TSTP Solution File: MGT036+2 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : MGT036+2 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sun Jul 17 21:57:48 EDT 2022

% Result   : Theorem 0.71s 1.09s
% Output   : Refutation 0.71s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : MGT036+2 : TPTP v8.1.0. Released v2.0.0.
% 0.10/0.13  % Command  : bliksem %s
% 0.13/0.34  % Computer : n019.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Thu Jun  9 12:18:10 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.71/1.09  *** allocated 10000 integers for termspace/termends
% 0.71/1.09  *** allocated 10000 integers for clauses
% 0.71/1.09  *** allocated 10000 integers for justifications
% 0.71/1.09  Bliksem 1.12
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  Automatic Strategy Selection
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  Clauses:
% 0.71/1.09  
% 0.71/1.09  { ! environment( X ), ! subpopulations( Y, Z, X, T ), subpopulations( Z, Y
% 0.71/1.09    , X, T ) }.
% 0.71/1.09  { ! environment( X ), ! subpopulations( first_movers, efficient_producers, 
% 0.71/1.09    X, Y ), in_environment( X, Y ) }.
% 0.71/1.09  { alpha1( X, Y, Z, T ), ! greater( zero, growth_rate( Y, T ) ) }.
% 0.71/1.09  { ! greater_or_equal( growth_rate( Y, T ), zero ), ! greater( zero, 
% 0.71/1.09    growth_rate( Y, T ) ) }.
% 0.71/1.09  { greater( zero, growth_rate( Y, T ) ), ! alpha1( X, Y, Z, T ), 
% 0.71/1.09    greater_or_equal( growth_rate( Y, T ), zero ) }.
% 0.71/1.09  { ! alpha1( X, Y, Z, T ), environment( X ) }.
% 0.71/1.09  { ! alpha1( X, Y, Z, T ), subpopulations( Y, Z, X, T ) }.
% 0.71/1.09  { ! environment( X ), ! subpopulations( Y, Z, X, T ), alpha1( X, Y, Z, T )
% 0.71/1.09     }.
% 0.71/1.09  { ! environment( T ), ! subpopulations( X, Y, T, Z ), ! greater_or_equal( 
% 0.71/1.09    growth_rate( Y, Z ), zero ), ! greater( zero, growth_rate( X, Z ) ), 
% 0.71/1.09    outcompetes( Y, X, Z ) }.
% 0.71/1.09  { ! environment( T ), ! subpopulations( X, Y, T, Z ), ! outcompetes( Y, X, 
% 0.71/1.09    Z ), greater_or_equal( growth_rate( Y, Z ), zero ) }.
% 0.71/1.09  { ! environment( T ), ! subpopulations( X, Y, T, Z ), ! outcompetes( Y, X, 
% 0.71/1.09    Z ), greater( zero, growth_rate( X, Z ) ) }.
% 0.71/1.09  { greater( resilience( efficient_producers ), resilience( first_movers ) )
% 0.71/1.09     }.
% 0.71/1.09  { ! environment( Z ), ! in_environment( Z, Y ), greater( zero, growth_rate
% 0.71/1.09    ( T, Y ) ), ! greater( resilience( X ), resilience( T ) ), ! greater( 
% 0.71/1.09    zero, growth_rate( X, Y ) ) }.
% 0.71/1.09  { environment( skol2 ) }.
% 0.71/1.09  { subpopulations( first_movers, efficient_producers, skol2, skol1 ) }.
% 0.71/1.09  { outcompetes( first_movers, efficient_producers, skol1 ) }.
% 0.71/1.09  
% 0.71/1.09  percentage equality = 0.000000, percentage horn = 0.937500
% 0.71/1.09  This is a near-Horn, non-equality  problem
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  Options Used:
% 0.71/1.09  
% 0.71/1.09  useres =            1
% 0.71/1.09  useparamod =        0
% 0.71/1.09  useeqrefl =         0
% 0.71/1.09  useeqfact =         0
% 0.71/1.09  usefactor =         1
% 0.71/1.09  usesimpsplitting =  0
% 0.71/1.09  usesimpdemod =      0
% 0.71/1.09  usesimpres =        4
% 0.71/1.09  
% 0.71/1.09  resimpinuse      =  1000
% 0.71/1.09  resimpclauses =     20000
% 0.71/1.09  substype =          standard
% 0.71/1.09  backwardsubs =      1
% 0.71/1.09  selectoldest =      5
% 0.71/1.09  
% 0.71/1.09  litorderings [0] =  split
% 0.71/1.09  litorderings [1] =  liftord
% 0.71/1.09  
% 0.71/1.09  termordering =      none
% 0.71/1.09  
% 0.71/1.09  litapriori =        1
% 0.71/1.09  termapriori =       0
% 0.71/1.09  litaposteriori =    0
% 0.71/1.09  termaposteriori =   0
% 0.71/1.09  demodaposteriori =  0
% 0.71/1.09  ordereqreflfact =   0
% 0.71/1.09  
% 0.71/1.09  litselect =         negative
% 0.71/1.09  
% 0.71/1.09  maxweight =         30000
% 0.71/1.09  maxdepth =          30000
