TSTP Solution File: MGT054+1 by Prover9---1109a

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Prover9---1109a
% Problem  : MGT054+1 : TPTP v8.1.0. Released v2.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_prover9 %d %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 22:23:08 EDT 2022

% Result   : Theorem 0.78s 1.05s
% Output   : Refutation 0.78s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : MGT054+1 : TPTP v8.1.0. Released v2.4.0.
% 0.12/0.13  % Command  : tptp2X_and_run_prover9 %d %s
% 0.12/0.34  % Computer : n022.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Thu Jun  9 10:52:49 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.78/1.03  ============================== Prover9 ===============================
% 0.78/1.03  Prover9 (32) version 2009-11A, November 2009.
% 0.78/1.03  Process 32153 was started by sandbox on n022.cluster.edu,
% 0.78/1.03  Thu Jun  9 10:52:50 2022
% 0.78/1.03  The command was "/export/starexec/sandbox/solver/bin/prover9 -t 300 -f /tmp/Prover9_31974_n022.cluster.edu".
% 0.78/1.03  ============================== end of head ===========================
% 0.78/1.03  
% 0.78/1.03  ============================== INPUT =================================
% 0.78/1.03  
% 0.78/1.03  % Reading from file /tmp/Prover9_31974_n022.cluster.edu
% 0.78/1.03  
% 0.78/1.03  set(prolog_style_variables).
% 0.78/1.03  set(auto2).
% 0.78/1.03      % set(auto2) -> set(auto).
% 0.78/1.03      % set(auto) -> set(auto_inference).
% 0.78/1.03      % set(auto) -> set(auto_setup).
% 0.78/1.03      % set(auto_setup) -> set(predicate_elim).
% 0.78/1.03      % set(auto_setup) -> assign(eq_defs, unfold).
% 0.78/1.03      % set(auto) -> set(auto_limits).
% 0.78/1.03      % set(auto_limits) -> assign(max_weight, "100.000").
% 0.78/1.03      % set(auto_limits) -> assign(sos_limit, 20000).
% 0.78/1.03      % set(auto) -> set(auto_denials).
% 0.78/1.03      % set(auto) -> set(auto_process).
% 0.78/1.03      % set(auto2) -> assign(new_constants, 1).
% 0.78/1.03      % set(auto2) -> assign(fold_denial_max, 3).
% 0.78/1.03      % set(auto2) -> assign(max_weight, "200.000").
% 0.78/1.03      % set(auto2) -> assign(max_hours, 1).
% 0.78/1.03      % assign(max_hours, 1) -> assign(max_seconds, 3600).
% 0.78/1.03      % set(auto2) -> assign(max_seconds, 0).
% 0.78/1.03      % set(auto2) -> assign(max_minutes, 5).
% 0.78/1.03      % assign(max_minutes, 5) -> assign(max_seconds, 300).
% 0.78/1.03      % set(auto2) -> set(sort_initial_sos).
% 0.78/1.03      % set(auto2) -> assign(sos_limit, -1).
% 0.78/1.03      % set(auto2) -> assign(lrs_ticks, 3000).
% 0.78/1.03      % set(auto2) -> assign(max_megs, 400).
% 0.78/1.03      % set(auto2) -> assign(stats, some).
% 0.78/1.03      % set(auto2) -> clear(echo_input).
% 0.78/1.03      % set(auto2) -> set(quiet).
% 0.78/1.03      % set(auto2) -> clear(print_initial_clauses).
% 0.78/1.03      % set(auto2) -> clear(print_given).
% 0.78/1.03  assign(lrs_ticks,-1).
% 0.78/1.03  assign(sos_limit,10000).
% 0.78/1.03  assign(order,kbo).
% 0.78/1.03  set(lex_order_vars).
% 0.78/1.03  clear(print_given).
% 0.78/1.03  
% 0.78/1.03  % formulas(sos).  % not echoed (14 formulas)
% 0.78/1.03  
% 0.78/1.03  ============================== end of input ==========================
% 0.78/1.03  
% 0.78/1.03  % From the command line: assign(max_seconds, 300).
