TSTP Solution File: MGT034+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : MGT034+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:06:06 EDT 2022

% Result   : Unknown 62.01s 62.20s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : MGT034+1 : TPTP v8.1.0. Released v2.0.0.
% 0.07/0.13  % Command  : otter-tptp-script %s
% 0.12/0.34  % Computer : n009.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Wed Jul 27 03:59:06 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 1.84/2.01  ----- Otter 3.3f, August 2004 -----
% 1.84/2.01  The process was started by sandbox on n009.cluster.edu,
% 1.84/2.01  Wed Jul 27 03:59:06 2022
% 1.84/2.01  The command was "./otter".  The process ID is 28036.
% 1.84/2.01  
% 1.84/2.01  set(prolog_style_variables).
% 1.84/2.01  set(auto).
% 1.84/2.01     dependent: set(auto1).
% 1.84/2.01     dependent: set(process_input).
% 1.84/2.01     dependent: clear(print_kept).
% 1.84/2.01     dependent: clear(print_new_demod).
% 1.84/2.01     dependent: clear(print_back_demod).
% 1.84/2.01     dependent: clear(print_back_sub).
% 1.84/2.01     dependent: set(control_memory).
% 1.84/2.01     dependent: assign(max_mem, 12000).
% 1.84/2.01     dependent: assign(pick_given_ratio, 4).
% 1.84/2.01     dependent: assign(stats_level, 1).
% 1.84/2.01     dependent: assign(max_seconds, 10800).
% 1.84/2.01  clear(print_given).
% 1.84/2.01  
% 1.84/2.01  formula_list(usable).
% 1.84/2.01  all A (A=A).
% 1.84/2.01  all E S1 S2 T (environment(E)&subpopulations(S1,S2,E,T)&greater(growth_rate(S2,T),growth_rate(S1,T))->selection_favors(S2,S1,T)).
% 1.84/2.01  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)-> -decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))).
% 1.84/2.01  all E (environment(E)&in_environment(E,critical_point(E))->subpopulations(first_movers,efficient_producers,E,critical_point(E))).
% 1.84/2.01  all E (environment(E)&in_environment(E,appear(efficient_producers,E))->subpopulations(first_movers,efficient_producers,E,appear(efficient_producers,E))).
% 1.84/2.01  all E T To (environment(E)&in_environment(E,To)&greater_or_e_qual(difference(growth_rate(first_movers,To),growth_rate(efficient_producers,To)),zero)&greater_or_e_qual(T,appear(efficient_producers,E))&greater(To,T)-> (decreases(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))->greater(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero))).
% 1.84/2.01  all T (decreases(difference(founding_rate(first_movers,T),founding_rate(efficient_producers,T)))& -decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))->decreases(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))).
% 1.84/2.01  all T (greater(zero,difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))<->greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T))).
% 1.84/2.01  all T (greater(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero)<->greater(growth_rate(first_movers,T),growth_rate(efficient_producers,T))).
% 1.84/2.01  all E T1 T2 T (environment(E)&in_environment(E,T1)&in_environment(E,T2)&greater_or_e_qual(T2,T)&greater_or_e_qual(T,T1)->in_environment(E,T)).
% 1.84/2.01  all E (environment(E)->in_environment(E,start_time(E))).
% 1.84/2.01  all E (environment(E)->greater_or_e_qual(appear(first_movers,E),start_time(E))).
% 1.84/2.01  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)->subpopulations(efficient_producers,first_movers,E,T)).
% 1.84/2.01  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)->greater_or_e_qual(T,appear(efficient_producers,E))).
% 1.84/2.01  all X Y (greater_or_e_qual(X,Y)<->greater(X,Y)|X=Y).
% 1.84/2.01  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)& -greater(zero,difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))->greater_or_e_qual(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero)).
% 1.84/2.01  all E T1 T2 T (environment(E)&subpopulations(first_movers,efficient_producers,E,T1)&subpopulations(first_movers,efficient_producers,E,T2)&greater_or_e_qual(T,T1)&greater_or_e_qual(T2,T)->subpopulations(first_movers,efficient_producers,E,T)).
% 1.84/2.01  all E Tc (environment(E)&Tc=critical_point(E)-> -greater(growth_rate(efficient_producers,Tc),growth_rate(first_movers,Tc))& (all T (subpopulations(first_movers,efficient_producers,E,T)&greater(T,Tc)->greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T))))).
