TSTP Solution File: NUM097-1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : NUM097-1 : TPTP v8.1.0. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n029.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 06:19:50 EDT 2022

% Result   : Timeout 300.03s 300.44s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : NUM097-1 : TPTP v8.1.0. Bugfixed v2.1.0.
% 0.03/0.13  % Command  : bliksem %s
% 0.13/0.34  % Computer : n029.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Tue Jul  5 18:17:57 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.77/1.15  *** allocated 10000 integers for termspace/termends
% 0.77/1.15  *** allocated 10000 integers for clauses
% 0.77/1.15  *** allocated 10000 integers for justifications
% 0.77/1.15  Bliksem 1.12
% 0.77/1.15  
% 0.77/1.15  
% 0.77/1.15  Automatic Strategy Selection
% 0.77/1.15  
% 0.77/1.15  Clauses:
% 0.77/1.15  [
% 0.77/1.15     [ ~( subclass( X, Y ) ), ~( member( Z, X ) ), member( Z, Y ) ],
% 0.77/1.15     [ member( 'not_subclass_element'( X, Y ), X ), subclass( X, Y ) ],
% 0.77/1.15     [ ~( member( 'not_subclass_element'( X, Y ), Y ) ), subclass( X, Y ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ subclass( X, 'universal_class' ) ],
% 0.77/1.15     [ ~( =( X, Y ) ), subclass( X, Y ) ],
% 0.77/1.15     [ ~( =( X, Y ) ), subclass( Y, X ) ],
% 0.77/1.15     [ ~( subclass( X, Y ) ), ~( subclass( Y, X ) ), =( X, Y ) ],
% 0.77/1.15     [ ~( member( X, 'unordered_pair'( Y, Z ) ) ), =( X, Y ), =( X, Z ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( X, Y
% 0.77/1.15     ) ) ],
% 0.77/1.15     [ ~( member( X, 'universal_class' ) ), member( X, 'unordered_pair'( Y, X
% 0.77/1.15     ) ) ],
% 0.77/1.15     [ member( 'unordered_pair'( X, Y ), 'universal_class' ) ],
% 0.77/1.15     [ =( 'unordered_pair'( X, X ), singleton( X ) ) ],
% 0.77/1.15     [ =( 'unordered_pair'( singleton( X ), 'unordered_pair'( X, singleton( Y
% 0.77/1.15     ) ) ), 'ordered_pair'( X, Y ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.77/1.15    X, Z ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( Z, T ) ) ), member( 
% 0.77/1.15    Y, T ) ],
% 0.77/1.15     [ ~( member( X, Y ) ), ~( member( Z, T ) ), member( 'ordered_pair'( X, Z
% 0.77/1.15     ), 'cross_product'( Y, T ) ) ],
% 0.77/1.15     [ ~( member( X, 'cross_product'( Y, Z ) ) ), =( 'ordered_pair'( first( X
% 0.77/1.15     ), second( X ) ), X ) ],
% 0.77/1.15     [ subclass( 'element_relation', 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'element_relation' ) ), member( X, 
% 0.77/1.15    Y ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.77/1.15    , 'universal_class' ) ) ), ~( member( X, Y ) ), member( 'ordered_pair'( X
% 0.77/1.15    , Y ), 'element_relation' ) ],
% 0.77/1.15     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Y ) ],
% 0.77/1.15     [ ~( member( X, intersection( Y, Z ) ) ), member( X, Z ) ],
% 0.77/1.15     [ ~( member( X, Y ) ), ~( member( X, Z ) ), member( X, intersection( Y, 
% 0.77/1.15    Z ) ) ],
% 0.77/1.15     [ ~( member( X, complement( Y ) ) ), ~( member( X, Y ) ) ],
% 0.77/1.15     [ ~( member( X, 'universal_class' ) ), member( X, complement( Y ) ), 
% 0.77/1.15    member( X, Y ) ],
% 0.77/1.15     [ =( complement( intersection( complement( X ), complement( Y ) ) ), 
% 0.77/1.15    union( X, Y ) ) ],
% 0.77/1.15     [ =( intersection( complement( intersection( X, Y ) ), complement( 
% 0.77/1.15    intersection( complement( X ), complement( Y ) ) ) ), 
% 0.77/1.15    'symmetric_difference'( X, Y ) ) ],
% 0.77/1.15     [ =( intersection( X, 'cross_product'( Y, Z ) ), restrict( X, Y, Z ) ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ =( intersection( 'cross_product'( X, Y ), Z ), restrict( Z, X, Y ) ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ ~( =( restrict( X, singleton( Y ), 'universal_class' ), 'null_class' )
% 0.77/1.15     ), ~( member( Y, 'domain_of'( X ) ) ) ],
% 0.77/1.15     [ ~( member( X, 'universal_class' ) ), =( restrict( Y, singleton( X ), 
% 0.77/1.15    'universal_class' ), 'null_class' ), member( X, 'domain_of'( Y ) ) ],
% 0.77/1.15     [ subclass( rotate( X ), 'cross_product'( 'cross_product'( 
% 0.77/1.15    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), rotate( T ) )
