (t8_boole)
% 60.27/8.70     ! [v0: $i] :  ! [v1: $i] : (v1 = v0 |  ~ $i(v1) |  ~ $i(v0) |  ~ empty(v1) | 
% 60.27/8.70      ~ empty(v0))
% 60.27/8.70  
% 60.27/8.70  Further assumptions not needed in the proof:
% 60.27/8.70  --------------------------------------------
% 60.27/8.70  antisymmetry_r2_hidden, cc1_funct_1, cc1_relat_1, cc2_funct_1, cc2_ordinal1,
% 60.27/8.70  cc3_ordinal1, existence_m1_subset_1, fc12_relat_1, fc1_ordinal1, fc1_xboole_0,
% 60.27/8.70  fc2_relat_1, fc2_xboole_0, fc3_ordinal1, fc3_xboole_0, fc4_relat_1,
% 60.27/8.70  idempotence_k2_xboole_0, rc1_funct_1, rc2_relat_1, rc2_xboole_0, rc3_funct_1,
% 60.27/8.70  rc3_relat_1, rc4_funct_1, rc5_funct_1, reflexivity_r1_tarski, t14_ordinal1,
% 60.27/8.70  t1_boole, t1_subset, t2_subset, t3_subset, t4_subset, t5_subset
% 60.27/8.70  
% 60.27/8.70  Those formulas are unsatisfiable:
% 60.27/8.70  ---------------------------------
% 60.27/8.70  
% 60.27/8.70  Begin of proof
% 60.27/8.70  | 
% 60.27/8.70  | ALPHA: (cc1_ordinal1) implies:
% 60.27/8.70  |   (1)   ! [v0: $i] : ( ~ $i(v0) |  ~ ordinal(v0) | epsilon_transitive(v0))
% 60.27/8.70  | 
% 60.27/8.70  | ALPHA: (commutativity_k2_xboole_0) implies:
% 60.27/8.70  |   (2)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ (set_union2(v1, v0) = v2)
% 60.27/8.70  |          |  ~ $i(v1) |  ~ $i(v0) | (set_union2(v0, v1) = v2 & $i(v2)))
% 60.27/8.70  | 
% 60.27/8.70  | ALPHA: (d10_xboole_0) implies:
% 60.27/8.70  |   (3)   ! [v0: $i] :  ! [v1: $i] : (v1 = v0 |  ~ $i(v1) |  ~ $i(v0) |  ~
% 60.27/8.70  |          subset(v1, v0) |  ~ subset(v0, v1))
% 60.27/8.70  | 
% 60.27/8.70  | ALPHA: (d1_ordinal1) implies:
% 60.27/8.70  |   (4)   ! [v0: $i] :  ! [v1: $i] : ( ~ (succ(v0) = v1) |  ~ $i(v0) |  ? [v2:
% 60.27/8.70  |            $i] : (singleton(v0) = v2 & set_union2(v0, v2) = v1 & $i(v2) &
% 60.27/8.70  |            $i(v1)))
% 60.27/8.70  | 
% 60.27/8.70  | ALPHA: (d1_tarski) implies:
% 60.27/8.70  |   (5)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v2 = v0 |  ~ (singleton(v0)
% 60.27/8.70  |            = v1) |  ~ $i(v2) |  ~ $i(v1) |  ~ $i(v0) |  ~ in(v2, v1))
% 60.27/8.70  | 
% 60.27/8.70  | ALPHA: (d2_ordinal1) implies:
% 60.27/8.70  |   (6)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~
% 60.27/8.70  |          epsilon_transitive(v0) |  ~ in(v1, v0) | subset(v1, v0))
% 60.27/8.70  | 
% 60.27/8.70  | ALPHA: (d2_xboole_0) implies:
% 60.27/8.71  |   (7)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : ( ~
% 60.27/8.71  |          (set_union2(v0, v1) = v2) |  ~ $i(v3) |  ~ $i(v2) |  ~ $i(v1) |  ~
% 60.27/8.71  |          $i(v0) |  ~ in(v3, v0) | in(v3, v2))
% 60.27/8.71  |   (8)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : ( ~
% 60.27/8.71  |          (set_union2(v0, v1) = v2) |  ~ $i(v3) |  ~ $i(v2) |  ~ $i(v1) |  ~
% 60.27/8.71  |          $i(v0) |  ~ in(v3, v2) | in(v3, v1) | in(v3, v0))
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (fc2_ordinal1) implies:
% 60.27/8.71  |   (9)  ordinal(empty_set)
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (redefinition_r1_ordinal1) implies:
% 60.27/8.71  |   (10)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~
% 60.27/8.71  |           ordinal_subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) |
% 60.27/8.71  |           subset(v0, v1))
% 60.27/8.71  |   (11)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ subset(v0, v1)
