TSTP Solution File: NUM293+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : NUM293+1 : TPTP v8.1.2. Released v3.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 11:55:49 EDT 2023

% Result   : Theorem 96.66s 12.78s
% Output   : Proof 96.66s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : NUM293+1 : TPTP v8.1.2. Released v3.1.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.16/0.34  % Computer : n012.cluster.edu
% 0.16/0.34  % Model    : x86_64 x86_64
% 0.16/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.16/0.34  % Memory   : 8042.1875MB
% 0.16/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.16/0.34  % CPULimit : 300
% 0.16/0.34  % WCLimit  : 300
% 0.16/0.34  % DateTime : Fri Aug 25 09:51:56 EDT 2023
% 0.16/0.35  % CPUTime  : 
% 96.66/12.78  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 96.66/12.78  
% 96.66/12.78  % SZS status Theorem
% 96.66/12.78  
% 96.66/12.78  % SZS output start Proof
% 96.66/12.78  Take the following subset of the input axioms:
% 96.66/12.78    fof(less_entry_point_neg_pos, axiom, ![X, Y, RDN_X, RDN_Y]: ((rdn_translate(X, rdn_neg(RDN_X)) & rdn_translate(Y, rdn_pos(RDN_Y))) => less(X, Y))).
% 96.66/12.78    fof(less_property, axiom, ![X2, Y2]: (less(X2, Y2) <=> (~less(Y2, X2) & Y2!=X2))).
% 96.66/12.78    fof(rdn13, axiom, rdn_translate(n13, rdn_pos(rdn(rdnn(n3), rdnn(n1))))).
% 96.66/12.78    fof(rdnn1, axiom, rdn_translate(nn1, rdn_neg(rdnn(n1)))).
% 96.66/12.78    fof(something_less_n13, conjecture, ?[X2]: less(X2, n13)).
% 96.66/12.78  
% 96.66/12.78  Now clausify the problem and encode Horn clauses using encoding 3 of
% 96.66/12.78  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 96.66/12.78  We repeatedly replace C & s=t => u=v by the two clauses:
% 96.66/12.78    fresh(y, y, x1...xn) = u
% 96.66/12.78    C => fresh(s, t, x1...xn) = v
% 96.66/12.78  where fresh is a fresh function symbol and x1..xn are the free
% 96.66/12.78  variables of u and v.
% 96.66/12.78  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 96.66/12.78  input problem has no model of domain size 1).
% 96.66/12.78  
% 96.66/12.78  The encoding turns the above axioms into the following unit equations and goals:
% 96.66/12.78  
% 96.66/12.78  Axiom 1 (rdnn1): rdn_translate(nn1, rdn_neg(rdnn(n1))) = true2.
% 96.66/12.78  Axiom 2 (less_entry_point_neg_pos): fresh24(X, X, Y, Z) = true2.
% 96.66/12.78  Axiom 3 (less_entry_point_neg_pos): fresh25(X, X, Y, Z, W) = less(Y, Z).
% 96.66/12.78  Axiom 4 (rdn13): rdn_translate(n13, rdn_pos(rdn(rdnn(n3), rdnn(n1)))) = true2.
% 96.66/12.78  Axiom 5 (less_entry_point_neg_pos): fresh25(rdn_translate(X, rdn_pos(Y)), true2, Z, X, W) = fresh24(rdn_translate(Z, rdn_neg(W)), true2, Z, X).
% 96.66/12.78  
% 96.66/12.78  Goal 1 (something_less_n13): less(X, n13) = true2.
% 96.66/12.78  The goal is true when:
% 96.66/12.78    X = nn1
% 96.66/12.78  
% 96.66/12.78  Proof:
% 96.66/12.78    less(nn1, n13)
% 96.66/12.78  = { by axiom 3 (less_entry_point_neg_pos) R->L }
% 96.66/12.78    fresh25(true2, true2, nn1, n13, rdnn(n1))
% 96.66/12.78  = { by axiom 4 (rdn13) R->L }
% 96.66/12.78    fresh25(rdn_translate(n13, rdn_pos(rdn(rdnn(n3), rdnn(n1)))), true2, nn1, n13, rdnn(n1))
% 96.66/12.78  = { by axiom 5 (less_entry_point_neg_pos) }
% 96.66/12.78    fresh24(rdn_translate(nn1, rdn_neg(rdnn(n1))), true2, nn1, n13)
% 96.66/12.78  = { by axiom 1 (rdnn1) }
% 96.66/12.78    fresh24(true2, true2, nn1, n13)
% 96.66/12.78  = { by axiom 2 (less_entry_point_neg_pos) }
% 96.66/12.78    true2
% 96.66/12.78  % SZS output end Proof
% 96.66/12.78  
% 96.66/12.78  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------