% 0.71/1.09  maxlength =         115
% 0.71/1.09  maxnrvars =         195
% 0.71/1.09  excuselevel =       0
% 0.71/1.09  increasemaxweight = 0
% 0.71/1.09  
% 0.71/1.09  maxselected =       10000000
% 0.71/1.09  maxnrclauses =      10000000
% 0.71/1.09  
% 0.71/1.09  showgenerated =    0
% 0.71/1.09  showkept =         0
% 0.71/1.09  showselected =     0
% 0.71/1.09  showdeleted =      0
% 0.71/1.09  showresimp =       1
% 0.71/1.09  showstatus =       2000
% 0.71/1.09  
% 0.71/1.09  prologoutput =     0
% 0.71/1.09  nrgoals =          5000000
% 0.71/1.09  totalproof =       1
% 0.71/1.09  
% 0.71/1.09  Symbols occurring in the translation:
% 0.71/1.09  
% 0.71/1.09  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.71/1.09  .  [1, 2]      (w:1, o:22, a:1, s:1, b:0), 
% 0.71/1.09  !  [4, 1]      (w:1, o:15, a:1, s:1, b:0), 
% 0.71/1.09  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.71/1.09  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.71/1.09  environment  [39, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.71/1.09  subpopulations  [40, 4]      (w:1, o:51, a:1, s:1, b:0), 
% 0.71/1.09  first_movers  [41, 0]      (w:1, o:11, a:1, s:1, b:0), 
% 0.71/1.09  efficient_producers  [42, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.71/1.09  in_environment  [43, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.71/1.09  growth_rate  [44, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.71/1.09  zero  [45, 0]      (w:1, o:12, a:1, s:1, b:0), 
% 0.71/1.09  greater_or_equal  [46, 2]      (w:1, o:48, a:1, s:1, b:0), 
% 0.71/1.09  greater  [47, 2]      (w:1, o:49, a:1, s:1, b:0), 
% 0.71/1.09  outcompetes  [48, 3]      (w:1, o:50, a:1, s:1, b:0), 
% 0.71/1.09  resilience  [49, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.71/1.09  alpha1  [50, 4]      (w:1, o:52, a:1, s:1, b:0), 
% 0.71/1.09  skol1  [51, 0]      (w:1, o:13, a:1, s:1, b:0), 
% 0.71/1.09  skol2  [52, 0]      (w:1, o:14, a:1, s:1, b:0).
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  Starting Search:
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  Bliksems!, er is een bewijs:
% 0.71/1.09  % SZS status Theorem
% 0.71/1.09  % SZS output start Refutation
% 0.71/1.09  
% 0.71/1.09  (0) {G0,W14,D2,L3,V4,M1} I { ! subpopulations( Y, Z, X, T ), subpopulations
% 0.71/1.09    ( Z, Y, X, T ), ! environment( X ) }.
% 0.71/1.09  (1) {G0,W12,D2,L3,V2,M1} I { ! subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, X, Y ), in_environment( X, Y ), ! environment( X )
% 0.71/1.09     }.
% 0.71/1.09  (3) {G0,W12,D3,L2,V2,M1} I { ! greater( zero, growth_rate( Y, T ) ), ! 
% 0.71/1.09    greater_or_equal( growth_rate( Y, T ), zero ) }.
% 0.71/1.09  (9) {G0,W19,D3,L4,V4,M1} I { ! subpopulations( X, Y, T, Z ), ! outcompetes
% 0.71/1.09    ( Y, X, Z ), greater_or_equal( growth_rate( Y, Z ), zero ), ! environment
% 0.71/1.09    ( T ) }.
% 0.71/1.09  (10) {G0,W19,D3,L4,V4,M1} I { ! subpopulations( X, Y, T, Z ), ! outcompetes
% 0.71/1.09    ( Y, X, Z ), greater( zero, growth_rate( X, Z ) ), ! environment( T ) }.
% 0.71/1.09  (11) {G0,W5,D3,L1,V0,M1} I { greater( resilience( efficient_producers ), 
% 0.71/1.09    resilience( first_movers ) ) }.
% 0.71/1.09  (12) {G0,W24,D3,L5,V4,M1} I { greater( zero, growth_rate( T, Y ) ), ! 
% 0.71/1.09    in_environment( Z, Y ), ! greater( resilience( X ), resilience( T ) ), ! 
% 0.71/1.09    greater( zero, growth_rate( X, Y ) ), ! environment( Z ) }.
% 0.71/1.09  (13) {G0,W2,D2,L1,V0,M1} I { environment( skol2 ) }.
% 0.71/1.09  (14) {G0,W5,D2,L1,V0,M1} I { subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, skol2, skol1 ) }.
% 0.71/1.09  (15) {G0,W4,D2,L1,V0,M1} I { outcompetes( first_movers, efficient_producers
% 0.71/1.09    , skol1 ) }.
% 0.71/1.09  (16) {G1,W11,D2,L2,V3,M1} R(0,13) { subpopulations( Y, X, skol2, Z ), ! 
% 0.71/1.09    subpopulations( X, Y, skol2, Z ) }.
% 0.71/1.09  (17) {G2,W5,D2,L1,V0,M1} R(16,14) { subpopulations( efficient_producers, 
% 0.71/1.09    first_movers, skol2, skol1 ) }.