% 60.27/8.71  |           |  ~ ordinal(v1) |  ~ ordinal(v0) | ordinal_subset(v0, v1))
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (t6_boole) implies:
% 60.27/8.71  |   (12)  $i(empty_set)
% 60.27/8.71  |   (13)   ! [v0: $i] : (v0 = empty_set |  ~ $i(v0) |  ~ empty(v0))
% 60.27/8.71  | 
% 60.27/8.71  | DELTA: instantiating (rc1_xboole_0) with fresh symbol all_38_0 gives:
% 60.27/8.71  |   (14)  $i(all_38_0) & empty(all_38_0)
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (14) implies:
% 60.27/8.71  |   (15)  empty(all_38_0)
% 60.27/8.71  |   (16)  $i(all_38_0)
% 60.27/8.71  | 
% 60.27/8.71  | DELTA: instantiating (rc1_relat_1) with fresh symbol all_44_0 gives:
% 60.27/8.71  |   (17)  $i(all_44_0) & relation(all_44_0) & empty(all_44_0)
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (17) implies:
% 60.27/8.71  |   (18)  empty(all_44_0)
% 60.27/8.71  |   (19)  $i(all_44_0)
% 60.27/8.71  | 
% 60.27/8.71  | DELTA: instantiating (rc2_funct_1) with fresh symbol all_53_0 gives:
% 60.27/8.71  |   (20)  $i(all_53_0) & relation(all_53_0) & function(all_53_0) &
% 60.27/8.71  |         empty(all_53_0)
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (20) implies:
% 60.27/8.71  |   (21)  empty(all_53_0)
% 60.27/8.71  |   (22)  $i(all_53_0)
% 60.27/8.71  | 
% 60.27/8.71  | DELTA: instantiating (rc1_ordinal1) with fresh symbol all_57_0 gives:
% 60.27/8.71  |   (23)  $i(all_57_0) & epsilon_connected(all_57_0) &
% 60.27/8.71  |         epsilon_transitive(all_57_0) & ordinal(all_57_0)
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (23) implies:
% 60.27/8.71  |   (24)  ordinal(all_57_0)
% 60.27/8.71  |   (25)  $i(all_57_0)
% 60.27/8.71  | 
% 60.27/8.71  | DELTA: instantiating (rc3_ordinal1) with fresh symbol all_63_0 gives:
% 60.27/8.71  |   (26)  $i(all_63_0) & epsilon_connected(all_63_0) &
% 60.27/8.71  |         epsilon_transitive(all_63_0) & ordinal(all_63_0) &  ~ empty(all_63_0)
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (26) implies:
% 60.27/8.71  |   (27)  ordinal(all_63_0)
% 60.27/8.71  |   (28)  epsilon_transitive(all_63_0)
% 60.27/8.71  |   (29)  $i(all_63_0)
% 60.27/8.71  | 
% 60.27/8.71  | DELTA: instantiating (rc2_ordinal1) with fresh symbol all_66_0 gives:
% 60.27/8.71  |   (30)  $i(all_66_0) & one_to_one(all_66_0) & relation(all_66_0) &
% 60.27/8.71  |         epsilon_connected(all_66_0) & epsilon_transitive(all_66_0) &
% 60.27/8.71  |         ordinal(all_66_0) & function(all_66_0) & empty(all_66_0)
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (30) implies:
% 60.27/8.71  |   (31)  empty(all_66_0)
% 60.27/8.71  |   (32)  $i(all_66_0)
% 60.27/8.71  | 
% 60.27/8.71  | DELTA: instantiating (t34_ordinal1) with fresh symbols all_70_0, all_70_1,
% 60.27/8.71  |        all_70_2 gives:
% 60.27/8.71  |   (33)  succ(all_70_1) = all_70_0 & $i(all_70_0) & $i(all_70_1) & $i(all_70_2)
% 60.27/8.71  |         & ordinal(all_70_1) & ordinal(all_70_2) & ((ordinal_subset(all_70_2,
% 60.27/8.71  |               all_70_1) &  ~ in(all_70_2, all_70_0)) | (in(all_70_2, all_70_0)
% 60.27/8.71  |             &  ~ ordinal_subset(all_70_2, all_70_1)))
% 60.27/8.71  | 
% 60.27/8.71  | ALPHA: (33) implies:
% 60.27/8.71  |   (34)  ordinal(all_70_2)
% 60.27/8.71  |   (35)  ordinal(all_70_1)
% 60.27/8.71  |   (36)  $i(all_70_2)
% 60.27/8.71  |   (37)  $i(all_70_1)
% 60.27/8.71  |   (38)  succ(all_70_1) = all_70_0
