TSTP Solution File: MGT036+3 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : MGT036+3 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sun Jul 17 21:57:48 EDT 2022

% Result   : Theorem 0.74s 1.13s
% Output   : Refutation 0.74s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : MGT036+3 : TPTP v8.1.0. Released v2.0.0.
% 0.07/0.12  % Command  : bliksem %s
% 0.13/0.33  % Computer : n023.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % DateTime : Thu Jun  9 07:58:38 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.74/1.13  *** allocated 10000 integers for termspace/termends
% 0.74/1.13  *** allocated 10000 integers for clauses
% 0.74/1.13  *** allocated 10000 integers for justifications
% 0.74/1.13  Bliksem 1.12
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  Automatic Strategy Selection
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  Clauses:
% 0.74/1.13  
% 0.74/1.13  { ! environment( X ), ! subpopulations( Y, Z, X, T ), subpopulations( Z, Y
% 0.74/1.13    , X, T ) }.
% 0.74/1.13  { ! environment( T ), ! subpopulations( X, Y, T, Z ), ! greater_or_equal( 
% 0.74/1.13    growth_rate( Y, Z ), zero ), ! greater( zero, growth_rate( X, Z ) ), 
% 0.74/1.13    outcompetes( Y, X, Z ) }.
% 0.74/1.13  { ! environment( T ), ! subpopulations( X, Y, T, Z ), ! outcompetes( Y, X, 
% 0.74/1.13    Z ), greater_or_equal( growth_rate( Y, Z ), zero ) }.
% 0.74/1.13  { ! environment( T ), ! subpopulations( X, Y, T, Z ), ! outcompetes( Y, X, 
% 0.74/1.13    Z ), greater( zero, growth_rate( X, Z ) ) }.
% 0.74/1.13  { environment( skol1 ) }.
% 0.74/1.13  { subpopulations( first_movers, efficient_producers, skol1, skol2 ) }.
% 0.74/1.13  { greater_or_equal( growth_rate( first_movers, skol2 ), zero ) }.
% 0.74/1.13  { greater( zero, growth_rate( efficient_producers, skol2 ) ) }.
% 0.74/1.13  { ! environment( X ), ! subpopulations( first_movers, efficient_producers, 
% 0.74/1.13    X, Y ), ! outcompetes( first_movers, efficient_producers, Y ) }.
% 0.74/1.13  
% 0.74/1.13  percentage equality = 0.000000, percentage horn = 1.000000
% 0.74/1.13  This is a near-Horn, non-equality  problem
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  Options Used:
% 0.74/1.13  
% 0.74/1.13  useres =            1
% 0.74/1.13  useparamod =        0
% 0.74/1.13  useeqrefl =         0
% 0.74/1.13  useeqfact =         0
% 0.74/1.13  usefactor =         1
% 0.74/1.13  usesimpsplitting =  0
% 0.74/1.13  usesimpdemod =      0
% 0.74/1.13  usesimpres =        4
% 0.74/1.13  
% 0.74/1.13  resimpinuse      =  1000
% 0.74/1.13  resimpclauses =     20000
% 0.74/1.13  substype =          standard
% 0.74/1.13  backwardsubs =      1
% 0.74/1.13  selectoldest =      5
% 0.74/1.13  
% 0.74/1.13  litorderings [0] =  split
% 0.74/1.13  litorderings [1] =  liftord
% 0.74/1.13  
% 0.74/1.13  termordering =      none
% 0.74/1.13  
% 0.74/1.13  litapriori =        1
% 0.74/1.13  termapriori =       0
% 0.74/1.13  litaposteriori =    0
% 0.74/1.13  termaposteriori =   0
% 0.74/1.13  demodaposteriori =  0
% 0.74/1.13  ordereqreflfact =   0
% 0.74/1.13  
% 0.74/1.13  litselect =         negative
% 0.74/1.13  
% 0.74/1.13  maxweight =         30000
% 0.74/1.13  maxdepth =          30000
% 0.74/1.13  maxlength =         115
% 0.74/1.13  maxnrvars =         195
% 0.74/1.13  excuselevel =       0
% 0.74/1.13  increasemaxweight = 0