% 0.71/1.09  (18) {G1,W9,D2,L2,V1,M1} R(1,13) { in_environment( skol2, X ), ! 
% 0.71/1.09    subpopulations( first_movers, efficient_producers, skol2, X ) }.
% 0.71/1.09  (19) {G2,W3,D2,L1,V0,M1} R(18,14) { in_environment( skol2, skol1 ) }.
% 0.71/1.09  (31) {G1,W16,D3,L3,V3,M1} R(9,13) { ! outcompetes( Y, X, Z ), 
% 0.71/1.09    greater_or_equal( growth_rate( Y, Z ), zero ), ! subpopulations( X, Y, 
% 0.71/1.09    skol2, Z ) }.
% 0.71/1.09  (37) {G1,W16,D3,L3,V3,M1} R(10,13) { ! outcompetes( Y, X, Z ), greater( 
% 0.71/1.09    zero, growth_rate( X, Z ) ), ! subpopulations( X, Y, skol2, Z ) }.
% 0.71/1.09  (41) {G1,W21,D3,L4,V3,M1} R(12,13) { greater( zero, growth_rate( X, Y ) ), 
% 0.71/1.09    ! greater( resilience( Z ), resilience( X ) ), ! greater( zero, 
% 0.71/1.09    growth_rate( Z, Y ) ), ! in_environment( skol2, Y ) }.
% 0.71/1.09  (55) {G3,W5,D3,L1,V0,M1} R(31,17);r(15) { greater_or_equal( growth_rate( 
% 0.71/1.09    first_movers, skol1 ), zero ) }.
% 0.71/1.09  (56) {G4,W6,D3,L1,V0,M1} R(55,3) { ! greater( zero, growth_rate( 
% 0.71/1.09    first_movers, skol1 ) ) }.
% 0.71/1.09  (57) {G3,W5,D3,L1,V0,M1} R(37,17);r(15) { greater( zero, growth_rate( 
% 0.71/1.09    efficient_producers, skol1 ) ) }.
% 0.71/1.09  (59) {G3,W17,D3,L3,V2,M1} R(41,19) { ! greater( resilience( Y ), resilience
% 0.71/1.09    ( X ) ), greater( zero, growth_rate( X, skol1 ) ), ! greater( zero, 
% 0.71/1.09    growth_rate( Y, skol1 ) ) }.
% 0.71/1.09  (88) {G4,W11,D3,L2,V1,M1} R(59,57) { greater( zero, growth_rate( X, skol1 )
% 0.71/1.09     ), ! greater( resilience( efficient_producers ), resilience( X ) ) }.
% 0.71/1.09  (94) {G5,W0,D0,L0,V0,M0} R(88,11);r(56) {  }.
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  % SZS output end Refutation
% 0.71/1.09  found a proof!
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  Unprocessed initial clauses:
% 0.71/1.09  
% 0.71/1.09  (96) {G0,W14,D2,L3,V4,M3}  { ! environment( X ), ! subpopulations( Y, Z, X
% 0.71/1.09    , T ), subpopulations( Z, Y, X, T ) }.
% 0.71/1.09  (97) {G0,W12,D2,L3,V2,M3}  { ! environment( X ), ! subpopulations( 
% 0.71/1.09    first_movers, efficient_producers, X, Y ), in_environment( X, Y ) }.
% 0.71/1.09  (98) {G0,W11,D3,L2,V4,M2}  { alpha1( X, Y, Z, T ), ! greater( zero, 
% 0.71/1.09    growth_rate( Y, T ) ) }.
% 0.71/1.09  (99) {G0,W12,D3,L2,V2,M2}  { ! greater_or_equal( growth_rate( Y, T ), zero
% 0.71/1.09     ), ! greater( zero, growth_rate( Y, T ) ) }.
% 0.71/1.09  (100) {G0,W16,D3,L3,V4,M3}  { greater( zero, growth_rate( Y, T ) ), ! 
% 0.71/1.09    alpha1( X, Y, Z, T ), greater_or_equal( growth_rate( Y, T ), zero ) }.
% 0.71/1.09  (101) {G0,W8,D2,L2,V4,M2}  { ! alpha1( X, Y, Z, T ), environment( X ) }.
% 0.71/1.09  (102) {G0,W11,D2,L2,V4,M2}  { ! alpha1( X, Y, Z, T ), subpopulations( Y, Z
% 0.71/1.09    , X, T ) }.
% 0.71/1.09  (103) {G0,W14,D2,L3,V4,M3}  { ! environment( X ), ! subpopulations( Y, Z, X
% 0.71/1.09    , T ), alpha1( X, Y, Z, T ) }.
% 0.71/1.09  (104) {G0,W25,D3,L5,V4,M5}  { ! environment( T ), ! subpopulations( X, Y, T
% 0.71/1.09    , Z ), ! greater_or_equal( growth_rate( Y, Z ), zero ), ! greater( zero, 
% 0.71/1.09    growth_rate( X, Z ) ), outcompetes( Y, X, Z ) }.