% 0.77/1.15     ), member( 'ordered_pair'( 'ordered_pair'( Y, Z ), X ), T ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.77/1.15    member( 'ordered_pair'( 'ordered_pair'( Z, X ), Y ), 'cross_product'( 
% 0.77/1.15    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.77/1.15    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Z, X ), 
% 0.77/1.15    Y ), rotate( T ) ) ],
% 0.77/1.15     [ subclass( flip( X ), 'cross_product'( 'cross_product'( 
% 0.77/1.15    'universal_class', 'universal_class' ), 'universal_class' ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), flip( T ) ) )
% 0.77/1.15    , member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), T ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( 'ordered_pair'( X, Y ), Z ), T ) ), ~( 
% 0.77/1.15    member( 'ordered_pair'( 'ordered_pair'( Y, X ), Z ), 'cross_product'( 
% 0.77/1.15    'cross_product'( 'universal_class', 'universal_class' ), 
% 0.77/1.15    'universal_class' ) ) ), member( 'ordered_pair'( 'ordered_pair'( Y, X ), 
% 0.77/1.15    Z ), flip( T ) ) ],
% 0.77/1.15     [ =( 'domain_of'( flip( 'cross_product'( X, 'universal_class' ) ) ), 
% 0.77/1.15    inverse( X ) ) ],
% 0.77/1.15     [ =( 'domain_of'( inverse( X ) ), 'range_of'( X ) ) ],
% 0.77/1.15     [ =( first( 'not_subclass_element'( restrict( X, Y, singleton( Z ) ), 
% 0.77/1.15    'null_class' ) ), domain( X, Y, Z ) ) ],
% 0.77/1.15     [ =( second( 'not_subclass_element'( restrict( X, singleton( Y ), Z ), 
% 0.77/1.15    'null_class' ) ), range( X, Y, Z ) ) ],
% 0.77/1.15     [ =( 'range_of'( restrict( X, Y, 'universal_class' ) ), image( X, Y ) )
% 0.77/1.15     ],
% 0.77/1.15     [ =( union( X, singleton( X ) ), successor( X ) ) ],
% 0.77/1.15     [ subclass( 'successor_relation', 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'successor_relation' ) ), =( 
% 0.77/1.15    successor( X ), Y ) ],
% 0.77/1.15     [ ~( =( successor( X ), Y ) ), ~( member( 'ordered_pair'( X, Y ), 
% 0.77/1.15    'cross_product'( 'universal_class', 'universal_class' ) ) ), member( 
% 0.77/1.15    'ordered_pair'( X, Y ), 'successor_relation' ) ],
% 0.77/1.15     [ ~( inductive( X ) ), member( 'null_class', X ) ],
% 0.77/1.15     [ ~( inductive( X ) ), subclass( image( 'successor_relation', X ), X ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ ~( member( 'null_class', X ) ), ~( subclass( image( 
% 0.77/1.15    'successor_relation', X ), X ) ), inductive( X ) ],
% 0.77/1.15     [ inductive( omega ) ],
% 0.77/1.15     [ ~( inductive( X ) ), subclass( omega, X ) ],
% 0.77/1.15     [ member( omega, 'universal_class' ) ],
% 0.77/1.15     [ =( 'domain_of'( restrict( 'element_relation', 'universal_class', X ) )
% 0.77/1.15    , 'sum_class'( X ) ) ],
% 0.77/1.15     [ ~( member( X, 'universal_class' ) ), member( 'sum_class'( X ), 
% 0.77/1.15    'universal_class' ) ],
% 0.77/1.15     [ =( complement( image( 'element_relation', complement( X ) ) ), 
% 0.77/1.15    'power_class'( X ) ) ],
% 0.77/1.15     [ ~( member( X, 'universal_class' ) ), member( 'power_class'( X ), 
% 0.77/1.15    'universal_class' ) ],
% 0.77/1.15     [ subclass( compose( X, Y ), 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), compose( Z, T ) ) ), member( Y, 
% 0.77/1.15    image( Z, image( T, singleton( X ) ) ) ) ],
% 0.77/1.15     [ ~( member( X, image( Y, image( Z, singleton( T ) ) ) ) ), ~( member( 
% 0.77/1.15    'ordered_pair'( T, X ), 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ), member( 'ordered_pair'( T, X ), compose( Y, Z )
% 0.77/1.15     ) ],
% 0.77/1.15     [ ~( 'single_valued_class'( X ) ), subclass( compose( X, inverse( X ) )
% 0.77/1.15    , 'identity_relation' ) ],
% 0.77/1.15     [ ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) ), 
% 0.77/1.15    'single_valued_class'( X ) ],
% 0.77/1.15     [ ~( function( X ) ), subclass( X, 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ],
% 0.77/1.15     [ ~( function( X ) ), subclass( compose( X, inverse( X ) ), 
% 0.77/1.15    'identity_relation' ) ],
% 0.77/1.15     [ ~( subclass( X, 'cross_product'( 'universal_class', 'universal_class'
% 0.77/1.15     ) ) ), ~( subclass( compose( X, inverse( X ) ), 'identity_relation' ) )
% 0.77/1.15    , function( X ) ],
% 0.77/1.15     [ ~( function( X ) ), ~( member( Y, 'universal_class' ) ), member( image( 
% 0.77/1.15    X, Y ), 'universal_class' ) ],
% 0.77/1.15     [ =( X, 'null_class' ), member( regular( X ), X ) ],