% 0.74/1.13  
% 0.74/1.13  maxselected =       10000000
% 0.74/1.13  maxnrclauses =      10000000
% 0.74/1.13  
% 0.74/1.13  showgenerated =    0
% 0.74/1.13  showkept =         0
% 0.74/1.13  showselected =     0
% 0.74/1.13  showdeleted =      0
% 0.74/1.13  showresimp =       1
% 0.74/1.13  showstatus =       2000
% 0.74/1.13  
% 0.74/1.13  prologoutput =     0
% 0.74/1.13  nrgoals =          5000000
% 0.74/1.13  totalproof =       1
% 0.74/1.13  
% 0.74/1.13  Symbols occurring in the translation:
% 0.74/1.13  
% 0.74/1.13  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.74/1.13  .  [1, 2]      (w:1, o:21, a:1, s:1, b:0), 
% 0.74/1.13  !  [4, 1]      (w:1, o:15, a:1, s:1, b:0), 
% 0.74/1.13  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.74/1.13  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.74/1.13  environment  [39, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.74/1.13  subpopulations  [40, 4]      (w:1, o:49, a:1, s:1, b:0), 
% 0.74/1.13  growth_rate  [41, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.74/1.13  zero  [42, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.74/1.13  greater_or_equal  [43, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.74/1.13  greater  [44, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.74/1.13  outcompetes  [45, 3]      (w:1, o:48, a:1, s:1, b:0), 
% 0.74/1.13  first_movers  [46, 0]      (w:1, o:12, a:1, s:1, b:0), 
% 0.74/1.13  efficient_producers  [47, 0]      (w:1, o:11, a:1, s:1, b:0), 
% 0.74/1.13  skol1  [48, 0]      (w:1, o:13, a:1, s:1, b:0), 
% 0.74/1.13  skol2  [49, 0]      (w:1, o:14, a:1, s:1, b:0).
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  Starting Search:
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  Bliksems!, er is een bewijs:
% 0.74/1.13  % SZS status Theorem
% 0.74/1.13  % SZS output start Refutation
% 0.74/1.13  
% 0.74/1.13  (0) {G0,W14,D2,L3,V4,M1} I { ! subpopulations( Y, Z, X, T ), subpopulations
% 0.74/1.13    ( Z, Y, X, T ), ! environment( X ) }.
% 0.74/1.13  (1) {G0,W25,D3,L5,V4,M1} I { ! subpopulations( X, Y, T, Z ), ! 
% 0.74/1.13    greater_or_equal( growth_rate( Y, Z ), zero ), ! greater( zero, 
% 0.74/1.13    growth_rate( X, Z ) ), outcompetes( Y, X, Z ), ! environment( T ) }.
% 0.74/1.13  (4) {G0,W2,D2,L1,V0,M1} I { environment( skol1 ) }.
% 0.74/1.13  (5) {G0,W5,D2,L1,V0,M1} I { subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, skol2 ) }.
% 0.74/1.13  (6) {G0,W5,D3,L1,V0,M1} I { greater_or_equal( growth_rate( first_movers, 
% 0.74/1.13    skol2 ), zero ) }.
% 0.74/1.13  (7) {G0,W5,D3,L1,V0,M1} I { greater( zero, growth_rate( efficient_producers
% 0.74/1.13    , skol2 ) ) }.
% 0.74/1.13  (8) {G0,W14,D2,L3,V2,M1} I { ! subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, X, Y ), ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, Y ), ! environment( X ) }.
% 0.74/1.13  (9) {G1,W11,D2,L2,V3,M1} R(0,4) { subpopulations( Y, X, skol1, Z ), ! 
% 0.74/1.13    subpopulations( X, Y, skol1, Z ) }.
% 0.74/1.13  (10) {G1,W22,D3,L4,V3,M1} R(1,4) { ! greater_or_equal( growth_rate( Y, Z )
% 0.74/1.13    , zero ), ! greater( zero, growth_rate( X, Z ) ), outcompetes( Y, X, Z )
% 0.74/1.13    , ! subpopulations( X, Y, skol1, Z ) }.
% 0.74/1.13  (11) {G2,W5,D2,L1,V0,M1} R(9,5) { subpopulations( efficient_producers, 
% 0.74/1.13    first_movers, skol1, skol2 ) }.