% 0.71/1.09  (105) {G0,W19,D3,L4,V4,M4}  { ! environment( T ), ! subpopulations( X, Y, T
% 0.71/1.09    , Z ), ! outcompetes( Y, X, Z ), greater_or_equal( growth_rate( Y, Z ), 
% 0.71/1.09    zero ) }.
% 0.71/1.09  (106) {G0,W19,D3,L4,V4,M4}  { ! environment( T ), ! subpopulations( X, Y, T
% 0.71/1.09    , Z ), ! outcompetes( Y, X, Z ), greater( zero, growth_rate( X, Z ) ) }.
% 0.71/1.09  (107) {G0,W5,D3,L1,V0,M1}  { greater( resilience( efficient_producers ), 
% 0.71/1.09    resilience( first_movers ) ) }.
% 0.71/1.09  (108) {G0,W24,D3,L5,V4,M5}  { ! environment( Z ), ! in_environment( Z, Y )
% 0.71/1.09    , greater( zero, growth_rate( T, Y ) ), ! greater( resilience( X ), 
% 0.71/1.09    resilience( T ) ), ! greater( zero, growth_rate( X, Y ) ) }.
% 0.71/1.09  (109) {G0,W2,D2,L1,V0,M1}  { environment( skol2 ) }.
% 0.71/1.09  (110) {G0,W5,D2,L1,V0,M1}  { subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, skol2, skol1 ) }.
% 0.71/1.09  (111) {G0,W4,D2,L1,V0,M1}  { outcompetes( first_movers, efficient_producers
% 0.71/1.09    , skol1 ) }.
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  Total Proof:
% 0.71/1.09  
% 0.71/1.09  subsumption: (0) {G0,W14,D2,L3,V4,M1} I { ! subpopulations( Y, Z, X, T ), 
% 0.71/1.09    subpopulations( Z, Y, X, T ), ! environment( X ) }.
% 0.71/1.09  parent0: (96) {G0,W14,D2,L3,V4,M3}  { ! environment( X ), ! subpopulations
% 0.71/1.09    ( Y, Z, X, T ), subpopulations( Z, Y, X, T ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09     T := T
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 2
% 0.71/1.09     1 ==> 0
% 0.71/1.09     2 ==> 1
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (1) {G0,W12,D2,L3,V2,M1} I { ! subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, X, Y ), in_environment( X, Y ), ! environment( X )
% 0.71/1.09     }.
% 0.71/1.09  parent0: (97) {G0,W12,D2,L3,V2,M3}  { ! environment( X ), ! subpopulations
% 0.71/1.09    ( first_movers, efficient_producers, X, Y ), in_environment( X, Y ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 2
% 0.71/1.09     1 ==> 0
% 0.71/1.09     2 ==> 1
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (3) {G0,W12,D3,L2,V2,M1} I { ! greater( zero, growth_rate( Y, 
% 0.71/1.09    T ) ), ! greater_or_equal( growth_rate( Y, T ), zero ) }.
% 0.71/1.09  parent0: (99) {G0,W12,D3,L2,V2,M2}  { ! greater_or_equal( growth_rate( Y, T
% 0.71/1.09     ), zero ), ! greater( zero, growth_rate( Y, T ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := U
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := W
% 0.71/1.09     T := T
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 1
% 0.71/1.09     1 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (9) {G0,W19,D3,L4,V4,M1} I { ! subpopulations( X, Y, T, Z ), !
% 0.71/1.09     outcompetes( Y, X, Z ), greater_or_equal( growth_rate( Y, Z ), zero ), !
% 0.71/1.09     environment( T ) }.
% 0.71/1.09  parent0: (105) {G0,W19,D3,L4,V4,M4}  { ! environment( T ), ! subpopulations
% 0.71/1.09    ( X, Y, T, Z ), ! outcompetes( Y, X, Z ), greater_or_equal( growth_rate( 
% 0.71/1.09    Y, Z ), zero ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09     T := T
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 3
% 0.71/1.09     1 ==> 0
% 0.71/1.09     2 ==> 1
% 0.71/1.09     3 ==> 2
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (10) {G0,W19,D3,L4,V4,M1} I { ! subpopulations( X, Y, T, Z ), 
% 0.71/1.09    ! outcompetes( Y, X, Z ), greater( zero, growth_rate( X, Z ) ), ! 
% 0.71/1.09    environment( T ) }.
% 0.71/1.09  parent0: (106) {G0,W19,D3,L4,V4,M4}  { ! environment( T ), ! subpopulations
% 0.71/1.09    ( X, Y, T, Z ), ! outcompetes( Y, X, Z ), greater( zero, growth_rate( X, 
% 0.71/1.09    Z ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09     T := T
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 3
% 0.71/1.09     1 ==> 0
% 0.71/1.09     2 ==> 1
% 0.71/1.09     3 ==> 2
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (11) {G0,W5,D3,L1,V0,M1} I { greater( resilience( 
% 0.71/1.09    efficient_producers ), resilience( first_movers ) ) }.
% 0.71/1.09  parent0: (107) {G0,W5,D3,L1,V0,M1}  { greater( resilience( 
% 0.71/1.09    efficient_producers ), resilience( first_movers ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (12) {G0,W24,D3,L5,V4,M1} I { greater( zero, growth_rate( T, Y
% 0.71/1.09     ) ), ! in_environment( Z, Y ), ! greater( resilience( X ), resilience( T
% 0.71/1.09     ) ), ! greater( zero, growth_rate( X, Y ) ), ! environment( Z ) }.