% 60.27/8.71  |   (39)  (ordinal_subset(all_70_2, all_70_1) &  ~ in(all_70_2, all_70_0)) |
% 60.27/8.71  |         (in(all_70_2, all_70_0) &  ~ ordinal_subset(all_70_2, all_70_1))
% 60.27/8.71  | 
% 60.27/8.72  | GROUND_INST: instantiating (t8_boole) with all_44_0, all_53_0, simplifying
% 60.27/8.72  |              with (18), (19), (21), (22) gives:
% 60.27/8.72  |   (40)  all_53_0 = all_44_0
% 60.27/8.72  | 
% 60.27/8.72  | GROUND_INST: instantiating (t8_boole) with all_38_0, all_53_0, simplifying
% 60.27/8.72  |              with (15), (16), (21), (22) gives:
% 60.27/8.72  |   (41)  all_53_0 = all_38_0
% 60.27/8.72  | 
% 60.27/8.72  | GROUND_INST: instantiating (t8_boole) with all_53_0, all_66_0, simplifying
% 60.27/8.72  |              with (21), (22), (31), (32) gives:
% 60.27/8.72  |   (42)  all_66_0 = all_53_0
% 60.27/8.72  | 
% 60.27/8.72  | GROUND_INST: instantiating (13) with all_66_0, simplifying with (31), (32)
% 60.27/8.72  |              gives:
% 60.27/8.72  |   (43)  all_66_0 = empty_set
% 60.27/8.72  | 
% 60.27/8.72  | GROUND_INST: instantiating (t24_ordinal1) with empty_set, all_57_0,
% 60.27/8.72  |              simplifying with (9), (12), (24), (25) gives:
% 60.27/8.72  |   (44)  all_57_0 = empty_set | in(all_57_0, empty_set) | in(empty_set,
% 60.27/8.72  |           all_57_0)
% 60.27/8.72  | 
% 60.27/8.72  | GROUND_INST: instantiating (1) with all_70_2, simplifying with (34), (36)
% 60.27/8.72  |              gives:
% 60.27/8.72  |   (45)  epsilon_transitive(all_70_2)
% 60.27/8.72  | 
% 60.27/8.72  | GROUND_INST: instantiating (t24_ordinal1) with all_70_2, all_70_1, simplifying
% 60.27/8.72  |              with (34), (35), (36), (37) gives:
% 60.27/8.72  |   (46)  all_70_1 = all_70_2 | in(all_70_1, all_70_2) | in(all_70_2, all_70_1)
% 60.27/8.72  | 
% 60.27/8.72  | GROUND_INST: instantiating (connectedness_r1_ordinal1) with all_70_2,
% 60.27/8.72  |              all_70_1, simplifying with (34), (35), (36), (37) gives:
% 60.27/8.72  |   (47)  ordinal_subset(all_70_1, all_70_2) | ordinal_subset(all_70_2,
% 60.27/8.72  |           all_70_1)
% 60.27/8.72  | 
% 60.27/8.72  | GROUND_INST: instantiating (t24_ordinal1) with all_63_0, all_70_1, simplifying
% 60.27/8.72  |              with (27), (29), (35), (37) gives:
% 60.27/8.72  |   (48)  all_70_1 = all_63_0 | in(all_70_1, all_63_0) | in(all_63_0, all_70_1)
% 60.27/8.72  | 
% 60.27/8.72  | GROUND_INST: instantiating (connectedness_r1_ordinal1) with all_63_0,
% 60.40/8.72  |              all_70_1, simplifying with (27), (29), (35), (37) gives:
% 60.40/8.72  |   (49)  ordinal_subset(all_70_1, all_63_0) | ordinal_subset(all_63_0,
% 60.40/8.72  |           all_70_1)
% 60.40/8.72  | 
% 60.40/8.72  | GROUND_INST: instantiating (reflexivity_r1_ordinal1) with all_70_1, empty_set,
% 60.40/8.72  |              simplifying with (9), (12), (35), (37) gives:
% 60.40/8.72  |   (50)  ordinal_subset(all_70_1, all_70_1)
% 60.40/8.72  | 
% 60.40/8.72  | GROUND_INST: instantiating (1) with all_70_1, simplifying with (35), (37)
% 60.40/8.72  |              gives:
% 60.40/8.72  |   (51)  epsilon_transitive(all_70_1)
% 60.40/8.72  | 
% 60.40/8.72  | GROUND_INST: instantiating (t10_ordinal1) with all_70_1, all_70_0, simplifying
% 60.40/8.72  |              with (37), (38) gives:
% 60.40/8.72  |   (52)  in(all_70_1, all_70_0)
% 60.40/8.72  | 