% 0.77/1.15     [ =( X, 'null_class' ), =( intersection( X, regular( X ) ), 'null_class'
% 0.77/1.15     ) ],
% 0.77/1.15     [ =( 'sum_class'( image( X, singleton( Y ) ) ), apply( X, Y ) ) ],
% 0.77/1.15     [ function( choice ) ],
% 0.77/1.15     [ ~( member( X, 'universal_class' ) ), =( X, 'null_class' ), member( 
% 0.77/1.15    apply( choice, X ), X ) ],
% 0.77/1.15     [ ~( 'one_to_one'( X ) ), function( X ) ],
% 0.77/1.15     [ ~( 'one_to_one'( X ) ), function( inverse( X ) ) ],
% 0.77/1.15     [ ~( function( inverse( X ) ) ), ~( function( X ) ), 'one_to_one'( X ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ =( intersection( 'cross_product'( 'universal_class', 'universal_class'
% 0.77/1.15     ), intersection( 'cross_product'( 'universal_class', 'universal_class' )
% 0.77/1.15    , complement( compose( complement( 'element_relation' ), inverse( 
% 0.77/1.15    'element_relation' ) ) ) ) ), 'subset_relation' ) ],
% 0.77/1.15     [ =( intersection( inverse( 'subset_relation' ), 'subset_relation' ), 
% 0.77/1.15    'identity_relation' ) ],
% 0.77/1.15     [ =( complement( 'domain_of'( intersection( X, 'identity_relation' ) ) )
% 0.77/1.15    , diagonalise( X ) ) ],
% 0.77/1.15     [ =( intersection( 'domain_of'( X ), diagonalise( compose( inverse( 
% 0.77/1.15    'element_relation' ), X ) ) ), cantor( X ) ) ],
% 0.77/1.15     [ ~( operation( X ) ), function( X ) ],
% 0.77/1.15     [ ~( operation( X ) ), =( 'cross_product'( 'domain_of'( 'domain_of'( X )
% 0.77/1.15     ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ],
% 0.77/1.15     [ ~( operation( X ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.77/1.15    'domain_of'( X ) ) ) ],
% 0.77/1.15     [ ~( function( X ) ), ~( =( 'cross_product'( 'domain_of'( 'domain_of'( X
% 0.77/1.15     ) ), 'domain_of'( 'domain_of'( X ) ) ), 'domain_of'( X ) ) ), ~( 
% 0.77/1.15    subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( X ) ) ) ), operation( 
% 0.77/1.15    X ) ],
% 0.77/1.15     [ ~( compatible( X, Y, Z ) ), function( X ) ],
% 0.77/1.15     [ ~( compatible( X, Y, Z ) ), =( 'domain_of'( 'domain_of'( Y ) ), 
% 0.77/1.15    'domain_of'( X ) ) ],
% 0.77/1.15     [ ~( compatible( X, Y, Z ) ), subclass( 'range_of'( X ), 'domain_of'( 
% 0.77/1.15    'domain_of'( Z ) ) ) ],
% 0.77/1.15     [ ~( function( X ) ), ~( =( 'domain_of'( 'domain_of'( Y ) ), 'domain_of'( 
% 0.77/1.15    X ) ) ), ~( subclass( 'range_of'( X ), 'domain_of'( 'domain_of'( Z ) ) )
% 0.77/1.15     ), compatible( X, Y, Z ) ],
% 0.77/1.15     [ ~( homomorphism( X, Y, Z ) ), operation( Y ) ],
% 0.77/1.15     [ ~( homomorphism( X, Y, Z ) ), operation( Z ) ],
% 0.77/1.15     [ ~( homomorphism( X, Y, Z ) ), compatible( X, Y, Z ) ],
% 0.77/1.15     [ ~( homomorphism( X, Y, Z ) ), ~( member( 'ordered_pair'( T, U ), 
% 0.77/1.15    'domain_of'( Y ) ) ), =( apply( Z, 'ordered_pair'( apply( X, T ), apply( 
% 0.77/1.15    X, U ) ) ), apply( X, apply( Y, 'ordered_pair'( T, U ) ) ) ) ],
% 0.77/1.15     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.77/1.15    member( 'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 
% 0.77/1.15    'not_homomorphism2'( Z, X, Y ) ), 'domain_of'( X ) ), homomorphism( Z, X
% 0.77/1.15    , Y ) ],
% 0.77/1.15     [ ~( operation( X ) ), ~( operation( Y ) ), ~( compatible( Z, X, Y ) ), 
% 0.77/1.15    ~( =( apply( Y, 'ordered_pair'( apply( Z, 'not_homomorphism1'( Z, X, Y )
% 0.77/1.15     ), apply( Z, 'not_homomorphism2'( Z, X, Y ) ) ) ), apply( Z, apply( X, 
% 0.77/1.15    'ordered_pair'( 'not_homomorphism1'( Z, X, Y ), 'not_homomorphism2'( Z, X
% 0.77/1.15    , Y ) ) ) ) ) ), homomorphism( Z, X, Y ) ],
% 0.77/1.15     [ subclass( 'compose_class'( X ), 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'compose_class'( Z ) ) ), =( 
% 0.77/1.15    compose( Z, X ), Y ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.77/1.15    , 'universal_class' ) ) ), ~( =( compose( Z, X ), Y ) ), member( 
% 0.77/1.15    'ordered_pair'( X, Y ), 'compose_class'( Z ) ) ],
% 0.77/1.15     [ subclass( 'composition_function', 'cross_product'( 'universal_class', 
% 0.77/1.15    'cross_product'( 'universal_class', 'universal_class' ) ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.77/1.15    'composition_function' ) ), =( compose( X, Y ), Z ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 0.77/1.15    , 'universal_class' ) ) ), member( 'ordered_pair'( X, 'ordered_pair'( Y, 