% 0.71/1.09  parent0: (108) {G0,W24,D3,L5,V4,M5}  { ! environment( Z ), ! in_environment
% 0.71/1.09    ( Z, Y ), greater( zero, growth_rate( T, Y ) ), ! greater( resilience( X
% 0.71/1.09     ), resilience( T ) ), ! greater( zero, growth_rate( X, Y ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09     T := T
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 4
% 0.71/1.09     1 ==> 1
% 0.71/1.09     2 ==> 0
% 0.71/1.09     3 ==> 2
% 0.71/1.09     4 ==> 3
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (13) {G0,W2,D2,L1,V0,M1} I { environment( skol2 ) }.
% 0.71/1.09  parent0: (109) {G0,W2,D2,L1,V0,M1}  { environment( skol2 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (14) {G0,W5,D2,L1,V0,M1} I { subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, skol2, skol1 ) }.
% 0.71/1.09  parent0: (110) {G0,W5,D2,L1,V0,M1}  { subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, skol2, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (15) {G0,W4,D2,L1,V0,M1} I { outcompetes( first_movers, 
% 0.71/1.09    efficient_producers, skol1 ) }.
% 0.71/1.09  parent0: (111) {G0,W4,D2,L1,V0,M1}  { outcompetes( first_movers, 
% 0.71/1.09    efficient_producers, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (112) {G1,W11,D2,L2,V3,M2}  { ! subpopulations( X, Y, skol2, Z
% 0.71/1.09     ), subpopulations( Y, X, skol2, Z ) }.
% 0.71/1.09  parent0[2]: (0) {G0,W14,D2,L3,V4,M1} I { ! subpopulations( Y, Z, X, T ), 
% 0.71/1.09    subpopulations( Z, Y, X, T ), ! environment( X ) }.
% 0.71/1.09  parent1[0]: (13) {G0,W2,D2,L1,V0,M1} I { environment( skol2 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := skol2
% 0.71/1.09     Y := X
% 0.71/1.09     Z := Y
% 0.71/1.09     T := Z
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (16) {G1,W11,D2,L2,V3,M1} R(0,13) { subpopulations( Y, X, 
% 0.71/1.09    skol2, Z ), ! subpopulations( X, Y, skol2, Z ) }.
% 0.71/1.09  parent0: (112) {G1,W11,D2,L2,V3,M2}  { ! subpopulations( X, Y, skol2, Z ), 
% 0.71/1.09    subpopulations( Y, X, skol2, Z ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 1
% 0.71/1.09     1 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (113) {G1,W5,D2,L1,V0,M1}  { subpopulations( 
% 0.71/1.09    efficient_producers, first_movers, skol2, skol1 ) }.
% 0.71/1.09  parent0[1]: (16) {G1,W11,D2,L2,V3,M1} R(0,13) { subpopulations( Y, X, skol2
% 0.71/1.09    , Z ), ! subpopulations( X, Y, skol2, Z ) }.
% 0.71/1.09  parent1[0]: (14) {G0,W5,D2,L1,V0,M1} I { subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, skol2, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := first_movers
% 0.71/1.09     Y := efficient_producers
% 0.71/1.09     Z := skol1
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (17) {G2,W5,D2,L1,V0,M1} R(16,14) { subpopulations( 
% 0.71/1.09    efficient_producers, first_movers, skol2, skol1 ) }.
% 0.71/1.09  parent0: (113) {G1,W5,D2,L1,V0,M1}  { subpopulations( efficient_producers, 
% 0.71/1.09    first_movers, skol2, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (114) {G1,W9,D2,L2,V1,M2}  { ! subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, skol2, X ), in_environment( skol2, X ) }.
% 0.71/1.09  parent0[2]: (1) {G0,W12,D2,L3,V2,M1} I { ! subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, X, Y ), in_environment( X, Y ), ! environment( X )
% 0.71/1.09     }.
% 0.71/1.09  parent1[0]: (13) {G0,W2,D2,L1,V0,M1} I { environment( skol2 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := skol2
% 0.71/1.09     Y := X
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (18) {G1,W9,D2,L2,V1,M1} R(1,13) { in_environment( skol2, X )
% 0.71/1.09    , ! subpopulations( first_movers, efficient_producers, skol2, X ) }.
% 0.71/1.09  parent0: (114) {G1,W9,D2,L2,V1,M2}  { ! subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, skol2, X ), in_environment( skol2, X ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 1
% 0.71/1.09     1 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (115) {G1,W3,D2,L1,V0,M1}  { in_environment( skol2, skol1 ) }.
% 0.71/1.09  parent0[1]: (18) {G1,W9,D2,L2,V1,M1} R(1,13) { in_environment( skol2, X ), 
% 0.71/1.09    ! subpopulations( first_movers, efficient_producers, skol2, X ) }.