% 1.84/2.01  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)->decreases(difference(founding_rate(first_movers,T),founding_rate(efficient_producers,T)))).
% 1.84/2.01  -(all E T (environment(E)&in_environment(E,critical_point(E))&greater_or_e_qual(T,appear(efficient_producers,E))&greater(critical_point(E),T)->selection_favors(first_movers,efficient_producers,T))).
% 1.84/2.01  end_of_list.
% 1.84/2.01  
% 1.84/2.01  -------> usable clausifies to:
% 1.84/2.01  
% 1.84/2.01  list(usable).
% 1.84/2.01  0 [] A=A.
% 1.84/2.01  0 [] -environment(E)| -subpopulations(S1,S2,E,T)| -greater(growth_rate(S2,T),growth_rate(S1,T))|selection_favors(S2,S1,T).
% 1.84/2.01  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))).
% 1.84/2.01  0 [] -environment(E)| -in_environment(E,critical_point(E))|subpopulations(first_movers,efficient_producers,E,critical_point(E)).
% 1.84/2.01  0 [] -environment(E)| -in_environment(E,appear(efficient_producers,E))|subpopulations(first_movers,efficient_producers,E,appear(efficient_producers,E)).
% 1.84/2.01  0 [] -environment(E)| -in_environment(E,To)| -greater_or_e_qual(difference(growth_rate(first_movers,To),growth_rate(efficient_producers,To)),zero)| -greater_or_e_qual(T,appear(efficient_producers,E))| -greater(To,T)| -decreases(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))|greater(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero).
% 1.84/2.01  0 [] -decreases(difference(founding_rate(first_movers,T),founding_rate(efficient_producers,T)))|decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))|decreases(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T))).
% 1.84/2.01  0 [] -greater(zero,difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))|greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)).
% 1.84/2.01  0 [] greater(zero,difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))| -greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)).
% 1.84/2.01  0 [] -greater(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero)|greater(growth_rate(first_movers,T),growth_rate(efficient_producers,T)).
% 1.84/2.01  0 [] greater(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero)| -greater(growth_rate(first_movers,T),growth_rate(efficient_producers,T)).
% 1.84/2.01  0 [] -environment(E)| -in_environment(E,T1)| -in_environment(E,T2)| -greater_or_e_qual(T2,T)| -greater_or_e_qual(T,T1)|in_environment(E,T).
% 1.84/2.01  0 [] -environment(E)|in_environment(E,start_time(E)).
% 1.84/2.01  0 [] -environment(E)|greater_or_e_qual(appear(first_movers,E),start_time(E)).
% 1.84/2.01  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|subpopulations(efficient_producers,first_movers,E,T).
% 1.84/2.01  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|greater_or_e_qual(T,appear(efficient_producers,E)).
% 1.84/2.01  0 [] -greater_or_e_qual(X,Y)|greater(X,Y)|X=Y.
% 1.84/2.01  0 [] greater_or_e_qual(X,Y)| -greater(X,Y).
% 1.84/2.01  0 [] greater_or_e_qual(X,Y)|X!=Y.
% 1.84/2.01  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|greater(zero,difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)))|greater_or_e_qual(difference(growth_rate(first_movers,T),growth_rate(efficient_producers,T)),zero).
% 1.84/2.01  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T1)| -subpopulations(first_movers,efficient_producers,E,T2)| -greater_or_e_qual(T,T1)| -greater_or_e_qual(T2,T)|subpopulations(first_movers,efficient_producers,E,T).
% 1.84/2.01  0 [] -environment(E)|Tc!=critical_point(E)| -greater(growth_rate(efficient_producers,Tc),growth_rate(first_movers,Tc)).
% 1.84/2.01  0 [] -environment(E)|Tc!=critical_point(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater(T,Tc)|greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)).
% 1.84/2.01  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|decreases(difference(founding_rate(first_movers,T),founding_rate(efficient_producers,T))).
% 1.84/2.01  0 [] environment($c2).
% 1.84/2.01  0 [] in_environment($c2,critical_point($c2)).
% 1.84/2.01  0 [] greater_or_e_qual($c1,appear(efficient_producers,$c2)).
% 1.84/2.01  0 [] greater(critical_point($c2),$c1).
% 1.84/2.01  0 [] -selection_favors(first_movers,efficient_producers,$c1).
% 1.84/2.01  end_of_list.
% 1.84/2.01  
% 1.84/2.01  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=7.