% 0.77/1.15    compose( X, Y ) ) ), 'composition_function' ) ],
% 0.77/1.15     [ subclass( 'domain_relation', 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'domain_relation' ) ), =( 
% 0.77/1.15    'domain_of'( X ), Y ) ],
% 0.77/1.15     [ ~( member( X, 'universal_class' ) ), member( 'ordered_pair'( X, 
% 0.77/1.15    'domain_of'( X ) ), 'domain_relation' ) ],
% 0.77/1.15     [ =( first( 'not_subclass_element'( compose( X, inverse( X ) ), 
% 0.77/1.15    'identity_relation' ) ), 'single_valued1'( X ) ) ],
% 0.77/1.15     [ =( second( 'not_subclass_element'( compose( X, inverse( X ) ), 
% 0.77/1.15    'identity_relation' ) ), 'single_valued2'( X ) ) ],
% 0.77/1.15     [ =( domain( X, image( inverse( X ), singleton( 'single_valued1'( X ) )
% 0.77/1.15     ), 'single_valued2'( X ) ), 'single_valued3'( X ) ) ],
% 0.77/1.15     [ =( intersection( complement( compose( 'element_relation', complement( 
% 0.77/1.15    'identity_relation' ) ) ), 'element_relation' ), 'singleton_relation' ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ subclass( 'application_function', 'cross_product'( 'universal_class', 
% 0.77/1.15    'cross_product'( 'universal_class', 'universal_class' ) ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.77/1.15    'application_function' ) ), member( Y, 'domain_of'( X ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.77/1.15    'application_function' ) ), =( apply( X, Y ), Z ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, 'ordered_pair'( Y, Z ) ), 
% 0.77/1.15    'cross_product'( 'universal_class', 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ) ), ~( member( Y, 'domain_of'( X ) ) ), member( 
% 0.77/1.15    'ordered_pair'( X, 'ordered_pair'( Y, apply( X, Y ) ) ), 
% 0.77/1.15    'application_function' ) ],
% 0.77/1.15     [ ~( maps( X, Y, Z ) ), function( X ) ],
% 0.77/1.15     [ ~( maps( X, Y, Z ) ), =( 'domain_of'( X ), Y ) ],
% 0.77/1.15     [ ~( maps( X, Y, Z ) ), subclass( 'range_of'( X ), Z ) ],
% 0.77/1.15     [ ~( function( X ) ), ~( subclass( 'range_of'( X ), Y ) ), maps( X, 
% 0.77/1.15    'domain_of'( X ), Y ) ],
% 0.77/1.15     [ =( union( X, inverse( X ) ), 'symmetrization_of'( X ) ) ],
% 0.77/1.15     [ ~( irreflexive( X, Y ) ), subclass( restrict( X, Y, Y ), complement( 
% 0.77/1.15    'identity_relation' ) ) ],
% 0.77/1.15     [ ~( subclass( restrict( X, Y, Y ), complement( 'identity_relation' ) )
% 0.77/1.15     ), irreflexive( X, Y ) ],
% 0.77/1.15     [ ~( connected( X, Y ) ), subclass( 'cross_product'( Y, Y ), union( 
% 0.77/1.15    'identity_relation', 'symmetrization_of'( X ) ) ) ],
% 0.77/1.15     [ ~( subclass( 'cross_product'( X, X ), union( 'identity_relation', 
% 0.77/1.15    'symmetrization_of'( Y ) ) ) ), connected( Y, X ) ],
% 0.77/1.15     [ ~( transitive( X, Y ) ), subclass( compose( restrict( X, Y, Y ), 
% 0.77/1.15    restrict( X, Y, Y ) ), restrict( X, Y, Y ) ) ],
% 0.77/1.15     [ ~( subclass( compose( restrict( X, Y, Y ), restrict( X, Y, Y ) ), 
% 0.77/1.15    restrict( X, Y, Y ) ) ), transitive( X, Y ) ],
% 0.77/1.15     [ ~( asymmetric( X, Y ) ), =( restrict( intersection( X, inverse( X ) )
% 0.77/1.15    , Y, Y ), 'null_class' ) ],
% 0.77/1.15     [ ~( =( restrict( intersection( X, inverse( X ) ), Y, Y ), 'null_class'
% 0.77/1.15     ) ), asymmetric( X, Y ) ],
% 0.77/1.15     [ =( segment( X, Y, Z ), 'domain_of'( restrict( X, Y, singleton( Z ) ) )
% 0.77/1.15     ) ],
% 0.77/1.15     [ ~( 'well_ordering'( X, Y ) ), connected( X, Y ) ],
% 0.77/1.15     [ ~( 'well_ordering'( X, Y ) ), ~( subclass( Z, Y ) ), =( Z, 
% 0.77/1.15    'null_class' ), member( least( X, Z ), Z ) ],
% 0.77/1.15     [ ~( 'well_ordering'( X, Y ) ), ~( subclass( Z, Y ) ), ~( member( T, Z )
% 0.77/1.15     ), member( least( X, Z ), Z ) ],
% 0.77/1.15     [ ~( 'well_ordering'( X, Y ) ), ~( subclass( Z, Y ) ), =( segment( X, Z
% 0.77/1.15    , least( X, Z ) ), 'null_class' ) ],
% 0.77/1.15     [ ~( 'well_ordering'( X, Y ) ), ~( subclass( Z, Y ) ), ~( member( T, Z )
% 0.77/1.15     ), ~( member( 'ordered_pair'( T, least( X, Z ) ), X ) ) ],
% 0.77/1.15     [ ~( connected( X, Y ) ), ~( =( 'not_well_ordering'( X, Y ), 
% 0.77/1.15    'null_class' ) ), 'well_ordering'( X, Y ) ],
% 0.77/1.15     [ ~( connected( X, Y ) ), subclass( 'not_well_ordering'( X, Y ), Y ), 