% 0.78/1.03  
% 0.78/1.03  ============================== PROCESS NON-CLAUSAL FORMULAS ==========
% 0.78/1.03  
% 0.78/1.03  % Formulas that are not ordinary clauses:
% 0.78/1.03  1 (all X all Y (smaller_or_equal(X,Y) <-> smaller(X,Y) | X = Y)) # label(definition_smaller_or_equal) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  2 (all X all Y (greater_or_equal(X,Y) <-> greater(X,Y) | X = Y)) # label(definition_greater_or_equal) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  3 (all X all Y (smaller(X,Y) <-> greater(Y,X))) # label(definition_smaller) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  4 (all X all Y -(greater(X,Y) & greater(Y,X))) # label(meaning_postulate_greater_strict) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  5 (all X all Y all Z (greater(X,Y) & greater(Y,Z) -> greater(X,Z))) # label(meaning_postulate_greater_transitive) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  6 (all X all Y (smaller(X,Y) | X = Y | greater(X,Y))) # label(meaning_postulate_greater_comparable) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  7 (all X all T (organization(X) & -has_endowment(X) -> -has_immunity(X,T))) # label(assumption_1) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  8 (all X all T0 all T (organization(X) & has_immunity(X,T0) & -has_immunity(X,T) -> greater(hazard_of_mortality(X,T),hazard_of_mortality(X,T0)))) # label(assumption_3) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  9 (all X all T0 all T (dissimilar(X,T0,T) <-> organization(X) & -(is_aligned(X,T0) <-> is_aligned(X,T)))) # label(definition_2) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  10 (all X all T (organization(X) & age(X,T) = zero -> is_aligned(X,T))) # label(assumption_13) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  11 (all X all T0 all T (organization(X) & is_aligned(X,T0) & -is_aligned(X,T) -> greater(capability(X,T0),capability(X,T)))) # label(assumption_14) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  12 (all X all T0 all T (organization(X) & age(X,T0) = zero -> (greater(age(X,T),sigma) <-> dissimilar(X,T0,T)))) # label(assumption_15) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  13 (all X all T0 all T (organization(X) & -has_immunity(X,T0) & -has_immunity(X,T) & greater(capability(X,T),capability(X,T0)) -> greater(hazard_of_mortality(X,T0),hazard_of_mortality(X,T)))) # label(assumption_16) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.03  14 -(all X all T0 all T1 all T2 (organization(X) & -has_endowment(X) & age(X,T0) = zero & smaller_or_equal(age(X,T1),sigma) & greater(age(X,T2),sigma) & greater(sigma,zero) -> greater(hazard_of_mortality(X,T2),hazard_of_mortality(X,T1)))) # label(theorem_5) # label(negated_conjecture) # label(non_clause).  [assumption].
% 0.78/1.03  
% 0.78/1.03  ============================== end of process non-clausal formulas ===
% 0.78/1.03  
% 0.78/1.03  ============================== PROCESS INITIAL CLAUSES ===============
% 0.78/1.03  
% 0.78/1.03  ============================== PREDICATE ELIMINATION =================
% 0.78/1.03  15 -organization(A) | has_endowment(A) | -has_immunity(A,B) # label(assumption_1) # label(axiom).  [clausify(7)].
% 0.78/1.03  16 organization(c1) # label(theorem_5) # label(negated_conjecture).  [clausify(14)].
% 0.78/1.03  17 -dissimilar(A,B,C) | organization(A) # label(definition_2) # label(axiom).  [clausify(9)].
% 0.78/1.03  Derived: has_endowment(c1) | -has_immunity(c1,A).  [resolve(15,a,16,a)].
% 0.78/1.03  Derived: has_endowment(A) | -has_immunity(A,B) | -dissimilar(A,C,D).  [resolve(15,a,17,b)].
% 0.78/1.03  18 -organization(A) | age(A,B) != zero | is_aligned(A,B) # label(assumption_13) # label(axiom).  [clausify(10)].
% 0.78/1.03  Derived: age(c1,A) != zero | is_aligned(c1,A).  [resolve(18,a,16,a)].
% 0.78/1.03  Derived: age(A,B) != zero | is_aligned(A,B) | -dissimilar(A,C,D).  [resolve(18,a,17,b)].
% 0.78/1.03  19 dissimilar(A,B,C) | -organization(A) | -is_aligned(A,B) | is_aligned(A,C) # label(definition_2) # label(axiom).  [clausify(9)].
% 0.78/1.03  Derived: dissimilar(c1,A,B) | -is_aligned(c1,A) | is_aligned(c1,B).  [resolve(19,b,16,a)].
% 0.78/1.03  Derived: dissimilar(A,B,C) | -is_aligned(A,B) | is_aligned(A,C) | -dissimilar(A,D,E).  [resolve(19,b,17,b)].