% 0.71/1.09  parent1[0]: (14) {G0,W5,D2,L1,V0,M1} I { subpopulations( first_movers, 
% 0.71/1.09    efficient_producers, skol2, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := skol1
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (19) {G2,W3,D2,L1,V0,M1} R(18,14) { in_environment( skol2, 
% 0.71/1.09    skol1 ) }.
% 0.71/1.09  parent0: (115) {G1,W3,D2,L1,V0,M1}  { in_environment( skol2, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (116) {G1,W16,D3,L3,V3,M3}  { ! subpopulations( X, Y, skol2, Z
% 0.71/1.09     ), ! outcompetes( Y, X, Z ), greater_or_equal( growth_rate( Y, Z ), zero
% 0.71/1.09     ) }.
% 0.71/1.09  parent0[3]: (9) {G0,W19,D3,L4,V4,M1} I { ! subpopulations( X, Y, T, Z ), ! 
% 0.71/1.09    outcompetes( Y, X, Z ), greater_or_equal( growth_rate( Y, Z ), zero ), ! 
% 0.71/1.09    environment( T ) }.
% 0.71/1.09  parent1[0]: (13) {G0,W2,D2,L1,V0,M1} I { environment( skol2 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09     T := skol2
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (31) {G1,W16,D3,L3,V3,M1} R(9,13) { ! outcompetes( Y, X, Z ), 
% 0.71/1.09    greater_or_equal( growth_rate( Y, Z ), zero ), ! subpopulations( X, Y, 
% 0.71/1.09    skol2, Z ) }.
% 0.71/1.09  parent0: (116) {G1,W16,D3,L3,V3,M3}  { ! subpopulations( X, Y, skol2, Z ), 
% 0.71/1.09    ! outcompetes( Y, X, Z ), greater_or_equal( growth_rate( Y, Z ), zero )
% 0.71/1.09     }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 2
% 0.71/1.09     1 ==> 0
% 0.71/1.09     2 ==> 1
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (117) {G1,W16,D3,L3,V3,M3}  { ! subpopulations( X, Y, skol2, Z
% 0.71/1.09     ), ! outcompetes( Y, X, Z ), greater( zero, growth_rate( X, Z ) ) }.
% 0.71/1.09  parent0[3]: (10) {G0,W19,D3,L4,V4,M1} I { ! subpopulations( X, Y, T, Z ), !
% 0.71/1.09     outcompetes( Y, X, Z ), greater( zero, growth_rate( X, Z ) ), ! 
% 0.71/1.09    environment( T ) }.
% 0.71/1.09  parent1[0]: (13) {G0,W2,D2,L1,V0,M1} I { environment( skol2 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09     T := skol2
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (37) {G1,W16,D3,L3,V3,M1} R(10,13) { ! outcompetes( Y, X, Z )
% 0.71/1.09    , greater( zero, growth_rate( X, Z ) ), ! subpopulations( X, Y, skol2, Z
% 0.71/1.09     ) }.
% 0.71/1.09  parent0: (117) {G1,W16,D3,L3,V3,M3}  { ! subpopulations( X, Y, skol2, Z ), 
% 0.71/1.09    ! outcompetes( Y, X, Z ), greater( zero, growth_rate( X, Z ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 2
% 0.71/1.09     1 ==> 0
% 0.71/1.09     2 ==> 1
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (118) {G1,W21,D3,L4,V3,M4}  { greater( zero, growth_rate( X, Y
% 0.71/1.09     ) ), ! in_environment( skol2, Y ), ! greater( resilience( Z ), 
% 0.71/1.09    resilience( X ) ), ! greater( zero, growth_rate( Z, Y ) ) }.
% 0.71/1.09  parent0[4]: (12) {G0,W24,D3,L5,V4,M1} I { greater( zero, growth_rate( T, Y
% 0.71/1.09     ) ), ! in_environment( Z, Y ), ! greater( resilience( X ), resilience( T
% 0.71/1.09     ) ), ! greater( zero, growth_rate( X, Y ) ), ! environment( Z ) }.
% 0.71/1.09  parent1[0]: (13) {G0,W2,D2,L1,V0,M1} I { environment( skol2 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := Z
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := skol2
% 0.71/1.09     T := X
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (41) {G1,W21,D3,L4,V3,M1} R(12,13) { greater( zero, 
% 0.71/1.09    growth_rate( X, Y ) ), ! greater( resilience( Z ), resilience( X ) ), ! 
% 0.71/1.09    greater( zero, growth_rate( Z, Y ) ), ! in_environment( skol2, Y ) }.
% 0.71/1.09  parent0: (118) {G1,W21,D3,L4,V3,M4}  { greater( zero, growth_rate( X, Y ) )
% 0.71/1.09    , ! in_environment( skol2, Y ), ! greater( resilience( Z ), resilience( X
% 0.71/1.09     ) ), ! greater( zero, growth_rate( Z, Y ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09     Z := Z
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09     1 ==> 3
% 0.71/1.09     2 ==> 1
% 0.71/1.09     3 ==> 2
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (119) {G2,W10,D3,L2,V0,M2}  { ! outcompetes( first_movers, 
% 0.71/1.09    efficient_producers, skol1 ), greater_or_equal( growth_rate( first_movers
% 0.71/1.09    , skol1 ), zero ) }.