% 0.74/1.13  (12) {G1,W11,D2,L2,V1,M1} R(8,4) { ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, X ), ! subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, X ) }.
% 0.74/1.13  (13) {G2,W5,D2,L1,V0,M1} R(12,5) { ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, skol2 ) }.
% 0.74/1.13  (17) {G3,W10,D3,L2,V0,M1} R(10,11);r(6) { outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, skol2 ), ! greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ) }.
% 0.74/1.13  (19) {G4,W0,D0,L0,V0,M0} S(17);r(13);r(7) {  }.
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  % SZS output end Refutation
% 0.74/1.13  found a proof!
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  Unprocessed initial clauses:
% 0.74/1.13  
% 0.74/1.13  (21) {G0,W14,D2,L3,V4,M3}  { ! environment( X ), ! subpopulations( Y, Z, X
% 0.74/1.13    , T ), subpopulations( Z, Y, X, T ) }.
% 0.74/1.13  (22) {G0,W25,D3,L5,V4,M5}  { ! environment( T ), ! subpopulations( X, Y, T
% 0.74/1.13    , Z ), ! greater_or_equal( growth_rate( Y, Z ), zero ), ! greater( zero, 
% 0.74/1.13    growth_rate( X, Z ) ), outcompetes( Y, X, Z ) }.
% 0.74/1.13  (23) {G0,W19,D3,L4,V4,M4}  { ! environment( T ), ! subpopulations( X, Y, T
% 0.74/1.13    , Z ), ! outcompetes( Y, X, Z ), greater_or_equal( growth_rate( Y, Z ), 
% 0.74/1.13    zero ) }.
% 0.74/1.13  (24) {G0,W19,D3,L4,V4,M4}  { ! environment( T ), ! subpopulations( X, Y, T
% 0.74/1.13    , Z ), ! outcompetes( Y, X, Z ), greater( zero, growth_rate( X, Z ) ) }.
% 0.74/1.13  (25) {G0,W2,D2,L1,V0,M1}  { environment( skol1 ) }.
% 0.74/1.13  (26) {G0,W5,D2,L1,V0,M1}  { subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, skol2 ) }.
% 0.74/1.13  (27) {G0,W5,D3,L1,V0,M1}  { greater_or_equal( growth_rate( first_movers, 
% 0.74/1.13    skol2 ), zero ) }.
% 0.74/1.13  (28) {G0,W5,D3,L1,V0,M1}  { greater( zero, growth_rate( efficient_producers
% 0.74/1.13    , skol2 ) ) }.
% 0.74/1.13  (29) {G0,W14,D2,L3,V2,M3}  { ! environment( X ), ! subpopulations( 
% 0.74/1.13    first_movers, efficient_producers, X, Y ), ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, Y ) }.
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  Total Proof:
% 0.74/1.13  
% 0.74/1.13  subsumption: (0) {G0,W14,D2,L3,V4,M1} I { ! subpopulations( Y, Z, X, T ), 
% 0.74/1.13    subpopulations( Z, Y, X, T ), ! environment( X ) }.
% 0.74/1.13  parent0: (21) {G0,W14,D2,L3,V4,M3}  { ! environment( X ), ! subpopulations
% 0.74/1.13    ( Y, Z, X, T ), subpopulations( Z, Y, X, T ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := X
% 0.74/1.13     Y := Y
% 0.74/1.13     Z := Z
% 0.74/1.13     T := T
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 2
% 0.74/1.13     1 ==> 0
% 0.74/1.13     2 ==> 1
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (1) {G0,W25,D3,L5,V4,M1} I { ! subpopulations( X, Y, T, Z ), !
% 0.74/1.13     greater_or_equal( growth_rate( Y, Z ), zero ), ! greater( zero, 
% 0.74/1.13    growth_rate( X, Z ) ), outcompetes( Y, X, Z ), ! environment( T ) }.
% 0.74/1.13  parent0: (22) {G0,W25,D3,L5,V4,M5}  { ! environment( T ), ! subpopulations
% 0.74/1.13    ( X, Y, T, Z ), ! greater_or_equal( growth_rate( Y, Z ), zero ), ! 
