TSTP Solution File: NUM390+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : NUM390+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Mon Jul 18 12:26:22 EDT 2022

% Result   : Theorem 0.60s 0.77s
% Output   : CNFRefutation 0.60s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   24
%            Number of leaves      :   10
% Syntax   : Number of formulae    :   77 (  19 unt;   0 def)
%            Number of atoms       :  214 (  23 equ)
%            Maximal formula atoms :    7 (   2 avg)
%            Number of connectives :  224 (  87   ~;  73   |;  42   &)
%                                         (   6 <=>;  16  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    9 (   6 usr;   1 prp; 0-2 aty)
%            Number of functors    :    4 (   4 usr;   3 con; 0-1 aty)
%            Number of variables   :   85 (   0 sgn  55   !;  11   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(cc1_ordinal1,axiom,
    ! [A] :
      ( ordinal(A)
     => ( epsilon_transitive(A)
        & epsilon_connected(A) ) ) ).

fof(d2_ordinal1,axiom,
    ! [A] :
      ( epsilon_transitive(A)
    <=> ! [B] :
          ( in(B,A)
         => subset(B,A) ) ) ).

fof(d8_xboole_0,axiom,
    ! [A,B] :
      ( proper_subset(A,B)
    <=> ( subset(A,B)
        & A != B ) ) ).

fof(t1_xboole_1,axiom,
    ! [A,B,C] :
      ( ( subset(A,B)
        & subset(B,C) )
     => subset(A,C) ) ).

fof(t21_ordinal1,axiom,
    ! [A] :
      ( epsilon_transitive(A)
     => ! [B] :
          ( ordinal(B)
         => ( proper_subset(A,B)
           => in(A,B) ) ) ) ).

fof(t22_ordinal1,conjecture,
    ! [A] :
      ( epsilon_transitive(A)
     => ! [B] :
          ( ordinal(B)
         => ! [C] :
              ( ordinal(C)
             => ( ( subset(A,B)
                  & in(B,C) )
               => in(A,C) ) ) ) ) ).

fof(t7_ordinal1,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & subset(B,A) ) ).

fof(subgoal_0,plain,
    ! [A] :
      ( epsilon_transitive(A)
     => ! [B] :
          ( ordinal(B)
         => ! [C] :
              ( ( ordinal(C)
                & subset(A,B)
                & in(B,C) )
             => in(A,C) ) ) ),
    inference(strip,[],[t22_ordinal1]) ).

fof(negate_0_0,plain,
    ~ ! [A] :
        ( epsilon_transitive(A)
       => ! [B] :
            ( ordinal(B)
           => ! [C] :
                ( ( ordinal(C)
                  & subset(A,B)
                  & in(B,C) )
               => in(A,C) ) ) ),
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ? [A] :
      ( epsilon_transitive(A)
      & ? [B] :
          ( ordinal(B)
          & ? [C] :
              ( ~ in(A,C)
              & in(B,C)
              & ordinal(C)
              & subset(A,B) ) ) ),
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_1,plain,
    ( epsilon_transitive(skolemFOFtoCNF_A_11)
    & ? [B] :
        ( ordinal(B)
        & ? [C] :
            ( ~ in(skolemFOFtoCNF_A_11,C)
            & in(B,C)
            & ordinal(C)
            & subset(skolemFOFtoCNF_A_11,B) ) ) ),
    inference(skolemize,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ? [B] :
      ( ordinal(B)
      & ? [C] :
          ( ~ in(skolemFOFtoCNF_A_11,C)
          & in(B,C)
          & ordinal(C)
          & subset(skolemFOFtoCNF_A_11,B) ) ),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ( ordinal(skolemFOFtoCNF_B_2)
    & ? [C] :
        ( ~ in(skolemFOFtoCNF_A_11,C)
        & in(skolemFOFtoCNF_B_2,C)
        & ordinal(C)
        & subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_B_2) ) ),
    inference(skolemize,[],[normalize_0_2]) ).