% 0.77/1.15    'well_ordering'( X, Y ) ],
% 0.77/1.15     [ ~( member( X, 'not_well_ordering'( Y, Z ) ) ), ~( =( segment( Y, 
% 0.77/1.15    'not_well_ordering'( Y, Z ), X ), 'null_class' ) ), ~( connected( Y, Z )
% 0.77/1.15     ), 'well_ordering'( Y, Z ) ],
% 0.77/1.15     [ ~( section( X, Y, Z ) ), subclass( Y, Z ) ],
% 0.77/1.15     [ ~( section( X, Y, Z ) ), subclass( 'domain_of'( restrict( X, Z, Y ) )
% 0.77/1.15    , Y ) ],
% 0.77/1.15     [ ~( subclass( X, Y ) ), ~( subclass( 'domain_of'( restrict( Z, Y, X ) )
% 0.77/1.15    , X ) ), section( Z, X, Y ) ],
% 0.77/1.15     [ ~( member( X, 'ordinal_numbers' ) ), 'well_ordering'( 
% 0.77/1.15    'element_relation', X ) ],
% 0.77/1.15     [ ~( member( X, 'ordinal_numbers' ) ), subclass( 'sum_class'( X ), X ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ ~( 'well_ordering'( 'element_relation', X ) ), ~( subclass( 
% 0.77/1.15    'sum_class'( X ), X ) ), ~( member( X, 'universal_class' ) ), member( X, 
% 0.77/1.15    'ordinal_numbers' ) ],
% 0.77/1.15     [ ~( 'well_ordering'( 'element_relation', X ) ), ~( subclass( 
% 0.77/1.15    'sum_class'( X ), X ) ), member( X, 'ordinal_numbers' ), =( X, 
% 0.77/1.15    'ordinal_numbers' ) ],
% 0.77/1.15     [ =( union( singleton( 'null_class' ), image( 'successor_relation', 
% 0.77/1.15    'ordinal_numbers' ) ), 'kind_1_ordinals' ) ],
% 0.77/1.15     [ =( intersection( complement( 'kind_1_ordinals' ), 'ordinal_numbers' )
% 0.77/1.15    , 'limit_ordinals' ) ],
% 0.77/1.15     [ subclass( 'rest_of'( X ), 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'rest_of'( Z ) ) ), member( X, 
% 0.77/1.15    'domain_of'( Z ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'rest_of'( Z ) ) ), =( restrict( Z
% 0.77/1.15    , X, 'universal_class' ), Y ) ],
% 0.77/1.15     [ ~( member( X, 'domain_of'( Y ) ) ), ~( =( restrict( Y, X, 
% 0.77/1.15    'universal_class' ), Z ) ), member( 'ordered_pair'( X, Z ), 'rest_of'( Y
% 0.77/1.15     ) ) ],
% 0.77/1.15     [ subclass( 'rest_relation', 'cross_product'( 'universal_class', 
% 0.77/1.15    'universal_class' ) ) ],
% 0.77/1.15     [ ~( member( 'ordered_pair'( X, Y ), 'rest_relation' ) ), =( 'rest_of'( 
% 0.77/1.15    X ), Y ) ],
% 0.77/1.15     [ ~( member( X, 'universal_class' ) ), member( 'ordered_pair'( X, 
% 0.77/1.15    'rest_of'( X ) ), 'rest_relation' ) ],
% 0.77/1.15     [ ~( member( X, 'recursion_equation_functions'( Y ) ) ), function( Y ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ ~( member( X, 'recursion_equation_functions'( Y ) ) ), function( X ) ]
% 0.77/1.15    ,
% 0.77/1.15     [ ~( member( X, 'recursion_equation_functions'( Y ) ) ), member( 
% 1.31/1.71    'domain_of'( X ), 'ordinal_numbers' ) ],
% 1.31/1.71     [ ~( member( X, 'recursion_equation_functions'( Y ) ) ), =( compose( Y, 
% 1.31/1.71    'rest_of'( X ) ), X ) ],
% 1.31/1.71     [ ~( function( X ) ), ~( function( Y ) ), ~( member( 'domain_of'( Y ), 
% 1.31/1.71    'ordinal_numbers' ) ), ~( =( compose( X, 'rest_of'( Y ) ), Y ) ), member( 
% 1.31/1.71    Y, 'recursion_equation_functions'( X ) ) ],
% 1.31/1.71     [ subclass( 'union_of_range_map', 'cross_product'( 'universal_class', 
% 1.31/1.71    'universal_class' ) ) ],
% 1.31/1.71     [ ~( member( 'ordered_pair'( X, Y ), 'union_of_range_map' ) ), =( 
% 1.31/1.71    'sum_class'( 'range_of'( X ) ), Y ) ],
% 1.31/1.71     [ ~( member( 'ordered_pair'( X, Y ), 'cross_product'( 'universal_class'
% 1.31/1.71    , 'universal_class' ) ) ), ~( =( 'sum_class'( 'range_of'( X ) ), Y ) ), 
% 1.31/1.71    member( 'ordered_pair'( X, Y ), 'union_of_range_map' ) ],
% 1.31/1.71     [ =( apply( recursion( X, 'successor_relation', 'union_of_range_map' ), 
% 1.31/1.71    Y ), 'ordinal_add'( X, Y ) ) ],
% 1.31/1.71     [ =( recursion( 'null_class', apply( 'add_relation', X ), 
% 1.31/1.71    'union_of_range_map' ), 'ordinal_multiply'( X, Y ) ) ],
% 1.31/1.71     [ ~( member( X, omega ) ), =( 'integer_of'( X ), X ) ],
% 1.31/1.71     [ member( X, omega ), =( 'integer_of'( X ), 'null_class' ) ],
% 1.31/1.71     [ 'well_ordering'( 'element_relation', y ) ],
% 1.31/1.71     [ section( 'element_relation', w, y ) ],
% 1.31/1.71     [ ~( =( intersection( y, least( 'element_relation', intersection( 
% 1.31/1.71    complement( w ), y ) ) ), w ) ) ],
% 1.31/1.71     [ ~( =( y, w ) ) ]
% 1.31/1.71  ] .