% 0.74/1.13    greater( zero, growth_rate( X, Z ) ), outcompetes( Y, X, Z ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := X
% 0.74/1.13     Y := Y
% 0.74/1.13     Z := Z
% 0.74/1.13     T := T
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 4
% 0.74/1.13     1 ==> 0
% 0.74/1.13     2 ==> 1
% 0.74/1.13     3 ==> 2
% 0.74/1.13     4 ==> 3
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (4) {G0,W2,D2,L1,V0,M1} I { environment( skol1 ) }.
% 0.74/1.13  parent0: (25) {G0,W2,D2,L1,V0,M1}  { environment( skol1 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 0
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (5) {G0,W5,D2,L1,V0,M1} I { subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, skol2 ) }.
% 0.74/1.13  parent0: (26) {G0,W5,D2,L1,V0,M1}  { subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, skol2 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 0
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (6) {G0,W5,D3,L1,V0,M1} I { greater_or_equal( growth_rate( 
% 0.74/1.13    first_movers, skol2 ), zero ) }.
% 0.74/1.13  parent0: (27) {G0,W5,D3,L1,V0,M1}  { greater_or_equal( growth_rate( 
% 0.74/1.13    first_movers, skol2 ), zero ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 0
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (7) {G0,W5,D3,L1,V0,M1} I { greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ) }.
% 0.74/1.13  parent0: (28) {G0,W5,D3,L1,V0,M1}  { greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 0
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (8) {G0,W14,D2,L3,V2,M1} I { ! subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, X, Y ), ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, Y ), ! environment( X ) }.
% 0.74/1.13  parent0: (29) {G0,W14,D2,L3,V2,M3}  { ! environment( X ), ! subpopulations
% 0.74/1.13    ( first_movers, efficient_producers, X, Y ), ! outcompetes( first_movers
% 0.74/1.13    , efficient_producers, Y ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := X
% 0.74/1.13     Y := Y
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 2
% 0.74/1.13     1 ==> 0
% 0.74/1.13     2 ==> 1
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  resolution: (30) {G1,W11,D2,L2,V3,M2}  { ! subpopulations( X, Y, skol1, Z )
% 0.74/1.13    , subpopulations( Y, X, skol1, Z ) }.
% 0.74/1.13  parent0[2]: (0) {G0,W14,D2,L3,V4,M1} I { ! subpopulations( Y, Z, X, T ), 
% 0.74/1.13    subpopulations( Z, Y, X, T ), ! environment( X ) }.
% 0.74/1.13  parent1[0]: (4) {G0,W2,D2,L1,V0,M1} I { environment( skol1 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := skol1
% 0.74/1.13     Y := X
% 0.74/1.13     Z := Y
% 0.74/1.13     T := Z
% 0.74/1.13  end
% 0.74/1.13  substitution1:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (9) {G1,W11,D2,L2,V3,M1} R(0,4) { subpopulations( Y, X, skol1
% 0.74/1.13    , Z ), ! subpopulations( X, Y, skol1, Z ) }.
% 0.74/1.13  parent0: (30) {G1,W11,D2,L2,V3,M2}  { ! subpopulations( X, Y, skol1, Z ), 
% 0.74/1.13    subpopulations( Y, X, skol1, Z ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := X
% 0.74/1.13     Y := Y
% 0.74/1.13     Z := Z
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 1
% 0.74/1.13     1 ==> 0
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  resolution: (31) {G1,W22,D3,L4,V3,M4}  { ! subpopulations( X, Y, skol1, Z )
% 0.74/1.13    , ! greater_or_equal( growth_rate( Y, Z ), zero ), ! greater( zero, 
% 0.74/1.13    growth_rate( X, Z ) ), outcompetes( Y, X, Z ) }.
% 0.74/1.13  parent0[4]: (1) {G0,W25,D3,L5,V4,M1} I { ! subpopulations( X, Y, T, Z ), ! 
% 0.74/1.13    greater_or_equal( growth_rate( Y, Z ), zero ), ! greater( zero, 
% 0.74/1.13    growth_rate( X, Z ) ), outcompetes( Y, X, Z ), ! environment( T ) }.
