TSTP Solution File: MGT036+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : MGT036+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n010.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:06:07 EDT 2022

% Result   : Theorem 1.62s 1.81s
% Output   : Refutation 1.62s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    4
%            Number of leaves      :   10
% Syntax   : Number of clauses     :   16 (  10 unt;   0 nHn;  16 RR)
%            Number of literals    :   31 (   0 equ;  16 neg)
%            Maximal clause size   :    5 (   1 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    7 (   6 usr;   1 prp; 0-4 aty)
%            Number of functors    :    7 (   7 usr;   5 con; 0-2 aty)
%            Number of variables   :   18 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | subpopulations(efficient_producers,first_movers,A,B) ),
    file('MGT036+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | in_environment(A,B) ),
    file('MGT036+1.p',unknown),
    [] ).

cnf(5,axiom,
    ( ~ greater_or_e_qual(growth_rate(A,B),zero)
    | ~ greater(zero,growth_rate(A,B)) ),
    file('MGT036+1.p',unknown),
    [] ).

cnf(8,axiom,
    ( ~ environment(A)
    | ~ subpopulations(B,C,A,D)
    | greater_or_e_qual(growth_rate(C,D),zero)
    | ~ outcompetes(C,B,D) ),
    file('MGT036+1.p',unknown),
    [] ).

cnf(9,axiom,
    ( ~ environment(A)
    | ~ subpopulations(B,C,A,D)
    | greater(zero,growth_rate(B,D))
    | ~ outcompetes(C,B,D) ),
    file('MGT036+1.p',unknown),
    [] ).

cnf(10,axiom,
    ( ~ environment(A)
    | ~ in_environment(A,B)
    | greater(zero,growth_rate(C,B))
    | ~ greater(resilience(D),resilience(C))
    | ~ greater(zero,growth_rate(D,B)) ),
    file('MGT036+1.p',unknown),
    [] ).

cnf(11,axiom,
    greater(resilience(efficient_producers),resilience(first_movers)),
    file('MGT036+1.p',unknown),
    [] ).

cnf(12,axiom,
    environment(dollar_c2),
    file('MGT036+1.p',unknown),
    [] ).

cnf(13,axiom,
    subpopulations(first_movers,efficient_producers,dollar_c2,dollar_c1),
    file('MGT036+1.p',unknown),
    [] ).

cnf(14,axiom,
    outcompetes(first_movers,efficient_producers,dollar_c1),
    file('MGT036+1.p',unknown),
    [] ).

cnf(16,plain,
    in_environment(dollar_c2,dollar_c1),
    inference(hyper,[status(thm)],[13,2,12]),
    [iquote('hyper,13,2,12')] ).

cnf(17,plain,
    subpopulations(efficient_producers,first_movers,dollar_c2,dollar_c1),
    inference(hyper,[status(thm)],[13,1,12]),
    [iquote('hyper,13,1,12')] ).

cnf(18,plain,
    greater(zero,growth_rate(efficient_producers,dollar_c1)),
    inference(hyper,[status(thm)],[17,9,12,14]),
    [iquote('hyper,17,9,12,14')] ).

cnf(19,plain,
    greater_or_e_qual(growth_rate(first_movers,dollar_c1),zero),
    inference(hyper,[status(thm)],[17,8,12,14]),
    [iquote('hyper,17,8,12,14')] ).

cnf(20,plain,
    greater(zero,growth_rate(first_movers,dollar_c1)),
    inference(hyper,[status(thm)],[18,10,12,16,11]),
    [iquote('hyper,18,10,12,16,11')] ).