% 0.78/1.03  20 dissimilar(A,B,C) | -organization(A) | is_aligned(A,B) | -is_aligned(A,C) # label(definition_2) # label(axiom).  [clausify(9)].
% 0.78/1.03  Derived: dissimilar(c1,A,B) | is_aligned(c1,A) | -is_aligned(c1,B).  [resolve(20,b,16,a)].
% 0.78/1.03  Derived: dissimilar(A,B,C) | is_aligned(A,B) | -is_aligned(A,C) | -dissimilar(A,D,E).  [resolve(20,b,17,b)].
% 0.78/1.03  21 -organization(A) | -has_immunity(A,B) | has_immunity(A,C) | greater(hazard_of_mortality(A,C),hazard_of_mortality(A,B)) # label(assumption_3) # label(axiom).  [clausify(8)].
% 0.78/1.03  Derived: -has_immunity(c1,A) | has_immunity(c1,B) | greater(hazard_of_mortality(c1,B),hazard_of_mortality(c1,A)).  [resolve(21,a,16,a)].
% 0.78/1.03  Derived: -has_immunity(A,B) | has_immunity(A,C) | greater(hazard_of_mortality(A,C),hazard_of_mortality(A,B)) | -dissimilar(A,D,E).  [resolve(21,a,17,b)].
% 0.78/1.03  22 -organization(A) | -is_aligned(A,B) | is_aligned(A,C) | greater(capability(A,B),capability(A,C)) # label(assumption_14) # label(axiom).  [clausify(11)].
% 0.78/1.03  Derived: -is_aligned(c1,A) | is_aligned(c1,B) | greater(capability(c1,A),capability(c1,B)).  [resolve(22,a,16,a)].
% 0.78/1.03  Derived: -is_aligned(A,B) | is_aligned(A,C) | greater(capability(A,B),capability(A,C)) | -dissimilar(A,D,E).  [resolve(22,a,17,b)].
% 0.78/1.03  23 -organization(A) | age(A,B) != zero | -greater(age(A,C),sigma) | dissimilar(A,B,C) # label(assumption_15) # label(axiom).  [clausify(12)].
% 0.78/1.03  Derived: age(c1,A) != zero | -greater(age(c1,B),sigma) | dissimilar(c1,A,B).  [resolve(23,a,16,a)].
% 0.78/1.03  Derived: age(A,B) != zero | -greater(age(A,C),sigma) | dissimilar(A,B,C) | -dissimilar(A,D,E).  [resolve(23,a,17,b)].
% 0.78/1.03  24 -organization(A) | age(A,B) != zero | greater(age(A,C),sigma) | -dissimilar(A,B,C) # label(assumption_15) # label(axiom).  [clausify(12)].
% 0.78/1.03  Derived: age(c1,A) != zero | greater(age(c1,B),sigma) | -dissimilar(c1,A,B).  [resolve(24,a,16,a)].
% 0.78/1.03  Derived: age(A,B) != zero | greater(age(A,C),sigma) | -dissimilar(A,B,C) | -dissimilar(A,D,E).  [resolve(24,a,17,b)].
% 0.78/1.03  25 -organization(A) | has_immunity(A,B) | has_immunity(A,C) | -greater(capability(A,C),capability(A,B)) | greater(hazard_of_mortality(A,B),hazard_of_mortality(A,C)) # label(assumption_16) # label(axiom).  [clausify(13)].
% 0.78/1.03  Derived: has_immunity(c1,A) | has_immunity(c1,B) | -greater(capability(c1,B),capability(c1,A)) | greater(hazard_of_mortality(c1,A),hazard_of_mortality(c1,B)).  [resolve(25,a,16,a)].
% 0.78/1.05  Derived: has_immunity(A,B) | has_immunity(A,C) | -greater(capability(A,C),capability(A,B)) | greater(hazard_of_mortality(A,B),hazard_of_mortality(A,C)) | -dissimilar(A,D,E).  [resolve(25,a,17,b)].
% 0.78/1.05  26 -smaller_or_equal(A,B) | smaller(A,B) | B = A # label(definition_smaller_or_equal) # label(axiom).  [clausify(1)].
% 0.78/1.05  27 smaller_or_equal(age(c1,c3),sigma) # label(theorem_5) # label(negated_conjecture).  [clausify(14)].
% 0.78/1.05  28 smaller_or_equal(A,B) | -smaller(A,B) # label(definition_smaller_or_equal) # label(axiom).  [clausify(1)].