% 0.74/1.13  parent1[0]: (4) {G0,W2,D2,L1,V0,M1} I { environment( skol1 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := X
% 0.74/1.13     Y := Y
% 0.74/1.13     Z := Z
% 0.74/1.13     T := skol1
% 0.74/1.13  end
% 0.74/1.13  substitution1:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (10) {G1,W22,D3,L4,V3,M1} R(1,4) { ! greater_or_equal( 
% 0.74/1.13    growth_rate( Y, Z ), zero ), ! greater( zero, growth_rate( X, Z ) ), 
% 0.74/1.13    outcompetes( Y, X, Z ), ! subpopulations( X, Y, skol1, Z ) }.
% 0.74/1.13  parent0: (31) {G1,W22,D3,L4,V3,M4}  { ! subpopulations( X, Y, skol1, Z ), !
% 0.74/1.13     greater_or_equal( growth_rate( Y, Z ), zero ), ! greater( zero, 
% 0.74/1.13    growth_rate( X, Z ) ), outcompetes( Y, X, Z ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := X
% 0.74/1.13     Y := Y
% 0.74/1.13     Z := Z
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 3
% 0.74/1.13     1 ==> 0
% 0.74/1.13     2 ==> 1
% 0.74/1.13     3 ==> 2
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  resolution: (32) {G1,W5,D2,L1,V0,M1}  { subpopulations( efficient_producers
% 0.74/1.13    , first_movers, skol1, skol2 ) }.
% 0.74/1.13  parent0[1]: (9) {G1,W11,D2,L2,V3,M1} R(0,4) { subpopulations( Y, X, skol1, 
% 0.74/1.13    Z ), ! subpopulations( X, Y, skol1, Z ) }.
% 0.74/1.13  parent1[0]: (5) {G0,W5,D2,L1,V0,M1} I { subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, skol2 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := first_movers
% 0.74/1.13     Y := efficient_producers
% 0.74/1.13     Z := skol2
% 0.74/1.13  end
% 0.74/1.13  substitution1:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (11) {G2,W5,D2,L1,V0,M1} R(9,5) { subpopulations( 
% 0.74/1.13    efficient_producers, first_movers, skol1, skol2 ) }.
% 0.74/1.13  parent0: (32) {G1,W5,D2,L1,V0,M1}  { subpopulations( efficient_producers, 
% 0.74/1.13    first_movers, skol1, skol2 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 0
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  resolution: (33) {G1,W11,D2,L2,V1,M2}  { ! subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, X ), ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, X ) }.
% 0.74/1.13  parent0[2]: (8) {G0,W14,D2,L3,V2,M1} I { ! subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, X, Y ), ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, Y ), ! environment( X ) }.
% 0.74/1.13  parent1[0]: (4) {G0,W2,D2,L1,V0,M1} I { environment( skol1 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := skol1
% 0.74/1.13     Y := X
% 0.74/1.13  end
% 0.74/1.13  substitution1:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (12) {G1,W11,D2,L2,V1,M1} R(8,4) { ! outcompetes( first_movers
% 0.74/1.13    , efficient_producers, X ), ! subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, X ) }.
% 0.74/1.13  parent0: (33) {G1,W11,D2,L2,V1,M2}  { ! subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, X ), ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, X ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := X
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 1
% 0.74/1.13     1 ==> 0
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  resolution: (34) {G1,W5,D2,L1,V0,M1}  { ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, skol2 ) }.
% 0.74/1.13  parent0[1]: (12) {G1,W11,D2,L2,V1,M1} R(8,4) { ! outcompetes( first_movers
% 0.74/1.13    , efficient_producers, X ), ! subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, X ) }.
% 0.74/1.13  parent1[0]: (5) {G0,W5,D2,L1,V0,M1} I { subpopulations( first_movers, 
% 0.74/1.13    efficient_producers, skol1, skol2 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := skol2
% 0.74/1.13  end
% 0.74/1.13  substitution1:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (13) {G2,W5,D2,L1,V0,M1} R(12,5) { ! outcompetes( first_movers
% 0.74/1.13    , efficient_producers, skol2 ) }.
% 0.74/1.13  parent0: (34) {G1,W5,D2,L1,V0,M1}  { ! outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, skol2 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 0
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  resolution: (35) {G2,W16,D3,L3,V0,M3}  { ! greater_or_equal( growth_rate( 
% 0.74/1.13    first_movers, skol2 ), zero ), ! greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ), outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, skol2 ) }.