% 0.71/1.09  parent0[2]: (31) {G1,W16,D3,L3,V3,M1} R(9,13) { ! outcompetes( Y, X, Z ), 
% 0.71/1.09    greater_or_equal( growth_rate( Y, Z ), zero ), ! subpopulations( X, Y, 
% 0.71/1.09    skol2, Z ) }.
% 0.71/1.09  parent1[0]: (17) {G2,W5,D2,L1,V0,M1} R(16,14) { subpopulations( 
% 0.71/1.09    efficient_producers, first_movers, skol2, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := efficient_producers
% 0.71/1.09     Y := first_movers
% 0.71/1.09     Z := skol1
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (120) {G1,W5,D3,L1,V0,M1}  { greater_or_equal( growth_rate( 
% 0.71/1.09    first_movers, skol1 ), zero ) }.
% 0.71/1.09  parent0[0]: (119) {G2,W10,D3,L2,V0,M2}  { ! outcompetes( first_movers, 
% 0.71/1.09    efficient_producers, skol1 ), greater_or_equal( growth_rate( first_movers
% 0.71/1.09    , skol1 ), zero ) }.
% 0.71/1.09  parent1[0]: (15) {G0,W4,D2,L1,V0,M1} I { outcompetes( first_movers, 
% 0.71/1.09    efficient_producers, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (55) {G3,W5,D3,L1,V0,M1} R(31,17);r(15) { greater_or_equal( 
% 0.71/1.09    growth_rate( first_movers, skol1 ), zero ) }.
% 0.71/1.09  parent0: (120) {G1,W5,D3,L1,V0,M1}  { greater_or_equal( growth_rate( 
% 0.71/1.09    first_movers, skol1 ), zero ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (121) {G1,W6,D3,L1,V0,M1}  { ! greater( zero, growth_rate( 
% 0.71/1.09    first_movers, skol1 ) ) }.
% 0.71/1.09  parent0[1]: (3) {G0,W12,D3,L2,V2,M1} I { ! greater( zero, growth_rate( Y, T
% 0.71/1.09     ) ), ! greater_or_equal( growth_rate( Y, T ), zero ) }.
% 0.71/1.09  parent1[0]: (55) {G3,W5,D3,L1,V0,M1} R(31,17);r(15) { greater_or_equal( 
% 0.71/1.09    growth_rate( first_movers, skol1 ), zero ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := first_movers
% 0.71/1.09     Z := Y
% 0.71/1.09     T := skol1
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (56) {G4,W6,D3,L1,V0,M1} R(55,3) { ! greater( zero, 
% 0.71/1.09    growth_rate( first_movers, skol1 ) ) }.
% 0.71/1.09  parent0: (121) {G1,W6,D3,L1,V0,M1}  { ! greater( zero, growth_rate( 
% 0.71/1.09    first_movers, skol1 ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (122) {G2,W10,D3,L2,V0,M2}  { ! outcompetes( first_movers, 
% 0.71/1.09    efficient_producers, skol1 ), greater( zero, growth_rate( 
% 0.71/1.09    efficient_producers, skol1 ) ) }.
% 0.71/1.09  parent0[2]: (37) {G1,W16,D3,L3,V3,M1} R(10,13) { ! outcompetes( Y, X, Z ), 
% 0.71/1.09    greater( zero, growth_rate( X, Z ) ), ! subpopulations( X, Y, skol2, Z )
% 0.71/1.09     }.
% 0.71/1.09  parent1[0]: (17) {G2,W5,D2,L1,V0,M1} R(16,14) { subpopulations( 
% 0.71/1.09    efficient_producers, first_movers, skol2, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := efficient_producers
% 0.71/1.09     Y := first_movers
% 0.71/1.09     Z := skol1
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (123) {G1,W5,D3,L1,V0,M1}  { greater( zero, growth_rate( 
% 0.71/1.09    efficient_producers, skol1 ) ) }.
% 0.71/1.09  parent0[0]: (122) {G2,W10,D3,L2,V0,M2}  { ! outcompetes( first_movers, 
% 0.71/1.09    efficient_producers, skol1 ), greater( zero, growth_rate( 
% 0.71/1.09    efficient_producers, skol1 ) ) }.
% 0.71/1.09  parent1[0]: (15) {G0,W4,D2,L1,V0,M1} I { outcompetes( first_movers, 
% 0.71/1.09    efficient_producers, skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (57) {G3,W5,D3,L1,V0,M1} R(37,17);r(15) { greater( zero, 
% 0.71/1.09    growth_rate( efficient_producers, skol1 ) ) }.
% 0.71/1.09  parent0: (123) {G1,W5,D3,L1,V0,M1}  { greater( zero, growth_rate( 
% 0.71/1.09    efficient_producers, skol1 ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (124) {G2,W17,D3,L3,V2,M3}  { greater( zero, growth_rate( X, 
% 0.71/1.09    skol1 ) ), ! greater( resilience( Y ), resilience( X ) ), ! greater( zero
% 0.71/1.09    , growth_rate( Y, skol1 ) ) }.