% 0.78/1.05  29 smaller_or_equal(A,B) | B != A # label(definition_smaller_or_equal) # label(axiom).  [clausify(1)].
% 0.78/1.05  Derived: smaller(age(c1,c3),sigma) | sigma = age(c1,c3).  [resolve(26,a,27,a)].
% 0.78/1.05  30 -smaller(A,B) | greater(B,A) # label(definition_smaller) # label(axiom).  [clausify(3)].
% 0.78/1.05  31 smaller(A,B) | B = A | greater(A,B) # label(meaning_postulate_greater_comparable) # label(axiom).  [clausify(6)].
% 0.78/1.05  Derived: greater(A,B) | A = B | greater(B,A).  [resolve(30,a,31,a)].
% 0.78/1.05  32 smaller(A,B) | -greater(B,A) # label(definition_smaller) # label(axiom).  [clausify(3)].
% 0.78/1.05  33 smaller(age(c1,c3),sigma) | sigma = age(c1,c3).  [resolve(26,a,27,a)].
% 0.78/1.05  Derived: sigma = age(c1,c3) | greater(sigma,age(c1,c3)).  [resolve(33,a,30,a)].
% 0.78/1.05  34 -greater_or_equal(A,B) | greater(A,B) | B = A # label(definition_greater_or_equal) # label(axiom).  [clausify(2)].
% 0.78/1.05  35 greater_or_equal(A,B) | -greater(A,B) # label(definition_greater_or_equal) # label(axiom).  [clausify(2)].
% 0.78/1.05  36 greater_or_equal(A,B) | B != A # label(definition_greater_or_equal) # label(axiom).  [clausify(2)].
% 0.78/1.05  
% 0.78/1.05  ============================== end predicate elimination =============
% 0.78/1.05  
% 0.78/1.05  Auto_denials:  (non-Horn, no changes).
% 0.78/1.05  
% 0.78/1.05  Term ordering decisions:
% 0.78/1.05  Function symbol KB weights:  sigma=1. zero=1. c1=1. c2=1. c3=1. c4=1. age=1. capability=1. hazard_of_mortality=1.
% 0.78/1.05  
% 0.78/1.05  ============================== end of process initial clauses ========
% 0.78/1.05  
% 0.78/1.05  ============================== CLAUSES FOR SEARCH ====================
% 0.78/1.05  
% 0.78/1.05  ============================== end of clauses for search =============
% 0.78/1.05  
% 0.78/1.05  ============================== SEARCH ================================
% 0.78/1.05  
% 0.78/1.05  % Starting search at 0.02 seconds.
% 0.78/1.05  
% 0.78/1.05  ============================== PROOF =================================
% 0.78/1.05  % SZS status Theorem
% 0.78/1.05  % SZS output start Refutation
% 0.78/1.05  
% 0.78/1.05  % Proof 1 at 0.03 (+ 0.00) seconds.
% 0.78/1.05  % Length of proof is 54.
% 0.78/1.05  % Level of proof is 9.
% 0.78/1.05  % Maximum clause weight is 18.000.
% 0.78/1.05  % Given clauses 52.
% 0.78/1.05  
% 0.78/1.05  1 (all X all Y (smaller_or_equal(X,Y) <-> smaller(X,Y) | X = Y)) # label(definition_smaller_or_equal) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.05  3 (all X all Y (smaller(X,Y) <-> greater(Y,X))) # label(definition_smaller) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.05  4 (all X all Y -(greater(X,Y) & greater(Y,X))) # label(meaning_postulate_greater_strict) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.05  7 (all X all T (organization(X) & -has_endowment(X) -> -has_immunity(X,T))) # label(assumption_1) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.05  9 (all X all T0 all T (dissimilar(X,T0,T) <-> organization(X) & -(is_aligned(X,T0) <-> is_aligned(X,T)))) # label(definition_2) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.05  10 (all X all T (organization(X) & age(X,T) = zero -> is_aligned(X,T))) # label(assumption_13) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.05  11 (all X all T0 all T (organization(X) & is_aligned(X,T0) & -is_aligned(X,T) -> greater(capability(X,T0),capability(X,T)))) # label(assumption_14) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.05  12 (all X all T0 all T (organization(X) & age(X,T0) = zero -> (greater(age(X,T),sigma) <-> dissimilar(X,T0,T)))) # label(assumption_15) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.05  13 (all X all T0 all T (organization(X) & -has_immunity(X,T0) & -has_immunity(X,T) & greater(capability(X,T),capability(X,T0)) -> greater(hazard_of_mortality(X,T0),hazard_of_mortality(X,T)))) # label(assumption_16) # label(axiom) # label(non_clause).  [assumption].