% 1.84/2.01  
% 1.84/2.01  This ia a non-Horn set with equality.  The strategy will be
% 1.84/2.01  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.84/2.01  deletion, with positive clauses in sos and nonpositive
% 1.84/2.01  clauses in usable.
% 1.84/2.01  
% 1.84/2.01     dependent: set(knuth_bendix).
% 1.84/2.01     dependent: set(anl_eq).
% 1.84/2.01     dependent: set(para_from).
% 1.84/2.01     dependent: set(para_into).
% 1.84/2.01     dependent: clear(para_from_right).
% 1.84/2.01     dependent: clear(para_into_right).
% 1.84/2.01     dependent: set(para_from_vars).
% 1.84/2.01     dependent: set(eq_units_both_ways).
% 1.84/2.01     dependent: set(dynamic_demod_all).
% 1.84/2.01     dependent: set(dynamic_demod).
% 1.84/2.01     dependent: set(order_eq).
% 1.84/2.01     dependent: set(back_demod).
% 1.84/2.01     dependent: set(lrpo).
% 1.84/2.01     dependent: set(hyper_res).
% 1.84/2.01     dependent: set(unit_deletion).
% 1.84/2.01     dependent: set(factor).
% 1.84/2.01  
% 1.84/2.01  ------------> process usable:
% 1.84/2.01  ** KEPT (pick-wt=18): 1 [] -environment(A)| -subpopulations(B,C,A,D)| -greater(growth_rate(C,D),growth_rate(B,D))|selection_favors(C,B,D).
% 1.84/2.01  ** KEPT (pick-wt=15): 2 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -decreases(difference(disbanding_rate(first_movers,B),disbanding_rate(efficient_producers,B))).
% 1.84/2.01  ** KEPT (pick-wt=12): 3 [] -environment(A)| -in_environment(A,critical_point(A))|subpopulations(first_movers,efficient_producers,A,critical_point(A)).
% 1.84/2.01  ** KEPT (pick-wt=14): 4 [] -environment(A)| -in_environment(A,appear(efficient_producers,A))|subpopulations(first_movers,efficient_producers,A,appear(efficient_producers,A)).
% 1.84/2.01  ** KEPT (pick-wt=39): 5 [] -environment(A)| -in_environment(A,B)| -greater_or_e_qual(difference(growth_rate(first_movers,B),growth_rate(efficient_producers,B)),zero)| -greater_or_e_qual(C,appear(efficient_producers,A))| -greater(B,C)| -decreases(difference(growth_rate(first_movers,C),growth_rate(efficient_producers,C)))|greater(difference(growth_rate(first_movers,C),growth_rate(efficient_producers,C)),zero).
% 1.84/2.01  ** KEPT (pick-wt=24): 6 [] -decreases(difference(founding_rate(first_movers,A),founding_rate(efficient_producers,A)))|decreases(difference(disbanding_rate(first_movers,A),disbanding_rate(efficient_producers,A)))|decreases(difference(growth_rate(first_movers,A),growth_rate(efficient_producers,A))).
% 1.84/2.01  ** KEPT (pick-wt=16): 7 [] -greater(zero,difference(growth_rate(first_movers,A),growth_rate(efficient_producers,A)))|greater(growth_rate(efficient_producers,A),growth_rate(first_movers,A)).
% 1.84/2.01  ** KEPT (pick-wt=16): 8 [] greater(zero,difference(growth_rate(first_movers,A),growth_rate(efficient_producers,A)))| -greater(growth_rate(efficient_producers,A),growth_rate(first_movers,A)).
% 1.84/2.01  ** KEPT (pick-wt=16): 9 [] -greater(difference(growth_rate(first_movers,A),growth_rate(efficient_producers,A)),zero)|greater(growth_rate(first_movers,A),growth_rate(efficient_producers,A)).
% 1.84/2.01  ** KEPT (pick-wt=16): 10 [] greater(difference(growth_rate(first_movers,A),growth_rate(efficient_producers,A)),zero)| -greater(growth_rate(first_movers,A),growth_rate(efficient_producers,A)).
% 1.84/2.01  ** KEPT (pick-wt=17): 11 [] -environment(A)| -in_environment(A,B)| -in_environment(A,C)| -greater_or_e_qual(C,D)| -greater_or_e_qual(D,B)|in_environment(A,D).
% 1.84/2.01  ** KEPT (pick-wt=6): 12 [] -environment(A)|in_environment(A,start_time(A)).
% 1.84/2.01  ** KEPT (pick-wt=8): 13 [] -environment(A)|greater_or_e_qual(appear(first_movers,A),start_time(A)).