fof(normalize_0_4,plain,
    ? [C] :
      ( ~ in(skolemFOFtoCNF_A_11,C)
      & in(skolemFOFtoCNF_B_2,C)
      & ordinal(C)
      & subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_B_2) ),
    inference(conjunct,[],[normalize_0_3]) ).

fof(normalize_0_5,plain,
    ( ~ in(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C)
    & in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C)
    & ordinal(skolemFOFtoCNF_C)
    & subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_B_2) ),
    inference(skolemize,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    ! [A,B] :
      ( ~ proper_subset(A,B)
    <=> ( ~ subset(A,B)
        | A = B ) ),
    inference(canonicalize,[],[d8_xboole_0]) ).

fof(normalize_0_8,plain,
    ! [A,B] :
      ( ~ proper_subset(A,B)
    <=> ( ~ subset(A,B)
        | A = B ) ),
    inference(specialize,[],[normalize_0_7]) ).

fof(normalize_0_9,plain,
    ! [A,B] :
      ( ( A != B
        | ~ proper_subset(A,B) )
      & ( ~ proper_subset(A,B)
        | subset(A,B) )
      & ( ~ subset(A,B)
        | A = B
        | proper_subset(A,B) ) ),
    inference(clausify,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    ! [A,B] :
      ( ~ subset(A,B)
      | A = B
      | proper_subset(A,B) ),
    inference(conjunct,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_B_2),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_12,plain,
    ! [A] :
      ( ~ epsilon_transitive(A)
    <=> ? [B] :
          ( ~ subset(B,A)
          & in(B,A) ) ),
    inference(canonicalize,[],[d2_ordinal1]) ).

fof(normalize_0_13,plain,
    ! [A] :
      ( ~ epsilon_transitive(A)
    <=> ? [B] :
          ( ~ subset(B,A)
          & in(B,A) ) ),
    inference(specialize,[],[normalize_0_12]) ).

fof(normalize_0_14,plain,
    ! [A,B] :
      ( ( ~ subset(skolemFOFtoCNF_B(A),A)
        | epsilon_transitive(A) )
      & ( epsilon_transitive(A)
        | in(skolemFOFtoCNF_B(A),A) )
      & ( ~ epsilon_transitive(A)
        | ~ in(B,A)
        | subset(B,A) ) ),
    inference(clausify,[],[normalize_0_13]) ).

fof(normalize_0_15,plain,
    ! [A,B] :
      ( ~ epsilon_transitive(A)
      | ~ in(B,A)
      | subset(B,A) ),
    inference(conjunct,[],[normalize_0_14]) ).

fof(normalize_0_16,plain,
    ordinal(skolemFOFtoCNF_C),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_17,plain,
    ! [A] :
      ( ~ ordinal(A)
      | ( epsilon_connected(A)
        & epsilon_transitive(A) ) ),
    inference(canonicalize,[],[cc1_ordinal1]) ).

fof(normalize_0_18,plain,
    ! [A] :
      ( ~ ordinal(A)
      | ( epsilon_connected(A)
        & epsilon_transitive(A) ) ),
    inference(specialize,[],[normalize_0_17]) ).

fof(normalize_0_19,plain,
    ! [A] :
      ( ( ~ ordinal(A)
        | epsilon_connected(A) )
      & ( ~ ordinal(A)
        | epsilon_transitive(A) ) ),
    inference(clausify,[],[normalize_0_18]) ).

fof(normalize_0_20,plain,
    ! [A] :
      ( ~ ordinal(A)
      | epsilon_transitive(A) ),
    inference(conjunct,[],[normalize_0_19]) ).

fof(normalize_0_21,plain,
    ! [A,B,C] :
      ( ~ subset(A,B)
      | ~ subset(B,C)
      | subset(A,C) ),
    inference(canonicalize,[],[t1_xboole_1]) ).