% 60.40/8.72  | GROUND_INST: instantiating (4) with all_70_1, all_70_0, simplifying with (37),
% 60.40/8.72  |              (38) gives:
% 60.40/8.72  |   (53)   ? [v0: $i] : (singleton(all_70_1) = v0 & set_union2(all_70_1, v0) =
% 60.40/8.72  |           all_70_0 & $i(v0) & $i(all_70_0))
% 60.40/8.72  | 
% 60.40/8.72  | COMBINE_EQS: (42), (43) imply:
% 60.40/8.72  |   (54)  all_53_0 = empty_set
% 60.40/8.72  | 
% 60.40/8.72  | SIMP: (54) implies:
% 60.40/8.72  |   (55)  all_53_0 = empty_set
% 60.40/8.72  | 
% 60.40/8.72  | COMBINE_EQS: (40), (55) imply:
% 60.40/8.72  |   (56)  all_44_0 = empty_set
% 60.40/8.72  | 
% 60.40/8.72  | COMBINE_EQS: (40), (41) imply:
% 60.40/8.72  |   (57)  all_44_0 = all_38_0
% 60.40/8.72  | 
% 60.40/8.72  | COMBINE_EQS: (56), (57) imply:
% 60.40/8.72  |   (58)  all_38_0 = empty_set
% 60.40/8.72  | 
% 60.40/8.72  | SIMP: (58) implies:
% 60.40/8.72  |   (59)  all_38_0 = empty_set
% 60.40/8.72  | 
% 60.40/8.72  | DELTA: instantiating (53) with fresh symbol all_84_0 gives:
% 60.40/8.72  |   (60)  singleton(all_70_1) = all_84_0 & set_union2(all_70_1, all_84_0) =
% 60.40/8.72  |         all_70_0 & $i(all_84_0) & $i(all_70_0)
% 60.40/8.72  | 
% 60.40/8.72  | ALPHA: (60) implies:
% 60.40/8.72  |   (61)  $i(all_84_0)
% 60.40/8.73  |   (62)  set_union2(all_70_1, all_84_0) = all_70_0
% 60.40/8.73  |   (63)  singleton(all_70_1) = all_84_0
% 60.40/8.73  | 
% 60.40/8.73  | REDUCE: (15), (59) imply:
% 60.40/8.73  |   (64)  empty(empty_set)
% 60.40/8.73  | 
% 60.40/8.73  | GROUND_INST: instantiating (6) with all_63_0, all_70_1, simplifying with (28),
% 60.40/8.73  |              (29), (37) gives:
% 60.40/8.73  |   (65)   ~ in(all_70_1, all_63_0) | subset(all_70_1, all_63_0)
% 60.40/8.73  | 
% 60.40/8.73  | GROUND_INST: instantiating (6) with all_70_2, all_70_1, simplifying with (36),
% 60.40/8.73  |              (37), (45) gives:
% 60.40/8.73  |   (66)   ~ in(all_70_1, all_70_2) | subset(all_70_1, all_70_2)
% 60.40/8.73  | 
% 60.40/8.73  | GROUND_INST: instantiating (2) with all_84_0, all_70_1, all_70_0, simplifying
% 60.40/8.73  |              with (37), (61), (62) gives:
% 60.40/8.73  |   (67)  set_union2(all_84_0, all_70_1) = all_70_0 & $i(all_70_0)
% 60.40/8.73  | 
% 60.40/8.73  | ALPHA: (67) implies:
% 60.40/8.73  |   (68)  $i(all_70_0)
% 60.40/8.73  | 
% 60.40/8.73  | GROUND_INST: instantiating (11) with all_70_1, all_63_0, simplifying with
% 60.40/8.73  |              (27), (29), (35), (37) gives:
% 60.40/8.73  |   (69)   ~ subset(all_70_1, all_63_0) | ordinal_subset(all_70_1, all_63_0)
% 60.40/8.73  | 
% 60.40/8.73  | GROUND_INST: instantiating (10) with all_70_1, all_70_2, simplifying with
% 60.40/8.73  |              (34), (35), (36), (37) gives:
% 60.40/8.73  |   (70)   ~ ordinal_subset(all_70_1, all_70_2) | subset(all_70_1, all_70_2)
% 60.40/8.73  | 
% 60.40/8.73  | GROUND_INST: instantiating (10) with all_70_1, all_63_0, simplifying with
% 60.40/8.73  |              (27), (29), (35), (37) gives:
% 60.40/8.73  |   (71)   ~ ordinal_subset(all_70_1, all_63_0) | subset(all_70_1, all_63_0)
% 60.40/8.73  | 
% 60.40/8.73  | BETA: splitting (39) gives:
% 60.40/8.73  | 
% 60.40/8.73  | Case 1:
% 60.40/8.73  | | 
% 60.40/8.73  | |   (72)  ordinal_subset(all_70_2, all_70_1) &  ~ in(all_70_2, all_70_0)
% 60.40/8.73  | | 
% 60.40/8.73  | | ALPHA: (72) implies:
% 60.40/8.73  | |   (73)   ~ in(all_70_2, all_70_0)