% 1.84/2.01  ** KEPT (pick-wt=12): 14 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|subpopulations(efficient_producers,first_movers,A,B).
% 1.84/2.01  ** KEPT (pick-wt=12): 15 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|greater_or_e_qual(B,appear(efficient_producers,A)).
% 1.84/2.01  ** KEPT (pick-wt=9): 16 [] -greater_or_e_qual(A,B)|greater(A,B)|A=B.
% 1.84/2.01  ** KEPT (pick-wt=6): 17 [] greater_or_e_qual(A,B)| -greater(A,B).
% 1.84/2.01  ** KEPT (pick-wt=6): 18 [] greater_or_e_qual(A,B)|A!=B.
% 1.84/2.01  ** KEPT (pick-wt=25): 19 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|greater(zero,difference(growth_rate(first_movers,B),growth_rate(efficient_producers,B)))|greater_or_e_qual(difference(growth_rate(first_movers,B),growth_rate(efficient_producers,B)),zero).
% 1.84/2.01  ** KEPT (pick-wt=23): 20 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -subpopulations(first_movers,efficient_producers,A,C)| -greater_or_e_qual(D,B)| -greater_or_e_qual(C,D)|subpopulations(first_movers,efficient_producers,A,D).
% 1.84/2.01  ** KEPT (pick-wt=13): 21 [] -environment(A)|B!=critical_point(A)| -greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B)).
% 62.01/62.20  ** KEPT (pick-wt=21): 22 [] -environment(A)|B!=critical_point(A)| -subpopulations(first_movers,efficient_producers,A,C)| -greater(C,B)|greater(growth_rate(efficient_producers,C),growth_rate(first_movers,C)).
% 62.01/62.20  ** KEPT (pick-wt=15): 23 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|decreases(difference(founding_rate(first_movers,B),founding_rate(efficient_producers,B))).
% 62.01/62.20  ** KEPT (pick-wt=4): 24 [] -selection_favors(first_movers,efficient_producers,$c1).
% 62.01/62.20  
% 62.01/62.20  ------------> process sos:
% 62.01/62.20  ** KEPT (pick-wt=3): 27 [] A=A.
% 62.01/62.20  ** KEPT (pick-wt=2): 28 [] environment($c2).
% 62.01/62.20  ** KEPT (pick-wt=4): 29 [] in_environment($c2,critical_point($c2)).
% 62.01/62.20  ** KEPT (pick-wt=5): 30 [] greater_or_e_qual($c1,appear(efficient_producers,$c2)).
% 62.01/62.20  ** KEPT (pick-wt=4): 31 [] greater(critical_point($c2),$c1).
% 62.01/62.20    Following clause subsumed by 27 during input processing: 0 [copy,27,flip.1] A=A.
% 62.01/62.20  
% 62.01/62.20  ======= end of input processing =======
% 62.01/62.20  
% 62.01/62.20  =========== start of search ===========
% 62.01/62.20  
% 62.01/62.20  
% 62.01/62.20  Resetting weight limit to 17.
% 62.01/62.20  
% 62.01/62.20  
% 62.01/62.20  Resetting weight limit to 17.
% 62.01/62.20  
% 62.01/62.20  sos_size=1946
% 62.01/62.20  
% 62.01/62.20  Search stopped because sos empty.
% 62.01/62.20  
% 62.01/62.20  
% 62.01/62.20  Search stopped because sos empty.
% 62.01/62.20  
% 62.01/62.20  ============ end of search ============
% 62.01/62.20  
% 62.01/62.20  -------------- statistics -------------
% 62.01/62.20  clauses given               2213
% 62.01/62.20  clauses generated         976032
% 62.01/62.20  clauses kept                2431
% 62.01/62.20  clauses forward subsumed    6014
% 62.01/62.20  clauses back subsumed        209
% 62.01/62.20  Kbytes malloced             5859
% 62.01/62.20  
% 62.01/62.20  ----------- times (seconds) -----------
% 62.01/62.20  user CPU time         60.17          (0 hr, 1 min, 0 sec)
% 62.01/62.20  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 62.01/62.20  wall-clock time       62             (0 hr, 1 min, 2 sec)
% 62.01/62.20  
% 62.01/62.20  Process 28036 finished Wed Jul 27 04:00:08 2022
% 62.01/62.20  Otter interrupted
% 62.01/62.20  PROOF NOT FOUND
%------------------------------------------------------------------------------