cnf(23,plain,
    $false,
    inference(hyper,[status(thm)],[20,5,19]),
    [iquote('hyper,20,5,19')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.12  % Problem  : MGT036+1 : TPTP v8.1.0. Released v2.0.0.
% 0.04/0.13  % Command  : otter-tptp-script %s
% 0.13/0.34  % Computer : n010.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Jul 27 03:53:54 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 1.62/1.81  ----- Otter 3.3f, August 2004 -----
% 1.62/1.81  The process was started by sandbox on n010.cluster.edu,
% 1.62/1.81  Wed Jul 27 03:53:55 2022
% 1.62/1.81  The command was "./otter".  The process ID is 19972.
% 1.62/1.81  
% 1.62/1.81  set(prolog_style_variables).
% 1.62/1.81  set(auto).
% 1.62/1.81     dependent: set(auto1).
% 1.62/1.81     dependent: set(process_input).
% 1.62/1.81     dependent: clear(print_kept).
% 1.62/1.81     dependent: clear(print_new_demod).
% 1.62/1.81     dependent: clear(print_back_demod).
% 1.62/1.81     dependent: clear(print_back_sub).
% 1.62/1.81     dependent: set(control_memory).
% 1.62/1.81     dependent: assign(max_mem, 12000).
% 1.62/1.81     dependent: assign(pick_given_ratio, 4).
% 1.62/1.81     dependent: assign(stats_level, 1).
% 1.62/1.81     dependent: assign(max_seconds, 10800).
% 1.62/1.81  clear(print_given).
% 1.62/1.81  
% 1.62/1.81  formula_list(usable).
% 1.62/1.81  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)->subpopulations(efficient_producers,first_movers,E,T)).
% 1.62/1.81  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)->in_environment(E,T)).
% 1.62/1.81  all E S1 S2 T ((environment(E)&subpopulations(S1,S2,E,T)->greater_or_e_qual(growth_rate(S1,T),zero))<-> -greater(zero,growth_rate(S1,T))).
% 1.62/1.81  all E S1 S2 T (environment(E)&subpopulations(S1,S2,E,T)-> (greater_or_e_qual(growth_rate(S2,T),zero)&greater(zero,growth_rate(S1,T))<->outcompetes(S2,S1,T))).
% 1.62/1.81  all E S1 S2 T (environment(E)&in_environment(E,T)& -greater(zero,growth_rate(S1,T))&greater(resilience(S2),resilience(S1))-> -greater(zero,growth_rate(S2,T))).
% 1.62/1.81  greater(resilience(efficient_producers),resilience(first_movers)).
% 1.62/1.81  -(all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)-> -outcompetes(first_movers,efficient_producers,T))).
% 1.62/1.81  end_of_list.
% 1.62/1.81  
% 1.62/1.81  -------> usable clausifies to:
% 1.62/1.81  
% 1.62/1.81  list(usable).
% 1.62/1.81  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|subpopulations(efficient_producers,first_movers,E,T).
% 1.62/1.81  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|in_environment(E,T).
% 1.62/1.81  0 [] environment(E)| -greater(zero,growth_rate(S1,T)).
% 1.62/1.81  0 [] subpopulations(S1,S2,E,T)| -greater(zero,growth_rate(S1,T)).
% 1.62/1.81  0 [] -greater_or_e_qual(growth_rate(S1,T),zero)| -greater(zero,growth_rate(S1,T)).
% 1.62/1.81  0 [] -environment(E)| -subpopulations(S1,S2,E,T)|greater_or_e_qual(growth_rate(S1,T),zero)|greater(zero,growth_rate(S1,T)).
% 1.62/1.81  0 [] -environment(E)| -subpopulations(S1,S2,E,T)| -greater_or_e_qual(growth_rate(S2,T),zero)| -greater(zero,growth_rate(S1,T))|outcompetes(S2,S1,T).
% 1.62/1.81  0 [] -environment(E)| -subpopulations(S1,S2,E,T)|greater_or_e_qual(growth_rate(S2,T),zero)| -outcompetes(S2,S1,T).
% 1.62/1.81  0 [] -environment(E)| -subpopulations(S1,S2,E,T)|greater(zero,growth_rate(S1,T))| -outcompetes(S2,S1,T).
% 1.62/1.81  0 [] -environment(E)| -in_environment(E,T)|greater(zero,growth_rate(S1,T))| -greater(resilience(S2),resilience(S1))| -greater(zero,growth_rate(S2,T)).
% 1.62/1.81  0 [] greater(resilience(efficient_producers),resilience(first_movers)).
% 1.62/1.81  0 [] environment($c2).
% 1.62/1.81  0 [] subpopulations(first_movers,efficient_producers,$c2,$c1).
% 1.62/1.81  0 [] outcompetes(first_movers,efficient_producers,$c1).
% 1.62/1.81  end_of_list.
% 1.62/1.81  