% 1.31/1.71  
% 1.31/1.71  
% 1.31/1.71  percentage equality = 0.223926, percentage horn = 0.925926
% 1.31/1.71  This is a problem with some equality
% 1.31/1.71  
% 1.31/1.71  
% 1.31/1.71  
% 1.31/1.71  Options Used:
% 1.31/1.71  
% 1.31/1.71  useres =            1
% 1.31/1.71  useparamod =        1
% 1.31/1.71  useeqrefl =         1
% 1.31/1.71  useeqfact =         1
% 1.31/1.71  usefactor =         1
% 1.31/1.71  usesimpsplitting =  0
% 1.31/1.71  usesimpdemod =      5
% 1.31/1.71  usesimpres =        3
% 1.31/1.71  
% 1.31/1.71  resimpinuse      =  1000
% 1.31/1.71  resimpclauses =     20000
% 1.31/1.71  substype =          eqrewr
% 1.31/1.71  backwardsubs =      1
% 1.31/1.71  selectoldest =      5
% 1.31/1.71  
% 1.31/1.71  litorderings [0] =  split
% 1.31/1.71  litorderings [1] =  extend the termordering, first sorting on arguments
% 1.31/1.71  
% 1.31/1.71  termordering =      kbo
% 1.31/1.71  
% 1.31/1.71  litapriori =        0
% 1.31/1.71  termapriori =       1
% 1.31/1.71  litaposteriori =    0
% 1.31/1.71  termaposteriori =   0
% 1.31/1.71  demodaposteriori =  0
% 1.31/1.71  ordereqreflfact =   0
% 1.31/1.71  
% 1.31/1.71  litselect =         negord
% 1.31/1.71  
% 1.31/1.71  maxweight =         15
% 1.31/1.71  maxdepth =          30000
% 1.31/1.71  maxlength =         115
% 1.31/1.71  maxnrvars =         195
% 1.31/1.71  excuselevel =       1
% 1.31/1.71  increasemaxweight = 1
% 1.31/1.71  
% 1.31/1.71  maxselected =       10000000
% 1.31/1.71  maxnrclauses =      10000000
% 1.31/1.71  
% 1.31/1.71  showgenerated =    0
% 1.31/1.71  showkept =         0
% 1.31/1.71  showselected =     0
% 1.31/1.71  showdeleted =      0
% 1.31/1.71  showresimp =       1
% 1.31/1.71  showstatus =       2000
% 1.31/1.71  
% 1.31/1.71  prologoutput =     1
% 1.31/1.71  nrgoals =          5000000
% 1.31/1.71  totalproof =       1
% 1.31/1.71  
% 1.31/1.71  Symbols occurring in the translation:
% 1.31/1.71  
% 1.31/1.71  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 1.31/1.71  .  [1, 2]      (w:1, o:74, a:1, s:1, b:0), 
% 1.31/1.71  !  [4, 1]      (w:0, o:41, a:1, s:1, b:0), 
% 1.31/1.71  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 1.31/1.71  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 1.31/1.71  subclass  [41, 2]      (w:1, o:99, a:1, s:1, b:0), 
% 1.31/1.71  member  [43, 2]      (w:1, o:101, a:1, s:1, b:0), 
% 1.31/1.71  'not_subclass_element'  [44, 2]      (w:1, o:102, a:1, s:1, b:0), 
% 1.31/1.71  'universal_class'  [45, 0]      (w:1, o:24, a:1, s:1, b:0), 
% 1.31/1.71  'unordered_pair'  [46, 2]      (w:1, o:104, a:1, s:1, b:0), 
% 1.31/1.71  singleton  [47, 1]      (w:1, o:51, a:1, s:1, b:0), 
% 1.31/1.71  'ordered_pair'  [48, 2]      (w:1, o:106, a:1, s:1, b:0), 
% 1.31/1.71  'cross_product'  [50, 2]      (w:1, o:107, a:1, s:1, b:0), 
% 1.31/1.71  first  [52, 1]      (w:1, o:52, a:1, s:1, b:0), 
% 1.31/1.71  second  [53, 1]      (w:1, o:53, a:1, s:1, b:0), 
% 1.31/1.71  'element_relation'  [54, 0]      (w:1, o:29, a:1, s:1, b:0), 
% 1.31/1.71  intersection  [55, 2]      (w:1, o:109, a:1, s:1, b:0), 
% 1.31/1.71  complement  [56, 1]      (w:1, o:54, a:1, s:1, b:0), 
% 1.31/1.71  union  [57, 2]      (w:1, o:110, a:1, s:1, b:0), 
% 1.31/1.71  'symmetric_difference'  [58, 2]      (w:1, o:111, a:1, s:1, b:0), 
% 1.31/1.71  restrict  [60, 3]      (w:1, o:120, a:1, s:1, b:0), 
% 1.31/1.71  'null_class'  [61, 0]      (w:1, o:30, a:1, s:1, b:0), 
% 1.31/1.71  'domain_of'  [62, 1]      (w:1, o:57, a:1, s:1, b:0), 
% 1.31/1.71  rotate  [63, 1]      (w:1, o:46, a:1, s:1, b:0), 
% 1.31/1.71  flip  [65, 1]      (w:1, o:58, a:1, s:1, b:0), 
% 1.31/1.71  inverse  [66, 1]      (w:1, o:59, a:1, s:1, b:0), 
% 1.31/1.71  'range_of'  [67, 1]      (w:1, o:47, a:1, s:1, b:0), 
% 1.31/1.71  domain  [68, 3]      (w:1, o:122, a:1, s:1, b:0), 
% 1.31/1.71  range  [69, 3]      (w:1, o:123, a:1, s:1, b:0), 
% 1.31/1.71  image  [70, 2]      (w:1, o:108, a:1, s:1, b:0), 