% 0.78/1.05  14 -(all X all T0 all T1 all T2 (organization(X) & -has_endowment(X) & age(X,T0) = zero & smaller_or_equal(age(X,T1),sigma) & greater(age(X,T2),sigma) & greater(sigma,zero) -> greater(hazard_of_mortality(X,T2),hazard_of_mortality(X,T1)))) # label(theorem_5) # label(negated_conjecture) # label(non_clause).  [assumption].
% 0.78/1.05  15 -organization(A) | has_endowment(A) | -has_immunity(A,B) # label(assumption_1) # label(axiom).  [clausify(7)].
% 0.78/1.05  16 organization(c1) # label(theorem_5) # label(negated_conjecture).  [clausify(14)].
% 0.78/1.05  17 -dissimilar(A,B,C) | organization(A) # label(definition_2) # label(axiom).  [clausify(9)].
% 0.78/1.05  18 -organization(A) | age(A,B) != zero | is_aligned(A,B) # label(assumption_13) # label(axiom).  [clausify(10)].
% 0.78/1.05  19 dissimilar(A,B,C) | -organization(A) | -is_aligned(A,B) | is_aligned(A,C) # label(definition_2) # label(axiom).  [clausify(9)].
% 0.78/1.05  22 -organization(A) | -is_aligned(A,B) | is_aligned(A,C) | greater(capability(A,B),capability(A,C)) # label(assumption_14) # label(axiom).  [clausify(11)].
% 0.78/1.05  23 -organization(A) | age(A,B) != zero | -greater(age(A,C),sigma) | dissimilar(A,B,C) # label(assumption_15) # label(axiom).  [clausify(12)].
% 0.78/1.05  24 -organization(A) | age(A,B) != zero | greater(age(A,C),sigma) | -dissimilar(A,B,C) # label(assumption_15) # label(axiom).  [clausify(12)].
% 0.78/1.05  25 -organization(A) | has_immunity(A,B) | has_immunity(A,C) | -greater(capability(A,C),capability(A,B)) | greater(hazard_of_mortality(A,B),hazard_of_mortality(A,C)) # label(assumption_16) # label(axiom).  [clausify(13)].
% 0.78/1.05  26 -smaller_or_equal(A,B) | smaller(A,B) | B = A # label(definition_smaller_or_equal) # label(axiom).  [clausify(1)].
% 0.78/1.05  27 smaller_or_equal(age(c1,c3),sigma) # label(theorem_5) # label(negated_conjecture).  [clausify(14)].
% 0.78/1.05  30 -smaller(A,B) | greater(B,A) # label(definition_smaller) # label(axiom).  [clausify(3)].
% 0.78/1.05  33 smaller(age(c1,c3),sigma) | sigma = age(c1,c3).  [resolve(26,a,27,a)].
% 0.78/1.05  38 age(c1,c2) = zero # label(theorem_5) # label(negated_conjecture).  [clausify(14)].
% 0.78/1.05  39 greater(age(c1,c4),sigma) # label(theorem_5) # label(negated_conjecture).  [clausify(14)].
% 0.78/1.05  40 -has_endowment(c1) # label(theorem_5) # label(negated_conjecture).  [clausify(14)].
% 0.78/1.05  41 -greater(A,B) | -greater(B,A) # label(meaning_postulate_greater_strict) # label(axiom).  [clausify(4)].
% 0.78/1.05  42 -greater(hazard_of_mortality(c1,c4),hazard_of_mortality(c1,c3)) # label(theorem_5) # label(negated_conjecture).  [clausify(14)].
% 0.78/1.05  43 -dissimilar(A,B,C) | -is_aligned(A,B) | -is_aligned(A,C) # label(definition_2) # label(axiom).  [clausify(9)].
% 0.78/1.05  46 has_endowment(c1) | -has_immunity(c1,A).  [resolve(15,a,16,a)].
% 0.78/1.05  47 -has_immunity(c1,A).  [copy(46),unit_del(a,40)].
% 0.78/1.05  49 age(c1,A) != zero | is_aligned(c1,A).  [resolve(18,a,16,a)].