% 1.62/1.81  SCAN INPUT: prop=0, horn=0, equality=0, symmetry=0, max_lits=5.
% 1.62/1.81  
% 1.62/1.81  This is a non-Horn set without equality.  The strategy will
% 1.62/1.81  be ordered hyper_res, unit deletion, and factoring, with
% 1.62/1.81  satellites in sos and with nuclei in usable.
% 1.62/1.81  
% 1.62/1.81     dependent: set(hyper_res).
% 1.62/1.81     dependent: set(factor).
% 1.62/1.81     dependent: set(unit_deletion).
% 1.62/1.81  
% 1.62/1.81  ------------> process usable:
% 1.62/1.81  ** KEPT (pick-wt=12): 1 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|subpopulations(efficient_producers,first_movers,A,B).
% 1.62/1.81  ** KEPT (pick-wt=10): 2 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|in_environment(A,B).
% 1.62/1.81  ** KEPT (pick-wt=7): 3 [] environment(A)| -greater(zero,growth_rate(B,C)).
% 1.62/1.81  ** KEPT (pick-wt=10): 4 [] subpopulations(A,B,C,D)| -greater(zero,growth_rate(A,D)).
% 1.62/1.81  ** KEPT (pick-wt=10): 5 [] -greater_or_e_qual(growth_rate(A,B),zero)| -greater(zero,growth_rate(A,B)).
% 1.62/1.81  ** KEPT (pick-wt=17): 6 [] -environment(A)| -subpopulations(B,C,A,D)|greater_or_e_qual(growth_rate(B,D),zero)|greater(zero,growth_rate(B,D)).
% 1.62/1.81  ** KEPT (pick-wt=21): 7 [] -environment(A)| -subpopulations(B,C,A,D)| -greater_or_e_qual(growth_rate(C,D),zero)| -greater(zero,growth_rate(B,D))|outcompetes(C,B,D).
% 1.62/1.81  ** KEPT (pick-wt=16): 8 [] -environment(A)| -subpopulations(B,C,A,D)|greater_or_e_qual(growth_rate(C,D),zero)| -outcompetes(C,B,D).
% 1.62/1.81  ** KEPT (pick-wt=16): 9 [] -environment(A)| -subpopulations(B,C,A,D)|greater(zero,growth_rate(B,D))| -outcompetes(C,B,D).
% 1.62/1.81  ** KEPT (pick-wt=20): 10 [] -environment(A)| -in_environment(A,B)|greater(zero,growth_rate(C,B))| -greater(resilience(D),resilience(C))| -greater(zero,growth_rate(D,B)).
% 1.62/1.81  
% 1.62/1.81  ------------> process sos:
% 1.62/1.81  ** KEPT (pick-wt=5): 11 [] greater(resilience(efficient_producers),resilience(first_movers)).
% 1.62/1.81  ** KEPT (pick-wt=2): 12 [] environment($c2).
% 1.62/1.81  ** KEPT (pick-wt=5): 13 [] subpopulations(first_movers,efficient_producers,$c2,$c1).
% 1.62/1.81  ** KEPT (pick-wt=4): 14 [] outcompetes(first_movers,efficient_producers,$c1).
% 1.62/1.81  
% 1.62/1.81  ======= end of input processing =======
% 1.62/1.81  
% 1.62/1.81  =========== start of search ===========
% 1.62/1.81  
% 1.62/1.81  -------- PROOF -------- 
% 1.62/1.81  
% 1.62/1.81  -----> EMPTY CLAUSE at   0.00 sec ----> 23 [hyper,20,5,19] $F.
% 1.62/1.81  
% 1.62/1.81  Length of proof is 5.  Level of proof is 3.
% 1.62/1.81  
% 1.62/1.81  ---------------- PROOF ----------------
% 1.62/1.81  % SZS status Theorem
% 1.62/1.81  % SZS output start Refutation
% See solution above
% 1.62/1.81  ------------ end of proof -------------
% 1.62/1.81  
% 1.62/1.81  
% 1.62/1.81  Search stopped by max_proofs option.
% 1.62/1.81  
% 1.62/1.81  
% 1.62/1.81  Search stopped by max_proofs option.
% 1.62/1.81  
% 1.62/1.81  ============ end of search ============
% 1.62/1.81  
% 1.62/1.81  -------------- statistics -------------
% 1.62/1.81  clauses given                 11
% 1.62/1.81  clauses generated             14
% 1.62/1.81  clauses kept                  22
% 1.62/1.81  clauses forward subsumed       5
% 1.62/1.81  clauses back subsumed          4
% 1.62/1.81  Kbytes malloced              976
% 1.62/1.81  
% 1.62/1.81  ----------- times (seconds) -----------
% 1.62/1.81  user CPU time          0.00          (0 hr, 0 min, 0 sec)
% 1.62/1.81  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.62/1.81  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.62/1.81  
% 1.62/1.81  That finishes the proof of the theorem.
% 1.62/1.81  
% 1.62/1.81  Process 19972 finished Wed Jul 27 03:53:56 2022
% 1.62/1.81  Otter interrupted
% 1.62/1.81  PROOF FOUND
%------------------------------------------------------------------------------