fof(normalize_0_22,plain,
    ! [A,B,C] :
      ( ~ subset(A,B)
      | ~ subset(B,C)
      | subset(A,C) ),
    inference(specialize,[],[normalize_0_21]) ).

fof(normalize_0_23,plain,
    ! [A] :
      ( ~ epsilon_transitive(A)
      | ! [B] :
          ( ~ ordinal(B)
          | ~ proper_subset(A,B)
          | in(A,B) ) ),
    inference(canonicalize,[],[t21_ordinal1]) ).

fof(normalize_0_24,plain,
    ! [A] :
      ( ~ epsilon_transitive(A)
      | ! [B] :
          ( ~ ordinal(B)
          | ~ proper_subset(A,B)
          | in(A,B) ) ),
    inference(specialize,[],[normalize_0_23]) ).

fof(normalize_0_25,plain,
    ! [A,B] :
      ( ~ epsilon_transitive(A)
      | ~ ordinal(B)
      | ~ proper_subset(A,B)
      | in(A,B) ),
    inference(clausify,[],[normalize_0_24]) ).

fof(normalize_0_26,plain,
    epsilon_transitive(skolemFOFtoCNF_A_11),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_27,plain,
    ~ in(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_28,plain,
    ! [A,B] :
      ( ~ in(A,B)
      | ~ subset(B,A) ),
    inference(canonicalize,[],[t7_ordinal1]) ).

fof(normalize_0_29,plain,
    ! [A,B] :
      ( ~ in(A,B)
      | ~ subset(B,A) ),
    inference(specialize,[],[normalize_0_28]) ).

cnf(refute_0_0,plain,
    in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C),
    inference(canonicalize,[],[normalize_0_6]) ).

cnf(refute_0_1,plain,
    ( ~ subset(A,B)
    | A = B
    | proper_subset(A,B) ),
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_2,plain,
    ( ~ subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C)
    | skolemFOFtoCNF_A_11 = skolemFOFtoCNF_C
    | proper_subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) ),
    inference(subst,[],[refute_0_1:[bind(A,$fot(skolemFOFtoCNF_A_11)),bind(B,$fot(skolemFOFtoCNF_C))]]) ).

cnf(refute_0_3,plain,
    subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_B_2),
    inference(canonicalize,[],[normalize_0_11]) ).

cnf(refute_0_4,plain,
    ( ~ epsilon_transitive(A)
    | ~ in(B,A)
    | subset(B,A) ),
    inference(canonicalize,[],[normalize_0_15]) ).

cnf(refute_0_5,plain,
    ( ~ epsilon_transitive(skolemFOFtoCNF_C)
    | ~ in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C)
    | subset(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C) ),
    inference(subst,[],[refute_0_4:[bind(A,$fot(skolemFOFtoCNF_C)),bind(B,$fot(skolemFOFtoCNF_B_2))]]) ).

cnf(refute_0_6,plain,
    ( ~ epsilon_transitive(skolemFOFtoCNF_C)
    | subset(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C) ),
    inference(resolve,[$cnf( in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C) )],[refute_0_0,refute_0_5]) ).

cnf(refute_0_7,plain,
    ordinal(skolemFOFtoCNF_C),
    inference(canonicalize,[],[normalize_0_16]) ).

cnf(refute_0_8,plain,
    ( ~ ordinal(A)
    | epsilon_transitive(A) ),
    inference(canonicalize,[],[normalize_0_20]) ).

cnf(refute_0_9,plain,
    ( ~ ordinal(skolemFOFtoCNF_C)
    | epsilon_transitive(skolemFOFtoCNF_C) ),
    inference(subst,[],[refute_0_8:[bind(A,$fot(skolemFOFtoCNF_C))]]) ).

cnf(refute_0_10,plain,
    epsilon_transitive(skolemFOFtoCNF_C),
    inference(resolve,[$cnf( ordinal(skolemFOFtoCNF_C) )],[refute_0_7,refute_0_9]) ).