% 0.71/1.09  parent0[3]: (41) {G1,W21,D3,L4,V3,M1} R(12,13) { greater( zero, growth_rate
% 0.71/1.09    ( X, Y ) ), ! greater( resilience( Z ), resilience( X ) ), ! greater( 
% 0.71/1.09    zero, growth_rate( Z, Y ) ), ! in_environment( skol2, Y ) }.
% 0.71/1.09  parent1[0]: (19) {G2,W3,D2,L1,V0,M1} R(18,14) { in_environment( skol2, 
% 0.71/1.09    skol1 ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := skol1
% 0.71/1.09     Z := Y
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (59) {G3,W17,D3,L3,V2,M1} R(41,19) { ! greater( resilience( Y
% 0.71/1.09     ), resilience( X ) ), greater( zero, growth_rate( X, skol1 ) ), ! 
% 0.71/1.09    greater( zero, growth_rate( Y, skol1 ) ) }.
% 0.71/1.09  parent0: (124) {G2,W17,D3,L3,V2,M3}  { greater( zero, growth_rate( X, skol1
% 0.71/1.09     ) ), ! greater( resilience( Y ), resilience( X ) ), ! greater( zero, 
% 0.71/1.09    growth_rate( Y, skol1 ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := Y
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 1
% 0.71/1.09     1 ==> 0
% 0.71/1.09     2 ==> 2
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (125) {G4,W11,D3,L2,V1,M2}  { ! greater( resilience( 
% 0.71/1.09    efficient_producers ), resilience( X ) ), greater( zero, growth_rate( X, 
% 0.71/1.09    skol1 ) ) }.
% 0.71/1.09  parent0[2]: (59) {G3,W17,D3,L3,V2,M1} R(41,19) { ! greater( resilience( Y )
% 0.71/1.09    , resilience( X ) ), greater( zero, growth_rate( X, skol1 ) ), ! greater
% 0.71/1.09    ( zero, growth_rate( Y, skol1 ) ) }.
% 0.71/1.09  parent1[0]: (57) {G3,W5,D3,L1,V0,M1} R(37,17);r(15) { greater( zero, 
% 0.71/1.09    growth_rate( efficient_producers, skol1 ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09     Y := efficient_producers
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (88) {G4,W11,D3,L2,V1,M1} R(59,57) { greater( zero, 
% 0.71/1.09    growth_rate( X, skol1 ) ), ! greater( resilience( efficient_producers ), 
% 0.71/1.09    resilience( X ) ) }.
% 0.71/1.09  parent0: (125) {G4,W11,D3,L2,V1,M2}  { ! greater( resilience( 
% 0.71/1.09    efficient_producers ), resilience( X ) ), greater( zero, growth_rate( X, 
% 0.71/1.09    skol1 ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := X
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09     0 ==> 1
% 0.71/1.09     1 ==> 0
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (126) {G1,W5,D3,L1,V0,M1}  { greater( zero, growth_rate( 
% 0.71/1.09    first_movers, skol1 ) ) }.
% 0.71/1.09  parent0[1]: (88) {G4,W11,D3,L2,V1,M1} R(59,57) { greater( zero, growth_rate
% 0.71/1.09    ( X, skol1 ) ), ! greater( resilience( efficient_producers ), resilience
% 0.71/1.09    ( X ) ) }.
% 0.71/1.09  parent1[0]: (11) {G0,W5,D3,L1,V0,M1} I { greater( resilience( 
% 0.71/1.09    efficient_producers ), resilience( first_movers ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09     X := first_movers
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  resolution: (127) {G2,W0,D0,L0,V0,M0}  {  }.
% 0.71/1.09  parent0[0]: (56) {G4,W6,D3,L1,V0,M1} R(55,3) { ! greater( zero, growth_rate
% 0.71/1.09    ( first_movers, skol1 ) ) }.
% 0.71/1.09  parent1[0]: (126) {G1,W5,D3,L1,V0,M1}  { greater( zero, growth_rate( 
% 0.71/1.09    first_movers, skol1 ) ) }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  substitution1:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  subsumption: (94) {G5,W0,D0,L0,V0,M0} R(88,11);r(56) {  }.
% 0.71/1.09  parent0: (127) {G2,W0,D0,L0,V0,M0}  {  }.
% 0.71/1.09  substitution0:
% 0.71/1.09  end
% 0.71/1.09  permutation0:
% 0.71/1.09  end
% 0.71/1.09  
% 0.71/1.09  Proof check complete!
% 0.71/1.09  
% 0.71/1.09  Memory use:
% 0.71/1.09  
% 0.71/1.09  space for terms:        1481
% 0.71/1.09  space for clauses:      4873
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  clauses generated:      271
% 0.71/1.09  clauses kept:           95
% 0.71/1.09  clauses selected:       81
% 0.71/1.09  clauses deleted:        6
% 0.71/1.09  clauses inuse deleted:  0
% 0.71/1.09  
% 0.71/1.09  subsentry:          245
% 0.71/1.09  literals s-matched: 223
% 0.71/1.09  literals matched:   220
% 0.71/1.09  full subsumption:   31
% 0.71/1.09  
% 0.71/1.09  checksum:           -887286441
% 0.71/1.09  
% 0.71/1.09  
% 0.71/1.09  Bliksem ended
%------------------------------------------------------------------------------