TSTP Solution File: MGT024-1 by Gandalf---c-2.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Gandalf---c-2.6
% Problem  : MGT024-1 : TPTP v3.4.2. Released v2.4.0.
% Transfm  : add_equality:r
% Format   : otter:hypothesis:set(auto),clear(print_given)
% Command  : gandalf-wrapper -time %d %s

% Computer : art10.cs.miami.edu
% Model    : i686 unknown
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1000MB
% OS       : Linux 2.4.22-21mdk-i686-up-4GB
% CPULimit : 600s

% Result   : Unsatisfiable 0.0s
% Output   : Assurance 0.0s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 
% Gandalf c-2.6 r1 starting to prove: /home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/MGT/MGT024-1+eq_r.in
% Using automatic strategy selection.
% Time limit in seconds: 600
% 
% prove-all-passes started
% 
% detected problem class: neq
% detected subclass: medium
% 
% strategies selected: 
% (hyper 25 #f 2 11)
% (binary-unit 9 #f 2 11)
% (binary-double 9 #f 2 11)
% (binary-double 15 #f)
% (binary-double 15 #t)
% (binary 50 #t 2 11)
% (binary-order 25 #f 2 11)
% (binary-posweight-order 101 #f)
% (binary-posweight-lex-big-order 25 #f)
% (binary-posweight-lex-small-order 9 #f)
% (binary-order-sos 50 #t)
% (binary-unit-uniteq 25 #f)
% (binary-weightorder 50 #f)
% (binary-order 50 #f)
% (hyper-order 30 #f)
% (binary 112 #t)
% 
% 
% ********* EMPTY CLAUSE DERIVED *********
% 
% 
% timer checkpoints: c(22,40,0,44,0,0)
% 
% 
% START OF PROOF
% 23 [] equal(X,X).
% 24 [] -subpopulations(first_movers,efficient_producers,X,Y) | in_environment(X,Y) | -environment(X).
% 25 [] greater(number_of_organizations(X,Y),zero) | -subpopulations(first_movers,efficient_producers,X,Y) | -environment(X).
% 26 [] -greater_or_equal(X,equilibrium(Y)) | -greater(equilibrium(Y),X) | -environment(Y).
% 28 [] -greater(number_of_organizations(X,Y),zero) | constant(resources(X,Y)) | greater(equilibrium(X),Y) | -in_environment(X,Y) | -environment(X).
% 30 [] -constant(resources(X,Y)) | constant(number_of_organizations(X,Y)) | -in_environment(X,Y) | -environment(X).
% 31 [] greater(growth_rate(first_movers,X),zero) | greater(growth_rate(efficient_producers,X),zero) | equal(growth_rate(first_movers,X),zero) | -constant(number_of_organizations(Y,X)) | -subpopulations(first_movers,efficient_producers,Y,X) | -environment(Y).
% 32 [] greater(growth_rate(first_movers,X),zero) | greater(zero,growth_rate(first_movers,X)) | equal(growth_rate(first_movers,X),zero) | -constant(number_of_organizations(Y,X)) | -subpopulations(first_movers,efficient_producers,Y,X) | -environment(Y).
% 33 [] greater(zero,growth_rate(efficient_producers,X)) | greater(growth_rate(efficient_producers,X),zero) | equal(growth_rate(first_movers,X),zero) | -constant(number_of_organizations(Y,X)) | -subpopulations(first_movers,efficient_producers,Y,X) | -environment(Y).
% 34 [] greater(zero,growth_rate(efficient_producers,X)) | greater(zero,growth_rate(first_movers,X)) | equal(growth_rate(first_movers,X),zero) | -constant(number_of_organizations(Y,X)) | -subpopulations(first_movers,efficient_producers,Y,X) | -environment(Y).
% 36 [] greater(growth_rate(first_movers,X),zero) | greater(zero,growth_rate(first_movers,X)) | equal(growth_rate(efficient_producers,X),zero) | -constant(number_of_organizations(Y,X)) | -subpopulations(first_movers,efficient_producers,Y,X) | -environment(Y).
% 37 [] greater(zero,growth_rate(efficient_producers,X)) | greater(growth_rate(efficient_producers,X),zero) | equal(growth_rate(efficient_producers,X),zero) | -constant(number_of_organizations(Y,X)) | -subpopulations(first_movers,efficient_producers,Y,X) | -environment(Y).
% 39 [] environment(sk1).
% 40 [] subpopulations(first_movers,efficient_producers,sk1,sk2).
% 41 [] greater_or_equal(sk2,equilibrium(sk1)).