% 60.40/8.73  | |   (74)  ordinal_subset(all_70_2, all_70_1)
% 60.40/8.73  | | 
% 60.40/8.73  | | PRED_UNIFY: (52), (73) imply:
% 60.40/8.73  | |   (75)   ~ (all_70_1 = all_70_2)
% 60.40/8.73  | | 
% 60.40/8.73  | | BETA: splitting (49) gives:
% 60.40/8.73  | | 
% 60.40/8.73  | | Case 1:
% 60.40/8.73  | | | 
% 60.40/8.73  | | |   (76)  ordinal_subset(all_70_1, all_63_0)
% 60.40/8.73  | | | 
% 60.40/8.73  | | | BETA: splitting (71) gives:
% 60.40/8.73  | | | 
% 60.40/8.73  | | | Case 1:
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | |   (77)   ~ ordinal_subset(all_70_1, all_63_0)
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | | PRED_UNIFY: (76), (77) imply:
% 60.40/8.73  | | | |   (78)  $false
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | | CLOSE: (78) is inconsistent.
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | Case 2:
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | | REF_CLOSE: (3), (7), (10), (34), (35), (36), (37), (46), (61), (62),
% 60.40/8.73  | | | |            (66), (68), (73), (74), (75) are inconsistent by sub-proof
% 60.40/8.73  | | | |            #1.
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | End of split
% 60.40/8.73  | | | 
% 60.40/8.73  | | Case 2:
% 60.40/8.73  | | | 
% 60.40/8.73  | | |   (79)   ~ ordinal_subset(all_70_1, all_63_0)
% 60.40/8.73  | | | 
% 60.40/8.73  | | | BETA: splitting (69) gives:
% 60.40/8.73  | | | 
% 60.40/8.73  | | | Case 1:
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | |   (80)   ~ subset(all_70_1, all_63_0)
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | | BETA: splitting (65) gives:
% 60.40/8.73  | | | | 
% 60.40/8.73  | | | | Case 1:
% 60.40/8.73  | | | | | 
% 60.40/8.73  | | | | |   (81)   ~ in(all_70_1, all_63_0)
% 60.40/8.73  | | | | | 
% 60.40/8.73  | | | | | BETA: splitting (48) gives:
% 60.40/8.73  | | | | | 
% 60.40/8.73  | | | | | Case 1:
% 60.40/8.73  | | | | | | 
% 60.40/8.73  | | | | | |   (82)  in(all_70_1, all_63_0)
% 60.40/8.73  | | | | | | 
% 60.40/8.73  | | | | | | PRED_UNIFY: (81), (82) imply:
% 60.40/8.73  | | | | | |   (83)  $false
% 60.40/8.73  | | | | | | 
% 60.40/8.73  | | | | | | CLOSE: (83) is inconsistent.
% 60.40/8.73  | | | | | | 
% 60.40/8.73  | | | | | Case 2:
% 60.40/8.73  | | | | | | 
% 60.40/8.73  | | | | | | 
% 60.40/8.74  | | | | | | REF_CLOSE: (3), (7), (10), (34), (35), (36), (37), (46), (61), (62),
% 60.40/8.74  | | | | | |            (66), (68), (73), (74), (75) are inconsistent by
% 60.40/8.74  | | | | | |            sub-proof #1.
% 60.40/8.74  | | | | | | 
% 60.40/8.74  | | | | | End of split
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | Case 2:
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | |   (84)  subset(all_70_1, all_63_0)
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | | PRED_UNIFY: (80), (84) imply:
% 60.40/8.74  | | | | |   (85)  $false
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | | CLOSE: (85) is inconsistent.
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | End of split
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | Case 2:
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | |   (86)  ordinal_subset(all_70_1, all_63_0)
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | | PRED_UNIFY: (79), (86) imply:
% 60.40/8.74  | | | |   (87)  $false
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | | CLOSE: (87) is inconsistent.
