TSTP Solution File: MGT028+1 by SuperZenon---0.0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SuperZenon---0.0.1
% Problem  : MGT028+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_super_zenon -p0 -itptp -om -max-time %d %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 22:26:57 EDT 2022

% Result   : Theorem 0.19s 0.40s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.12  % Problem  : MGT028+1 : TPTP v8.1.0. Released v2.0.0.
% 0.04/0.13  % Command  : run_super_zenon -p0 -itptp -om -max-time %d %s
% 0.12/0.33  % Computer : n026.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.34  % DateTime : Thu Jun  9 09:47:02 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.19/0.40  % SZS status Theorem
% 0.19/0.40  (* PROOF-FOUND *)
% 0.19/0.40  (* BEGIN-PROOF *)
% 0.19/0.40  % SZS output start Proof
% 0.19/0.40  1. (environment T_0) (-. (environment T_0))   ### Axiom
% 0.19/0.40  2. (stable T_0) (-. (stable T_0))   ### Axiom
% 0.19/0.40  3. (environment T_0) (-. (environment T_0))   ### Axiom
% 0.19/0.40  4. (stable T_0) (-. (stable T_0))   ### Axiom
% 0.19/0.40  5. (in_environment T_0 T_1) (-. (in_environment T_0 T_1))   ### Axiom
% 0.19/0.40  6. (subpopulations (first_movers) (efficient_producers) T_0 T_2) (-. (subpopulations (first_movers) (efficient_producers) T_0 T_2))   ### Axiom
% 0.19/0.40  7. (greater_or_equal T_2 T_1) (-. (greater_or_equal T_2 T_1))   ### Axiom
% 0.19/0.40  8. (-. (greater (zero) (growth_rate (first_movers) T_2))) (greater (zero) (growth_rate (first_movers) T_2))   ### Axiom
% 0.19/0.40  9. ((greater (growth_rate (efficient_producers) T_2) (zero)) /\ (greater (zero) (growth_rate (first_movers) T_2))) (-. (greater (zero) (growth_rate (first_movers) T_2)))   ### And 8
% 0.19/0.40  10. (((subpopulations (first_movers) (efficient_producers) T_0 T_2) /\ (greater_or_equal T_2 T_1)) => ((greater (growth_rate (efficient_producers) T_2) (zero)) /\ (greater (zero) (growth_rate (first_movers) T_2)))) (-. (greater (zero) (growth_rate (first_movers) T_2))) (greater_or_equal T_2 T_1) (subpopulations (first_movers) (efficient_producers) T_0 T_2)   ### DisjTree 6 7 9
% 0.19/0.40  11. (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T))))) (subpopulations (first_movers) (efficient_producers) T_0 T_2) (greater_or_equal T_2 T_1) (-. (greater (zero) (growth_rate (first_movers) T_2)))   ### All 10
% 0.19/0.40  12. (-. (((subpopulations (first_movers) (efficient_producers) T_0 T_2) /\ (greater_or_equal T_2 T_1)) => (greater (zero) (growth_rate (first_movers) T_2)))) (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T)))))   ### ConjTree 11
% 0.19/0.40  13. (-. (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => (greater (zero) (growth_rate (first_movers) T))))) (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T)))))   ### NotAllEx 12
% 0.19/0.40  14. (-. ((in_environment T_0 T_1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => (greater (zero) (growth_rate (first_movers) T)))))) (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T))))) (in_environment T_0 T_1)   ### NotAnd 5 13
% 0.19/0.40  15. (-. (Ex T1, ((in_environment T_0 T1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T1)) => (greater (zero) (growth_rate (first_movers) T))))))) (in_environment T_0 T_1) (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T)))))   ### NotExists 14
% 0.19/0.40  16. (-. (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T))))))) (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T))))))   ### Axiom
% 0.19/0.40  17. (((environment T_0) /\ ((stable T_0) /\ (Ex T1, ((in_environment T_0 T1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T1)) => (greater (zero) (growth_rate (first_movers) T)))))))) => (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T))))))) (-. (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T))))))) (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T))))) (in_environment T_0 T_1) (stable T_0) (environment T_0)   ### DisjTree 3 4 15 16
% 0.19/0.40  18. (All E, (((environment E) /\ ((stable E) /\ (Ex T1, ((in_environment E T1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T1)) => (greater (zero) (growth_rate (first_movers) T)))))))) => (Ex T2, ((greater T2 (appear (efficient_producers) E)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T)))))))) (environment T_0) (stable T_0) (in_environment T_0 T_1) (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T))))) (-. (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T)))))))   ### All 17