% 0.74/1.13  parent0[3]: (10) {G1,W22,D3,L4,V3,M1} R(1,4) { ! greater_or_equal( 
% 0.74/1.13    growth_rate( Y, Z ), zero ), ! greater( zero, growth_rate( X, Z ) ), 
% 0.74/1.13    outcompetes( Y, X, Z ), ! subpopulations( X, Y, skol1, Z ) }.
% 0.74/1.13  parent1[0]: (11) {G2,W5,D2,L1,V0,M1} R(9,5) { subpopulations( 
% 0.74/1.13    efficient_producers, first_movers, skol1, skol2 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13     X := efficient_producers
% 0.74/1.13     Y := first_movers
% 0.74/1.13     Z := skol2
% 0.74/1.13  end
% 0.74/1.13  substitution1:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  resolution: (36) {G1,W10,D3,L2,V0,M2}  { ! greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ), outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, skol2 ) }.
% 0.74/1.13  parent0[0]: (35) {G2,W16,D3,L3,V0,M3}  { ! greater_or_equal( growth_rate( 
% 0.74/1.13    first_movers, skol2 ), zero ), ! greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ), outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, skol2 ) }.
% 0.74/1.13  parent1[0]: (6) {G0,W5,D3,L1,V0,M1} I { greater_or_equal( growth_rate( 
% 0.74/1.13    first_movers, skol2 ), zero ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  substitution1:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (17) {G3,W10,D3,L2,V0,M1} R(10,11);r(6) { outcompetes( 
% 0.74/1.13    first_movers, efficient_producers, skol2 ), ! greater( zero, growth_rate
% 0.74/1.13    ( efficient_producers, skol2 ) ) }.
% 0.74/1.13  parent0: (36) {G1,W10,D3,L2,V0,M2}  { ! greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ), outcompetes( first_movers, 
% 0.74/1.13    efficient_producers, skol2 ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13     0 ==> 1
% 0.74/1.13     1 ==> 0
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  resolution: (37) {G3,W6,D3,L1,V0,M1}  { ! greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ) }.
% 0.74/1.13  parent0[0]: (13) {G2,W5,D2,L1,V0,M1} R(12,5) { ! outcompetes( first_movers
% 0.74/1.13    , efficient_producers, skol2 ) }.
% 0.74/1.13  parent1[0]: (17) {G3,W10,D3,L2,V0,M1} R(10,11);r(6) { outcompetes( 
% 0.74/1.13    first_movers, efficient_producers, skol2 ), ! greater( zero, growth_rate
% 0.74/1.13    ( efficient_producers, skol2 ) ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  substitution1:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  resolution: (38) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.74/1.13  parent0[0]: (37) {G3,W6,D3,L1,V0,M1}  { ! greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ) }.
% 0.74/1.13  parent1[0]: (7) {G0,W5,D3,L1,V0,M1} I { greater( zero, growth_rate( 
% 0.74/1.13    efficient_producers, skol2 ) ) }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  substitution1:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  subsumption: (19) {G4,W0,D0,L0,V0,M0} S(17);r(13);r(7) {  }.
% 0.74/1.13  parent0: (38) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.74/1.13  substitution0:
% 0.74/1.13  end
% 0.74/1.13  permutation0:
% 0.74/1.13  end
% 0.74/1.13  
% 0.74/1.13  Proof check complete!
% 0.74/1.13  
% 0.74/1.13  Memory use:
% 0.74/1.13  
% 0.74/1.13  space for terms:        474
% 0.74/1.13  space for clauses:      1300
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  clauses generated:      22
% 0.74/1.13  clauses kept:           20
% 0.74/1.13  clauses selected:       16
% 0.74/1.13  clauses deleted:        1
% 0.74/1.13  clauses inuse deleted:  0
% 0.74/1.13  
% 0.74/1.13  subsentry:          2
% 0.74/1.13  literals s-matched: 2
% 0.74/1.13  literals matched:   2
% 0.74/1.13  full subsumption:   0
% 0.74/1.13  
% 0.74/1.13  checksum:           2048552553
% 0.74/1.13  
% 0.74/1.13  
% 0.74/1.13  Bliksem ended
%------------------------------------------------------------------------------