% 1.31/1.71  successor  [71, 1]      (w:1, o:60, a:1, s:1, b:0), 
% 40.57/41.00  'successor_relation'  [72, 0]      (w:1, o:7, a:1, s:1, b:0), 
% 40.57/41.00  inductive  [73, 1]      (w:1, o:61, a:1, s:1, b:0), 
% 40.57/41.00  omega  [74, 0]      (w:1, o:11, a:1, s:1, b:0), 
% 40.57/41.00  'sum_class'  [75, 1]      (w:1, o:62, a:1, s:1, b:0), 
% 40.57/41.00  'power_class'  [76, 1]      (w:1, o:65, a:1, s:1, b:0), 
% 40.57/41.00  compose  [78, 2]      (w:1, o:112, a:1, s:1, b:0), 
% 40.57/41.00  'single_valued_class'  [79, 1]      (w:1, o:66, a:1, s:1, b:0), 
% 40.57/41.00  'identity_relation'  [80, 0]      (w:1, o:31, a:1, s:1, b:0), 
% 40.57/41.00  function  [82, 1]      (w:1, o:67, a:1, s:1, b:0), 
% 40.57/41.00  regular  [83, 1]      (w:1, o:48, a:1, s:1, b:0), 
% 40.57/41.00  apply  [84, 2]      (w:1, o:113, a:1, s:1, b:0), 
% 40.57/41.00  choice  [85, 0]      (w:1, o:32, a:1, s:1, b:0), 
% 40.57/41.00  'one_to_one'  [86, 1]      (w:1, o:63, a:1, s:1, b:0), 
% 40.57/41.00  'subset_relation'  [87, 0]      (w:1, o:6, a:1, s:1, b:0), 
% 40.57/41.00  diagonalise  [88, 1]      (w:1, o:68, a:1, s:1, b:0), 
% 40.57/41.00  cantor  [89, 1]      (w:1, o:55, a:1, s:1, b:0), 
% 40.57/41.00  operation  [90, 1]      (w:1, o:64, a:1, s:1, b:0), 
% 40.57/41.00  compatible  [94, 3]      (w:1, o:121, a:1, s:1, b:0), 
% 40.57/41.00  homomorphism  [95, 3]      (w:1, o:124, a:1, s:1, b:0), 
% 40.57/41.00  'not_homomorphism1'  [96, 3]      (w:1, o:126, a:1, s:1, b:0), 
% 40.57/41.00  'not_homomorphism2'  [97, 3]      (w:1, o:127, a:1, s:1, b:0), 
% 40.57/41.00  'compose_class'  [98, 1]      (w:1, o:56, a:1, s:1, b:0), 
% 40.57/41.00  'composition_function'  [99, 0]      (w:1, o:33, a:1, s:1, b:0), 
% 40.57/41.00  'domain_relation'  [100, 0]      (w:1, o:28, a:1, s:1, b:0), 
% 40.57/41.00  'single_valued1'  [101, 1]      (w:1, o:69, a:1, s:1, b:0), 
% 40.57/41.00  'single_valued2'  [102, 1]      (w:1, o:70, a:1, s:1, b:0), 
% 40.57/41.00  'single_valued3'  [103, 1]      (w:1, o:71, a:1, s:1, b:0), 
% 40.57/41.00  'singleton_relation'  [104, 0]      (w:1, o:8, a:1, s:1, b:0), 
% 40.57/41.00  'application_function'  [105, 0]      (w:1, o:34, a:1, s:1, b:0), 
% 40.57/41.00  maps  [106, 3]      (w:1, o:125, a:1, s:1, b:0), 
% 40.57/41.00  'symmetrization_of'  [107, 1]      (w:1, o:72, a:1, s:1, b:0), 
% 40.57/41.00  irreflexive  [108, 2]      (w:1, o:114, a:1, s:1, b:0), 
% 40.57/41.00  connected  [109, 2]      (w:1, o:115, a:1, s:1, b:0), 
% 40.57/41.00  transitive  [110, 2]      (w:1, o:103, a:1, s:1, b:0), 
% 40.57/41.00  asymmetric  [111, 2]      (w:1, o:116, a:1, s:1, b:0), 
% 40.57/41.00  segment  [112, 3]      (w:1, o:129, a:1, s:1, b:0), 
% 40.57/41.00  'well_ordering'  [113, 2]      (w:1, o:117, a:1, s:1, b:0), 
% 40.57/41.00  least  [114, 2]      (w:1, o:100, a:1, s:1, b:0), 
% 40.57/41.00  'not_well_ordering'  [115, 2]      (w:1, o:105, a:1, s:1, b:0), 
% 40.57/41.00  section  [116, 3]      (w:1, o:130, a:1, s:1, b:0), 
% 40.57/41.00  'ordinal_numbers'  [117, 0]      (w:1, o:12, a:1, s:1, b:0), 
% 40.57/41.00  'kind_1_ordinals'  [118, 0]      (w:1, o:35, a:1, s:1, b:0), 
% 40.57/41.00  'limit_ordinals'  [119, 0]      (w:1, o:36, a:1, s:1, b:0), 
% 40.57/41.00  'rest_of'  [120, 1]      (w:1, o:49, a:1, s:1, b:0), 
% 40.57/41.00  'rest_relation'  [121, 0]      (w:1, o:5, a:1, s:1, b:0), 
% 40.57/41.00  'recursion_equation_functions'  [122, 1]      (w:1, o:50, a:1, s:1, b:0), 
% 40.57/41.00  'union_of_range_map'  [123, 0]      (w:1, o:37, a:1, s:1, b:0), 
% 40.57/41.00  recursion  [124, 3]      (w:1, o:128, a:1, s:1, b:0), 
% 40.57/41.00  'ordinal_add'  [125, 2]      (w:1, o:118, a:1, s:1, b:0), 
% 40.57/41.00  'add_relation'  [126, 0]      (w:1, o:38, a:1, s:1, b:0), 
% 40.57/41.00  'ordinal_multiply'  [127, 2]      (w:1, o:119, a:1, s:1, b:0), 
% 40.57/41.00  'integer_of'  [128, 1]      (w:1, o:73, a:1, s:1, b:0), 
% 40.57/41.00  y  [129, 0]      (w:1, o:39, a:1, s:1, b:0), 
% 40.57/41.00  w  [130, 0]      (w:1, o:40, a:1, s:1, b:0).