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | End of split
% 60.40/8.74  | | | 
% 60.40/8.74  | | End of split
% 60.40/8.74  | | 
% 60.40/8.74  | Case 2:
% 60.40/8.74  | | 
% 60.40/8.74  | |   (88)  in(all_70_2, all_70_0) &  ~ ordinal_subset(all_70_2, all_70_1)
% 60.40/8.74  | | 
% 60.40/8.74  | | ALPHA: (88) implies:
% 60.40/8.74  | |   (89)   ~ ordinal_subset(all_70_2, all_70_1)
% 60.40/8.74  | |   (90)  in(all_70_2, all_70_0)
% 60.40/8.74  | | 
% 60.40/8.74  | | BETA: splitting (47) gives:
% 60.40/8.74  | | 
% 60.40/8.74  | | Case 1:
% 60.40/8.74  | | | 
% 60.40/8.74  | | |   (91)  ordinal_subset(all_70_1, all_70_2)
% 60.40/8.74  | | | 
% 60.40/8.74  | | | BETA: splitting (70) gives:
% 60.40/8.74  | | | 
% 60.40/8.74  | | | Case 1:
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | |   (92)   ~ ordinal_subset(all_70_1, all_70_2)
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | | PRED_UNIFY: (91), (92) imply:
% 60.40/8.74  | | | |   (93)  $false
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | | CLOSE: (93) is inconsistent.
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | Case 2:
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | | PRED_UNIFY: (50), (89) imply:
% 60.40/8.74  | | | |   (94)   ~ (all_70_1 = all_70_2)
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | | BETA: splitting (44) gives:
% 60.40/8.74  | | | | 
% 60.40/8.74  | | | | Case 1:
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | |   (95)  in(all_57_0, empty_set)
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | | GROUND_INST: instantiating (t7_boole) with all_57_0, empty_set,
% 60.40/8.74  | | | | |              simplifying with (12), (25), (64), (95) gives:
% 60.40/8.74  | | | | |   (96)  $false
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | | CLOSE: (96) is inconsistent.
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | Case 2:
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | | GROUND_INST: instantiating (8) with all_70_1, all_84_0, all_70_0,
% 60.40/8.74  | | | | |              all_70_2, simplifying with (36), (37), (61), (62), (68),
% 60.40/8.74  | | | | |              (90) gives:
% 60.40/8.74  | | | | |   (97)  in(all_70_2, all_84_0) | in(all_70_2, all_70_1)
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | | BETA: splitting (46) gives:
% 60.40/8.74  | | | | | 
% 60.40/8.74  | | | | | Case 1:
% 60.40/8.74  | | | | | | 
% 60.40/8.74  | | | | | |   (98)  in(all_70_1, all_70_2)
% 60.40/8.74  | | | | | | 
% 60.40/8.74  | | | | | | BETA: splitting (97) gives:
% 60.40/8.74  | | | | | | 
% 60.40/8.74  | | | | | | Case 1:
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | |   (99)  in(all_70_2, all_84_0)
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | | GROUND_INST: instantiating (5) with all_70_1, all_84_0, all_70_2,
% 60.40/8.74  | | | | | | |              simplifying with (36), (37), (61), (63), (99) gives:
% 60.40/8.74  | | | | | | |   (100)  all_70_1 = all_70_2
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | | REDUCE: (94), (100) imply:
% 60.40/8.74  | | | | | | |   (101)  $false
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | | CLOSE: (101) is inconsistent.
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | Case 2:
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | |   (102)  in(all_70_2, all_70_1)
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | | GROUND_INST: instantiating (6) with all_70_1, all_70_2,
% 60.40/8.74  | | | | | | |              simplifying with (36), (37), (51), (102) gives:
% 60.40/8.74  | | | | | | |   (103)  subset(all_70_2, all_70_1)
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | | REF_CLOSE: (3), (36), (37), (66), (94), (98), (103) are
% 60.40/8.74  | | | | | | |            inconsistent by sub-proof #2.
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | End of split
% 60.40/8.74  | | | | | | 
% 60.40/8.74  | | | | | Case 2:
% 60.40/8.74  | | | | | | 
% 60.40/8.74  | | | | | |   (104)  all_70_1 = all_70_2 | in(all_70_2, all_70_1)
% 60.40/8.74  | | | | | | 
% 60.40/8.74  | | | | | | BETA: splitting (104) gives:
% 60.40/8.74  | | | | | | 
% 60.40/8.74  | | | | | | Case 1:
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | |   (105)  in(all_70_2, all_70_1)
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | | GROUND_INST: instantiating (6) with all_70_1, all_70_2,
% 60.40/8.74  | | | | | | |              simplifying with (36), (37), (51), (105) gives:
% 60.40/8.74  | | | | | | |   (106)  subset(all_70_2, all_70_1)
% 60.40/8.74  | | | | | | | 
% 60.40/8.74  | | | | | | | GROUND_INST: instantiating (11) with all_70_2, all_70_1,
% 60.40/8.75  | | | | | | |              simplifying with (34), (35), (36), (37), (89), (106)
% 60.40/8.75  | | | | | | |              gives:
% 60.40/8.75  | | | | | | |   (107)  $false
% 60.40/8.75  | | | | | | | 
% 60.40/8.75  | | | | | | | CLOSE: (107) is inconsistent.