cnf(refute_0_11,plain,
    subset(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C),
    inference(resolve,[$cnf( epsilon_transitive(skolemFOFtoCNF_C) )],[refute_0_10,refute_0_6]) ).

cnf(refute_0_12,plain,
    ( ~ subset(A,B)
    | ~ subset(B,C)
    | subset(A,C) ),
    inference(canonicalize,[],[normalize_0_22]) ).

cnf(refute_0_13,plain,
    ( ~ subset(X_54,skolemFOFtoCNF_B_2)
    | ~ subset(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C)
    | subset(X_54,skolemFOFtoCNF_C) ),
    inference(subst,[],[refute_0_12:[bind(A,$fot(X_54)),bind(B,$fot(skolemFOFtoCNF_B_2)),bind(C,$fot(skolemFOFtoCNF_C))]]) ).

cnf(refute_0_14,plain,
    ( ~ subset(X_54,skolemFOFtoCNF_B_2)
    | subset(X_54,skolemFOFtoCNF_C) ),
    inference(resolve,[$cnf( subset(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C) )],[refute_0_11,refute_0_13]) ).

cnf(refute_0_15,plain,
    ( ~ subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_B_2)
    | subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) ),
    inference(subst,[],[refute_0_14:[bind(X_54,$fot(skolemFOFtoCNF_A_11))]]) ).

cnf(refute_0_16,plain,
    subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C),
    inference(resolve,[$cnf( subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_B_2) )],[refute_0_3,refute_0_15]) ).

cnf(refute_0_17,plain,
    ( skolemFOFtoCNF_A_11 = skolemFOFtoCNF_C
    | proper_subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) ),
    inference(resolve,[$cnf( subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) )],[refute_0_16,refute_0_2]) ).

cnf(refute_0_18,plain,
    ( ~ epsilon_transitive(A)
    | ~ ordinal(B)
    | ~ proper_subset(A,B)
    | in(A,B) ),
    inference(canonicalize,[],[normalize_0_25]) ).

cnf(refute_0_19,plain,
    ( ~ epsilon_transitive(skolemFOFtoCNF_A_11)
    | ~ ordinal(skolemFOFtoCNF_C)
    | ~ proper_subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C)
    | in(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) ),
    inference(subst,[],[refute_0_18:[bind(A,$fot(skolemFOFtoCNF_A_11)),bind(B,$fot(skolemFOFtoCNF_C))]]) ).

cnf(refute_0_20,plain,
    ( ~ epsilon_transitive(skolemFOFtoCNF_A_11)
    | ~ ordinal(skolemFOFtoCNF_C)
    | skolemFOFtoCNF_A_11 = skolemFOFtoCNF_C
    | in(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) ),
    inference(resolve,[$cnf( proper_subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) )],[refute_0_17,refute_0_19]) ).

cnf(refute_0_21,plain,
    epsilon_transitive(skolemFOFtoCNF_A_11),
    inference(canonicalize,[],[normalize_0_26]) ).

cnf(refute_0_22,plain,
    ( ~ ordinal(skolemFOFtoCNF_C)
    | skolemFOFtoCNF_A_11 = skolemFOFtoCNF_C
    | in(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) ),
    inference(resolve,[$cnf( epsilon_transitive(skolemFOFtoCNF_A_11) )],[refute_0_21,refute_0_20]) ).

cnf(refute_0_23,plain,
    ( skolemFOFtoCNF_A_11 = skolemFOFtoCNF_C
    | in(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) ),
    inference(resolve,[$cnf( ordinal(skolemFOFtoCNF_C) )],[refute_0_7,refute_0_22]) ).

cnf(refute_0_24,plain,
    ~ in(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C),
    inference(canonicalize,[],[normalize_0_27]) ).