% 0.78/1.05  51 dissimilar(c1,A,B) | -is_aligned(c1,A) | is_aligned(c1,B).  [resolve(19,b,16,a)].
% 0.78/1.05  58 -is_aligned(A,B) | is_aligned(A,C) | greater(capability(A,B),capability(A,C)) | -dissimilar(A,D,E).  [resolve(22,a,17,b)].
% 0.78/1.05  59 age(c1,A) != zero | -greater(age(c1,B),sigma) | dissimilar(c1,A,B).  [resolve(23,a,16,a)].
% 0.78/1.05  62 age(A,B) != zero | greater(age(A,C),sigma) | -dissimilar(A,B,C) | -dissimilar(A,D,E).  [resolve(24,a,17,b)].
% 0.78/1.05  63 has_immunity(c1,A) | has_immunity(c1,B) | -greater(capability(c1,B),capability(c1,A)) | greater(hazard_of_mortality(c1,A),hazard_of_mortality(c1,B)).  [resolve(25,a,16,a)].
% 0.78/1.05  64 -greater(capability(c1,A),capability(c1,B)) | greater(hazard_of_mortality(c1,B),hazard_of_mortality(c1,A)).  [copy(63),unit_del(a,47),unit_del(b,47)].
% 0.78/1.05  67 sigma = age(c1,c3) | greater(sigma,age(c1,c3)).  [resolve(33,a,30,a)].
% 0.78/1.05  68 age(c1,c3) = sigma | greater(sigma,age(c1,c3)).  [copy(67),flip(a)].
% 0.78/1.05  69 -greater(A,A).  [factor(41,a,b)].
% 0.78/1.05  72 age(A,B) != zero | greater(age(A,C),sigma) | -dissimilar(A,B,C).  [factor(62,c,d)].
% 0.78/1.05  79 is_aligned(c1,c2).  [resolve(49,a,38,a)].
% 0.78/1.05  80 age(c1,A) != zero | dissimilar(c1,A,c4).  [resolve(59,b,39,a)].
% 0.78/1.05  81 -greater(capability(c1,c3),capability(c1,c4)).  [ur(64,b,42,a)].
% 0.78/1.05  92 age(c1,c3) = sigma | -greater(age(c1,c3),sigma).  [resolve(68,b,41,b)].
% 0.78/1.05  98 dissimilar(c1,c2,A) | is_aligned(c1,A).  [resolve(79,a,51,b)].
% 0.78/1.05  107 is_aligned(c1,A) | greater(age(c1,A),sigma).  [resolve(98,a,72,c),rewrite([38(5)]),xx(b)].
% 0.78/1.05  110 dissimilar(c1,c2,c4).  [resolve(80,a,38,a)].
% 0.78/1.05  111 -is_aligned(c1,c4).  [resolve(110,a,43,a),unit_del(a,79)].
% 0.78/1.05  124 -is_aligned(c1,c3).  [ur(58,b,111,a,c,81,a,d,110,a)].
% 0.78/1.05  126 greater(age(c1,c3),sigma).  [resolve(124,a,107,a)].
% 0.78/1.05  131 age(c1,c3) = sigma.  [back_unit_del(92),unit_del(b,126)].
% 0.78/1.05  133 $F.  [back_rewrite(126),rewrite([131(3)]),unit_del(a,69)].
% 0.78/1.05  
% 0.78/1.05  % SZS output end Refutation
% 0.78/1.05  ============================== end of proof ==========================
% 0.78/1.05  
% 0.78/1.05  ============================== STATISTICS ============================
% 0.78/1.05  
% 0.78/1.05  Given=52. Generated=233. Kept=92. proofs=1.
% 0.78/1.05  Usable=51. Sos=29. Demods=2. Limbo=2, Disabled=61. Hints=0.
% 0.78/1.05  Megabytes=0.14.
% 0.78/1.05  User_CPU=0.03, System_CPU=0.00, Wall_clock=0.
% 0.78/1.05  
% 0.78/1.05  ============================== end of statistics =====================
% 0.78/1.05  
% 0.78/1.05  ============================== end of search =========================
% 0.78/1.05  
% 0.78/1.05  THEOREM PROVED
% 0.78/1.05  % SZS status Theorem
% 0.78/1.05  
% 0.78/1.05  Exiting with 1 proof.
% 0.78/1.05  
% 0.78/1.05  Process 32153 exit (max_proofs) Thu Jun  9 10:52:50 2022
% 0.78/1.05  Prover9 interrupted
%------------------------------------------------------------------------------