TSTP Solution File: NUM298+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : NUM298+1 : TPTP v8.1.2. Released v3.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 11:55:50 EDT 2023

% Result   : Theorem 17.98s 2.67s
% Output   : Proof 17.98s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : NUM298+1 : TPTP v8.1.2. Released v3.1.0.
% 0.07/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n023.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Fri Aug 25 18:15:12 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 17.98/2.67  Command-line arguments: --lhs-weight 9 --flip-ordering --complete-subsets --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 17.98/2.67  
% 17.98/2.67  % SZS status Theorem
% 17.98/2.67  
% 17.98/2.68  % SZS output start Proof
% 17.98/2.68  Take the following subset of the input axioms:
% 17.98/2.68    fof(less_entry_point_neg_pos, axiom, ![X, Y, RDN_X, RDN_Y]: ((rdn_translate(X, rdn_neg(RDN_X)) & rdn_translate(Y, rdn_pos(RDN_Y))) => less(X, Y))).
% 17.98/2.68    fof(less_property, axiom, ![X2, Y2]: (less(X2, Y2) <=> (~less(Y2, X2) & Y2!=X2))).
% 17.98/2.68    fof(n2_not_less_nn2, conjecture, ~less(n2, nn2)).
% 17.98/2.68    fof(rdn2, axiom, rdn_translate(n2, rdn_pos(rdnn(n2)))).
% 17.98/2.68    fof(rdnn2, axiom, rdn_translate(nn2, rdn_neg(rdnn(n2)))).
% 17.98/2.68  
% 17.98/2.68  Now clausify the problem and encode Horn clauses using encoding 3 of
% 17.98/2.68  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 17.98/2.68  We repeatedly replace C & s=t => u=v by the two clauses:
% 17.98/2.68    fresh(y, y, x1...xn) = u
% 17.98/2.68    C => fresh(s, t, x1...xn) = v
% 17.98/2.68  where fresh is a fresh function symbol and x1..xn are the free
% 17.98/2.68  variables of u and v.
% 17.98/2.68  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 17.98/2.68  input problem has no model of domain size 1).
% 17.98/2.68  
% 17.98/2.68  The encoding turns the above axioms into the following unit equations and goals:
% 17.98/2.68  
% 17.98/2.68  Axiom 1 (n2_not_less_nn2): less(n2, nn2) = true2.
% 17.98/2.68  Axiom 2 (rdn2): rdn_translate(n2, rdn_pos(rdnn(n2))) = true2.
% 17.98/2.68  Axiom 3 (rdnn2): rdn_translate(nn2, rdn_neg(rdnn(n2))) = true2.
% 17.98/2.68  Axiom 4 (less_entry_point_neg_pos): fresh24(X, X, Y, Z) = true2.
% 17.98/2.68  Axiom 5 (less_entry_point_neg_pos): fresh25(X, X, Y, Z, W) = less(Y, Z).
% 17.98/2.68  Axiom 6 (less_entry_point_neg_pos): fresh25(rdn_translate(X, rdn_pos(Y)), true2, Z, X, W) = fresh24(rdn_translate(Z, rdn_neg(W)), true2, Z, X).
% 17.98/2.68  
% 17.98/2.68  Goal 1 (less_property_2): tuple(less(X, Y), less(Y, X)) = tuple(true2, true2).
% 17.98/2.68  The goal is true when:
% 17.98/2.68    X = nn2
% 17.98/2.68    Y = n2
% 17.98/2.68  
% 17.98/2.68  Proof:
% 17.98/2.68    tuple(less(nn2, n2), less(n2, nn2))
% 17.98/2.68  = { by axiom 5 (less_entry_point_neg_pos) R->L }
% 17.98/2.68    tuple(fresh25(true2, true2, nn2, n2, rdnn(n2)), less(n2, nn2))
% 17.98/2.68  = { by axiom 2 (rdn2) R->L }
% 17.98/2.68    tuple(fresh25(rdn_translate(n2, rdn_pos(rdnn(n2))), true2, nn2, n2, rdnn(n2)), less(n2, nn2))
% 17.98/2.68  = { by axiom 6 (less_entry_point_neg_pos) }
% 17.98/2.68    tuple(fresh24(rdn_translate(nn2, rdn_neg(rdnn(n2))), true2, nn2, n2), less(n2, nn2))
% 17.98/2.68  = { by axiom 3 (rdnn2) }
% 17.98/2.68    tuple(fresh24(true2, true2, nn2, n2), less(n2, nn2))
% 17.98/2.68  = { by axiom 4 (less_entry_point_neg_pos) }
% 17.98/2.68    tuple(true2, less(n2, nn2))
% 17.98/2.68  = { by axiom 1 (n2_not_less_nn2) }
% 17.98/2.68    tuple(true2, true2)
% 17.98/2.68  % SZS output end Proof
% 17.98/2.68  
% 17.98/2.68  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------