% 60.40/8.75  | | | | | | | 
% 60.40/8.75  | | | | | | Case 2:
% 60.40/8.75  | | | | | | | 
% 60.40/8.75  | | | | | | |   (108)  all_70_1 = all_70_2
% 60.40/8.75  | | | | | | | 
% 60.40/8.75  | | | | | | | REDUCE: (94), (108) imply:
% 60.40/8.75  | | | | | | |   (109)  $false
% 60.40/8.75  | | | | | | | 
% 60.40/8.75  | | | | | | | CLOSE: (109) is inconsistent.
% 60.40/8.75  | | | | | | | 
% 60.40/8.75  | | | | | | End of split
% 60.40/8.75  | | | | | | 
% 60.40/8.75  | | | | | End of split
% 60.40/8.75  | | | | | 
% 60.40/8.75  | | | | End of split
% 60.40/8.75  | | | | 
% 60.40/8.75  | | | End of split
% 60.40/8.75  | | | 
% 60.40/8.75  | | Case 2:
% 60.40/8.75  | | | 
% 60.40/8.75  | | |   (110)  ordinal_subset(all_70_2, all_70_1)
% 60.40/8.75  | | | 
% 60.40/8.75  | | | PRED_UNIFY: (89), (110) imply:
% 60.40/8.75  | | |   (111)  $false
% 60.40/8.75  | | | 
% 60.40/8.75  | | | CLOSE: (111) is inconsistent.
% 60.40/8.75  | | | 
% 60.40/8.75  | | End of split
% 60.40/8.75  | | 
% 60.40/8.75  | End of split
% 60.40/8.75  | 
% 60.40/8.75  End of proof
% 60.40/8.75  
% 60.40/8.75  Sub-proof #1 shows that the following formulas are inconsistent:
% 60.40/8.75  ----------------------------------------------------------------
% 60.40/8.75    (1)  ordinal(all_70_1)
% 60.40/8.75    (2)   ~ in(all_70_2, all_70_0)
% 60.40/8.75    (3)  $i(all_70_2)
% 60.40/8.75    (4)  $i(all_70_0)
% 60.40/8.75    (5)   ~ in(all_70_1, all_70_2) | subset(all_70_1, all_70_2)
% 60.40/8.75    (6)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~
% 60.40/8.75           ordinal_subset(v0, v1) |  ~ ordinal(v1) |  ~ ordinal(v0) | subset(v0,
% 60.40/8.75             v1))
% 60.40/8.75    (7)  all_70_1 = all_70_2 | in(all_70_1, all_70_2) | in(all_70_2, all_70_1)
% 60.40/8.75    (8)  ordinal(all_70_2)
% 60.40/8.75    (9)  set_union2(all_70_1, all_84_0) = all_70_0
% 60.40/8.75    (10)   ! [v0: $i] :  ! [v1: $i] : (v1 = v0 |  ~ $i(v1) |  ~ $i(v0) |  ~
% 60.40/8.75            subset(v1, v0) |  ~ subset(v0, v1))
% 60.40/8.75    (11)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : ( ~
% 60.40/8.75            (set_union2(v0, v1) = v2) |  ~ $i(v3) |  ~ $i(v2) |  ~ $i(v1) |  ~
% 60.40/8.75            $i(v0) |  ~ in(v3, v0) | in(v3, v2))
% 60.40/8.75    (12)  ordinal_subset(all_70_2, all_70_1)
% 60.40/8.75    (13)  $i(all_84_0)
% 60.40/8.75    (14)  $i(all_70_1)
% 60.40/8.75    (15)   ~ (all_70_1 = all_70_2)
% 60.40/8.75  
% 60.40/8.75  Begin of proof
% 60.40/8.75  | 
% 60.40/8.75  | GROUND_INST: instantiating (6) with all_70_2, all_70_1, simplifying with (1),
% 60.40/8.75  |              (3), (8), (12), (14) gives:
% 60.40/8.75  |   (16)  subset(all_70_2, all_70_1)
% 60.40/8.75  | 
% 60.40/8.75  | BETA: splitting (7) gives:
% 60.40/8.75  | 
% 60.40/8.75  | Case 1:
% 60.40/8.75  | | 
% 60.40/8.75  | |   (17)  in(all_70_1, all_70_2)
% 60.40/8.75  | | 
% 60.40/8.75  | | REF_CLOSE: (3), (5), (10), (14), (15), (16), (17) are inconsistent by
% 60.40/8.75  | |            sub-proof #2.