% 40.57/41.00  
% 40.57/41.00  
% 40.57/41.00  Starting Search:
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  
% 40.57/41.00  Intermediate Status:
% 40.57/41.00  Generated:    4918
% 40.57/41.00  Kept:         2007
% 40.57/41.00  Inuse:        109
% 40.57/41.00  Deleted:      7
% 40.57/41.00  Deletedinuse: 2
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  
% 40.57/41.00  Intermediate Status:
% 40.57/41.00  Generated:    9703
% 40.57/41.00  Kept:         4168
% 40.57/41.00  Inuse:        188
% 40.57/41.00  Deleted:      20
% 40.57/41.00  Deletedinuse: 7
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  
% 40.57/41.00  Intermediate Status:
% 40.57/41.00  Generated:    13793
% 40.57/41.00  Kept:         6180
% 40.57/41.00  Inuse:        250
% 40.57/41.00  Deleted:      24
% 40.57/41.00  Deletedinuse: 10
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  
% 40.57/41.00  Intermediate Status:
% 40.57/41.00  Generated:    18769
% 40.57/41.00  Kept:         8226
% 40.57/41.00  Inuse:        296
% 40.57/41.00  Deleted:      57
% 40.57/41.00  Deletedinuse: 32
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  
% 40.57/41.00  Intermediate Status:
% 40.57/41.00  Generated:    23557
% 40.57/41.00  Kept:         10384
% 40.57/41.00  Inuse:        356
% 40.57/41.00  Deleted:      70
% 40.57/41.00  Deletedinuse: 45
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  Resimplifying inuse:
% 40.57/41.00  Done
% 40.57/41.00  
% 40.57/41.00  
% 40.57/41.00  Intermediate Status:
% 40.57/41.00  Generated:    27095
% 40.57/41.00  Kept:         12395
% 168.37/168.79  Inuse:        384
% 168.37/168.79  Deleted:      79
% 168.37/168.79  Deletedinuse: 54
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    31113
% 168.37/168.79  Kept:         14594
% 168.37/168.79  Inuse:        421
% 168.37/168.79  Deleted:      80
% 168.37/168.79  Deletedinuse: 55
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    34704
% 168.37/168.79  Kept:         16600
% 168.37/168.79  Inuse:        451
% 168.37/168.79  Deleted:      80
% 168.37/168.79  Deletedinuse: 55
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    39969
% 168.37/168.79  Kept:         18644
% 168.37/168.79  Inuse:        500
% 168.37/168.79  Deleted:      82
% 168.37/168.79  Deletedinuse: 56
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying clauses:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    45423
% 168.37/168.79  Kept:         20656
% 168.37/168.79  Inuse:        541
% 168.37/168.79  Deleted:      2357
% 168.37/168.79  Deletedinuse: 60
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    50546
% 168.37/168.79  Kept:         23149
% 168.37/168.79  Inuse:        575
% 168.37/168.79  Deleted:      2368
% 168.37/168.79  Deletedinuse: 71
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    54014
% 168.37/168.79  Kept:         25171
% 168.37/168.79  Inuse:        599
% 168.37/168.79  Deleted:      2368
% 168.37/168.79  Deletedinuse: 71
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    57704
% 168.37/168.79  Kept:         27270
% 168.37/168.79  Inuse:        615
% 168.37/168.79  Deleted:      2369
% 168.37/168.79  Deletedinuse: 72
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    64360
% 168.37/168.79  Kept:         31151
% 168.37/168.79  Inuse:        645
% 168.37/168.79  Deleted:      2369
% 168.37/168.79  Deletedinuse: 72
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    70840
% 168.37/168.79  Kept:         33531
% 168.37/168.79  Inuse:        650
% 168.37/168.79  Deleted:      2369
% 168.37/168.79  Deletedinuse: 72
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    77141
% 168.37/168.79  Kept:         35760
% 168.37/168.79  Inuse:        655
% 168.37/168.79  Deleted:      2369
% 168.37/168.79  Deletedinuse: 72
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    82415
% 168.37/168.79  Kept:         37762
% 168.37/168.79  Inuse:        692
% 168.37/168.79  Deleted:      2369
% 168.37/168.79  Deletedinuse: 72
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    87799
% 168.37/168.79  Kept:         39858
% 168.37/168.79  Inuse:        725
% 168.37/168.79  Deleted:      2369
% 168.37/168.79  Deletedinuse: 72
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying clauses:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    91803
% 168.37/168.79  Kept:         41871
% 168.37/168.79  Inuse:        759
% 168.37/168.79  Deleted:      3985
% 168.37/168.79  Deletedinuse: 72
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    96925
% 168.37/168.79  Kept:         43873
% 168.37/168.79  Inuse:        805
% 168.37/168.79  Deleted:      4000
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    105242
% 168.37/168.79  Kept:         46055
% 168.37/168.79  Inuse:        820
% 168.37/168.79  Deleted:      4000
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    112052
% 168.37/168.79  Kept:         48077
% 168.37/168.79  Inuse:        842
% 168.37/168.79  Deleted:      4000
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    117213
% 168.37/168.79  Kept:         50121
% 168.37/168.79  Inuse:        878
% 168.37/168.79  Deleted:      4000
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    122870
% 168.37/168.79  Kept:         52161
% 168.37/168.79  Inuse:        915
% 168.37/168.79  Deleted:      4000
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    128031
% 168.37/168.79  Kept:         54171
% 168.37/168.79  Inuse:        950
% 168.37/168.79  Deleted:      4000
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    137089
% 168.37/168.79  Kept:         58532
% 168.37/168.79  Inuse:        970
% 168.37/168.79  Deleted:      4000
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    143556
% 168.37/168.79  Kept:         61822
% 168.37/168.79  Inuse:        975
% 168.37/168.79  Deleted:      4000
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying clauses:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    163769
% 168.37/168.79  Kept:         66370
% 168.37/168.79  Inuse:        990
% 168.37/168.79  Deleted:      6014
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    228423
% 168.37/168.79  Kept:         68652
% 168.37/168.79  Inuse:        1015
% 168.37/168.79  Deleted:      6014
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuse:
% 168.37/168.79  Done
% 168.37/168.79  
% 168.37/168.79  
% 168.37/168.79  Intermediate Status:
% 168.37/168.79  Generated:    235118
% 168.37/168.79  Kept:         71728
% 168.37/168.79  Inuse:        1020
% 168.37/168.79  Deleted:      6014
% 168.37/168.79  Deletedinuse: 87
% 168.37/168.79  
% 168.37/168.79  Resimplifying inuseCputime limit exceeded (core dumped)
%------------------------------------------------------------------------------