% 42 [] -equal(growth_rate(first_movers,sk2),zero) | -equal(growth_rate(efficient_producers,sk2),zero).
% 43 [] -greater(growth_rate(first_movers,sk2),zero) | -greater(zero,growth_rate(efficient_producers,sk2)).
% 44 [] -greater(growth_rate(efficient_producers,sk2),zero) | -greater(zero,growth_rate(first_movers,sk2)).
% 69 [hyper:24,40,cut:39] in_environment(sk1,sk2).
% 70 [hyper:25,40,cut:39] greater(number_of_organizations(sk1,sk2),zero).
% 72 [hyper:28,69,cut:70,cut:39] constant(resources(sk1,sk2)) | greater(equilibrium(sk1),sk2).
% 81 [hyper:26,72,cut:41,cut:39] constant(resources(sk1,sk2)).
% 82 [hyper:30,81,cut:69,cut:39] constant(number_of_organizations(sk1,sk2)).
% 83 [hyper:31,82,cut:40,cut:39] greater(growth_rate(efficient_producers,sk2),zero) | greater(growth_rate(first_movers,sk2),zero) | equal(growth_rate(first_movers,sk2),zero).
% 84 [hyper:32,82,cut:40,cut:39] greater(zero,growth_rate(first_movers,sk2)) | greater(growth_rate(first_movers,sk2),zero) | equal(growth_rate(first_movers,sk2),zero).
% 85 [hyper:33,82,cut:40,cut:39] greater(growth_rate(efficient_producers,sk2),zero) | greater(zero,growth_rate(efficient_producers,sk2)) | equal(growth_rate(first_movers,sk2),zero).
% 86 [hyper:34,82,cut:40,cut:39] greater(zero,growth_rate(first_movers,sk2)) | greater(zero,growth_rate(efficient_producers,sk2)) | equal(growth_rate(first_movers,sk2),zero).
% 88 [hyper:36,82,cut:40,cut:39] greater(zero,growth_rate(first_movers,sk2)) | greater(growth_rate(first_movers,sk2),zero) | equal(growth_rate(efficient_producers,sk2),zero).
% 89 [hyper:37,82,cut:40,cut:39] greater(growth_rate(efficient_producers,sk2),zero) | greater(zero,growth_rate(efficient_producers,sk2)) | equal(growth_rate(efficient_producers,sk2),zero).
% 112 [hyper:44,84,83] greater(growth_rate(first_movers,sk2),zero) | equal(growth_rate(first_movers,sk2),zero).
% 124 [hyper:43,85,binarycut:112] greater(growth_rate(efficient_producers,sk2),zero) | equal(growth_rate(first_movers,sk2),zero).
% 136 [hyper:43,86,binarycut:112] greater(zero,growth_rate(first_movers,sk2)) | equal(growth_rate(first_movers,sk2),zero).
% 143 [hyper:44,136,binarycut:124] equal(growth_rate(first_movers,sk2),zero).
% 154 [hyper:42,88,demod:143,cut:23] greater(zero,zero).
% 157 [hyper:42,89,demod:143,cut:23] greater(zero,growth_rate(efficient_producers,sk2)) | greater(growth_rate(efficient_producers,sk2),zero).
% 161 [hyper:43,157,demod:143,cut:154] greater(growth_rate(efficient_producers,sk2),zero).
% 164 [hyper:44,161,demod:143,cut:154] contradiction
% END OF PROOF
% 
% Proof found by the following strategy:
% 
% using hyperresolution
% not using sos strategy
% using positive unit paramodulation strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% clause length limited to 11
% clause depth limited to 2
% seconds given: 25
% 
% 
% ***GANDALF_FOUND_A_REFUTATION***
% 
% Global statistics over all passes: 
% 
%  given clauses:    38
%  derived clauses:   148
%  kept clauses:      27
%  kept size sum:     256
%  kept mid-nuclei:   61
%  kept new demods:   1
%  forw unit-subs:    18
%  forw double-subs: 10
%  forw overdouble-subs: 0
%  backward subs:     15
%  fast unit cutoff:  44
%  full unit cutoff:  0
%  dbl  unit cutoff:  4
%  real runtime  :  0.1
%  process. runtime:  0.0
% specific non-discr-tree subsumption statistics: 
%  tried:           113
%  length fails:    0
%  strength fails:  82
%  predlist fails:  16
%  aux str. fails:  0
%  by-lit fails:    0
%  full subs tried: 4
%  full subs fail:  4
% 
% ; program args: ("/home/graph/tptp/Systems/Gandalf---c-2.6/gandalf" "-time" "600" "/home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/MGT/MGT024-1+eq_r.in")
% 
%------------------------------------------------------------------------------