% 0.19/0.40  19. ((in_environment T_0 T_1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T_1)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T)))))) (-. (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T))))))) (stable T_0) (environment T_0) (All E, (((environment E) /\ ((stable E) /\ (Ex T1, ((in_environment E T1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T1)) => (greater (zero) (growth_rate (first_movers) T)))))))) => (Ex T2, ((greater T2 (appear (efficient_producers) E)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T))))))))   ### And 18
% 0.19/0.40  20. (Ex To, ((in_environment T_0 To) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T To)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T))))))) (All E, (((environment E) /\ ((stable E) /\ (Ex T1, ((in_environment E T1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T1)) => (greater (zero) (growth_rate (first_movers) T)))))))) => (Ex T2, ((greater T2 (appear (efficient_producers) E)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T)))))))) (environment T_0) (stable T_0) (-. (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T)))))))   ### Exists 19
% 0.19/0.40  21. (((environment T_0) /\ (stable T_0)) => (Ex To, ((in_environment T_0 To) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T To)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T)))))))) (-. (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T))))))) (All E, (((environment E) /\ ((stable E) /\ (Ex T1, ((in_environment E T1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T1)) => (greater (zero) (growth_rate (first_movers) T)))))))) => (Ex T2, ((greater T2 (appear (efficient_producers) E)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T)))))))) (stable T_0) (environment T_0)   ### DisjTree 1 2 20
% 0.19/0.40  22. (All E, (((environment E) /\ (stable E)) => (Ex To, ((in_environment E To) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T To)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T))))))))) (environment T_0) (stable T_0) (All E, (((environment E) /\ ((stable E) /\ (Ex T1, ((in_environment E T1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T1)) => (greater (zero) (growth_rate (first_movers) T)))))))) => (Ex T2, ((greater T2 (appear (efficient_producers) E)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T)))))))) (-. (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T)))))))   ### All 21
% 0.19/0.41  23. (-. (((environment T_0) /\ (stable T_0)) => (Ex T2, ((greater T2 (appear (efficient_producers) T_0)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) T_0 T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T)))))))) (All E, (((environment E) /\ ((stable E) /\ (Ex T1, ((in_environment E T1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T1)) => (greater (zero) (growth_rate (first_movers) T)))))))) => (Ex T2, ((greater T2 (appear (efficient_producers) E)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T)))))))) (All E, (((environment E) /\ (stable E)) => (Ex To, ((in_environment E To) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T To)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T)))))))))   ### ConjTree 22
% 0.19/0.41  24. (-. (All E, (((environment E) /\ (stable E)) => (Ex T2, ((greater T2 (appear (efficient_producers) E)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T))))))))) (All E, (((environment E) /\ (stable E)) => (Ex To, ((in_environment E To) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T To)) => ((greater (growth_rate (efficient_producers) T) (zero)) /\ (greater (zero) (growth_rate (first_movers) T))))))))) (All E, (((environment E) /\ ((stable E) /\ (Ex T1, ((in_environment E T1) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T1)) => (greater (zero) (growth_rate (first_movers) T)))))))) => (Ex T2, ((greater T2 (appear (efficient_producers) E)) /\ (All T, (((subpopulations (first_movers) (efficient_producers) E T) /\ (greater_or_equal T T2)) => (greater (zero) (growth_rate (first_movers) T))))))))   ### NotAllEx 23
% 0.19/0.41  % SZS output end Proof
% 0.19/0.41  (* END-PROOF *)
%------------------------------------------------------------------------------