% 60.40/8.75  | | 
% 60.40/8.75  | Case 2:
% 60.40/8.75  | | 
% 60.40/8.75  | |   (18)  all_70_1 = all_70_2 | in(all_70_2, all_70_1)
% 60.40/8.75  | | 
% 60.40/8.75  | | BETA: splitting (18) gives:
% 60.40/8.75  | | 
% 60.40/8.75  | | Case 1:
% 60.40/8.75  | | | 
% 60.40/8.75  | | |   (19)  in(all_70_2, all_70_1)
% 60.40/8.75  | | | 
% 60.40/8.75  | | | GROUND_INST: instantiating (11) with all_70_1, all_84_0, all_70_0,
% 60.40/8.75  | | |              all_70_2, simplifying with (2), (3), (4), (9), (13), (14),
% 60.40/8.75  | | |              (19) gives:
% 60.40/8.75  | | |   (20)  $false
% 60.40/8.75  | | | 
% 60.40/8.75  | | | CLOSE: (20) is inconsistent.
% 60.40/8.75  | | | 
% 60.40/8.75  | | Case 2:
% 60.40/8.75  | | | 
% 60.40/8.75  | | |   (21)  all_70_1 = all_70_2
% 60.40/8.75  | | | 
% 60.40/8.75  | | | REDUCE: (15), (21) imply:
% 60.40/8.75  | | |   (22)  $false
% 60.40/8.75  | | | 
% 60.40/8.75  | | | CLOSE: (22) is inconsistent.
% 60.40/8.75  | | | 
% 60.40/8.75  | | End of split
% 60.40/8.75  | | 
% 60.40/8.75  | End of split
% 60.40/8.75  | 
% 60.40/8.75  End of proof
% 60.40/8.75  
% 60.40/8.75  Sub-proof #2 shows that the following formulas are inconsistent:
% 60.40/8.75  ----------------------------------------------------------------
% 60.40/8.75    (1)  $i(all_70_2)
% 60.40/8.75    (2)   ~ in(all_70_1, all_70_2) | subset(all_70_1, all_70_2)
% 60.40/8.75    (3)   ! [v0: $i] :  ! [v1: $i] : (v1 = v0 |  ~ $i(v1) |  ~ $i(v0) |  ~
% 60.40/8.75           subset(v1, v0) |  ~ subset(v0, v1))
% 60.40/8.75    (4)  subset(all_70_2, all_70_1)
% 60.40/8.75    (5)  $i(all_70_1)
% 60.40/8.75    (6)   ~ (all_70_1 = all_70_2)
% 60.40/8.75    (7)  in(all_70_1, all_70_2)
% 60.40/8.75  
% 60.40/8.75  Begin of proof
% 60.40/8.75  | 
% 60.40/8.75  | BETA: splitting (2) gives:
% 60.40/8.75  | 
% 60.40/8.75  | Case 1:
% 60.40/8.75  | | 
% 60.40/8.75  | |   (8)   ~ in(all_70_1, all_70_2)
% 60.40/8.75  | | 
% 60.40/8.75  | | PRED_UNIFY: (7), (8) imply:
% 60.40/8.75  | |   (9)  $false
% 60.40/8.75  | | 
% 60.40/8.75  | | CLOSE: (9) is inconsistent.
% 60.40/8.75  | | 
% 60.40/8.75  | Case 2:
% 60.40/8.75  | | 
% 60.40/8.75  | |   (10)  subset(all_70_1, all_70_2)
% 60.40/8.75  | | 
% 60.40/8.75  | | GROUND_INST: instantiating (3) with all_70_2, all_70_1, simplifying with
% 60.40/8.75  | |              (1), (4), (5), (10) gives:
% 60.40/8.76  | |   (11)  all_70_1 = all_70_2
% 60.40/8.76  | | 
% 60.40/8.76  | | REDUCE: (6), (11) imply:
% 60.40/8.76  | |   (12)  $false
% 60.40/8.76  | | 
% 60.40/8.76  | | CLOSE: (12) is inconsistent.
% 60.40/8.76  | | 
% 60.40/8.76  | End of split
% 60.40/8.76  | 
% 60.40/8.76  End of proof
% 60.40/8.76  % SZS output end Proof for theBenchmark
% 60.40/8.76  
% 60.40/8.76  8140ms
%------------------------------------------------------------------------------