cnf(refute_0_25,plain,
    skolemFOFtoCNF_A_11 = skolemFOFtoCNF_C,
    inference(resolve,[$cnf( in(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) )],[refute_0_23,refute_0_24]) ).

cnf(refute_0_26,plain,
    X = X,
    introduced(tautology,[refl,[$fot(X)]]) ).

cnf(refute_0_27,plain,
    ( X != X
    | X != Y
    | Y = X ),
    introduced(tautology,[equality,[$cnf( $equal(X,X) ),[0],$fot(Y)]]) ).

cnf(refute_0_28,plain,
    ( X != Y
    | Y = X ),
    inference(resolve,[$cnf( $equal(X,X) )],[refute_0_26,refute_0_27]) ).

cnf(refute_0_29,plain,
    ( skolemFOFtoCNF_A_11 != skolemFOFtoCNF_C
    | skolemFOFtoCNF_C = skolemFOFtoCNF_A_11 ),
    inference(subst,[],[refute_0_28:[bind(X,$fot(skolemFOFtoCNF_A_11)),bind(Y,$fot(skolemFOFtoCNF_C))]]) ).

cnf(refute_0_30,plain,
    skolemFOFtoCNF_C = skolemFOFtoCNF_A_11,
    inference(resolve,[$cnf( $equal(skolemFOFtoCNF_A_11,skolemFOFtoCNF_C) )],[refute_0_25,refute_0_29]) ).

cnf(refute_0_31,plain,
    ( skolemFOFtoCNF_C != skolemFOFtoCNF_A_11
    | ~ in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C)
    | in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_A_11) ),
    introduced(tautology,[equality,[$cnf( in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C) ),[1],$fot(skolemFOFtoCNF_A_11)]]) ).

cnf(refute_0_32,plain,
    ( ~ in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C)
    | in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_A_11) ),
    inference(resolve,[$cnf( $equal(skolemFOFtoCNF_C,skolemFOFtoCNF_A_11) )],[refute_0_30,refute_0_31]) ).

cnf(refute_0_33,plain,
    in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_A_11),
    inference(resolve,[$cnf( in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_C) )],[refute_0_0,refute_0_32]) ).

cnf(refute_0_34,plain,
    ( ~ in(A,B)
    | ~ subset(B,A) ),
    inference(canonicalize,[],[normalize_0_29]) ).

cnf(refute_0_35,plain,
    ( ~ in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_A_11)
    | ~ subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_B_2) ),
    inference(subst,[],[refute_0_34:[bind(A,$fot(skolemFOFtoCNF_B_2)),bind(B,$fot(skolemFOFtoCNF_A_11))]]) ).

cnf(refute_0_36,plain,
    ~ in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_A_11),
    inference(resolve,[$cnf( subset(skolemFOFtoCNF_A_11,skolemFOFtoCNF_B_2) )],[refute_0_3,refute_0_35]) ).

cnf(refute_0_37,plain,
    $false,
    inference(resolve,[$cnf( in(skolemFOFtoCNF_B_2,skolemFOFtoCNF_A_11) )],[refute_0_33,refute_0_36]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : NUM390+1 : TPTP v8.1.0. Released v3.2.0.
% 0.07/0.14  % Command  : metis --show proof --show saturation %s
% 0.15/0.35  % Computer : n013.cluster.edu
% 0.15/0.35  % Model    : x86_64 x86_64
% 0.15/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.35  % Memory   : 8042.1875MB
% 0.15/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.35  % CPULimit : 300
% 0.15/0.35  % WCLimit  : 600
% 0.15/0.35  % DateTime : Wed Jul  6 07:05:59 EDT 2022
% 0.15/0.35  % CPUTime  : 
% 0.15/0.36  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.60/0.77  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.60/0.77  
% 0.60/0.77  % SZS output start CNFRefutation for /export/starexec/sandbox/benchmark/theBenchmark.p
% See solution above
% 0.60/0.77  
%------------------------------------------------------------------------------