TSTP Solution File: MGT024+1 by SOS---2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SOS---2.0
% Problem  : MGT024+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : sos-script %s

% Computer : n017.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 22:25:52 EDT 2022

% Result   : Theorem 0.21s 0.54s
% Output   : Refutation 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : MGT024+1 : TPTP v8.1.0. Released v2.0.0.
% 0.11/0.13  % Command  : sos-script %s
% 0.13/0.34  % Computer : n017.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Thu Jun  9 07:09:49 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.36  ----- Otter 3.2, August 2001 -----
% 0.13/0.36  The process was started by sandbox on n017.cluster.edu,
% 0.13/0.36  Thu Jun  9 07:09:49 2022
% 0.13/0.36  The command was "./sos".  The process ID is 26557.
% 0.13/0.36  
% 0.13/0.36  set(prolog_style_variables).
% 0.13/0.36  set(auto).
% 0.13/0.36     dependent: set(auto1).
% 0.13/0.36     dependent: set(process_input).
% 0.13/0.36     dependent: clear(print_kept).
% 0.13/0.36     dependent: clear(print_new_demod).
% 0.13/0.36     dependent: clear(print_back_demod).
% 0.13/0.36     dependent: clear(print_back_sub).
% 0.13/0.36     dependent: set(control_memory).
% 0.13/0.36     dependent: assign(max_mem, 12000).
% 0.13/0.36     dependent: assign(pick_given_ratio, 4).
% 0.13/0.36     dependent: assign(stats_level, 1).
% 0.13/0.36     dependent: assign(pick_semantic_ratio, 3).
% 0.13/0.36     dependent: assign(sos_limit, 5000).
% 0.13/0.36     dependent: assign(max_weight, 60).
% 0.13/0.36  clear(print_given).
% 0.13/0.36  
% 0.13/0.36  formula_list(usable).
% 0.13/0.36  
% 0.13/0.36  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=6.
% 0.13/0.36  
% 0.13/0.36  This ia a non-Horn set with equality.  The strategy will be
% 0.13/0.36  Knuth-Bendix, ordered hyper_res, ur_res, factoring, and
% 0.13/0.36  unit deletion, with positive clauses in sos and nonpositive
% 0.13/0.36  clauses in usable.
% 0.13/0.36  
% 0.13/0.36     dependent: set(knuth_bendix).
% 0.13/0.36     dependent: set(para_from).
% 0.13/0.36     dependent: set(para_into).
% 0.13/0.36     dependent: clear(para_from_right).
% 0.13/0.36     dependent: clear(para_into_right).
% 0.13/0.36     dependent: set(para_from_vars).
% 0.13/0.36     dependent: set(eq_units_both_ways).
% 0.13/0.36     dependent: set(dynamic_demod_all).
% 0.13/0.36     dependent: set(dynamic_demod).
% 0.13/0.36     dependent: set(order_eq).
% 0.13/0.36     dependent: set(back_demod).
% 0.13/0.36     dependent: set(lrpo).
% 0.13/0.36     dependent: set(hyper_res).
% 0.13/0.36     dependent: set(unit_deletion).
% 0.13/0.36     dependent: set(factor).
% 0.13/0.36  
% 0.13/0.36  ------------> process usable:
% 0.13/0.36  
% 0.13/0.36  ------------> process sos:
% 0.13/0.36    Following clause subsumed by 22 during input processing: 0 [copy,22,flip.1] {-} A=A.
% 0.13/0.36  
% 0.13/0.36  ======= end of input processing =======
% 0.13/0.39  
% 0.13/0.39  Model 1 (0.00 seconds, 0 Inserts)
% 0.13/0.39  
% 0.13/0.39  Stopped by limit on number of solutions
% 0.13/0.39  
% 0.13/0.39  
% 0.13/0.39  -------------- Softie stats --------------
% 0.13/0.39  
% 0.13/0.39  UPDATE_STOP: 300
% 0.13/0.39  SFINDER_TIME_LIMIT: 2
% 0.13/0.39  SHORT_CLAUSE_CUTOFF: 4
% 0.13/0.39  number of clauses in intial UL: 18
% 0.13/0.39  number of clauses initially in problem: 22
% 0.13/0.39  percentage of clauses intially in UL: 81
% 0.13/0.39  percentage of distinct symbols occuring in initial UL: 94
% 0.13/0.39  percent of all initial clauses that are short: 100
% 0.13/0.39  absolute distinct symbol count: 17
% 0.13/0.39     distinct predicate count: 8
% 0.13/0.39     distinct function count: 4
% 0.13/0.39     distinct constant count: 5
% 0.13/0.39  
% 0.13/0.39  ---------- no more Softie stats ----------
% 0.13/0.39  
% 0.13/0.39  
% 0.13/0.39  
% 0.13/0.39  =========== start of search ===========
% 0.21/0.54  
% 0.21/0.54  -------- PROOF -------- 
% 0.21/0.54  % SZS status Theorem
% 0.21/0.54  % SZS output start Refutation
% 0.21/0.54  
% 0.21/0.54  Stopped by limit on insertions
% 0.21/0.54  
% 0.21/0.54  Model 2 (0.00 seconds, 0 Inserts)
% 0.21/0.54  
% 0.21/0.54  Stopped by limit on number of solutions
% 0.21/0.54  
% 0.21/0.54  -----> EMPTY CLAUSE at   0.16 sec ----> 99 [back_demod,18,demod,95,unit_del,98,85] {-} $F.
% 0.21/0.54  
% 0.21/0.54  Length of proof is 32.  Level of proof is 16.
% 0.21/0.54  
% 0.21/0.54  ---------------- PROOF ----------------
% 0.21/0.54  % SZS status Theorem
% 0.21/0.54  % SZS output start Refutation
% 0.21/0.54  
% 0.21/0.54  1 [] {+} -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|in_environment(A,B).
% 0.21/0.54  2 [] {+} -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|greater(number_of_organizations(A,B),zero).
% 0.21/0.54  3 [] {+} -environment(A)| -greater_or_equal(B,equilibrium(A))| -greater(equilibrium(A),B).
% 0.21/0.54  5 [] {+} -environment(A)| -in_environment(A,B)| -greater(number_of_organizations(A,B),zero)|greater(equilibrium(A),B)|constant(resources(A,B)).
% 0.21/0.54  7 [] {+} -environment(A)| -in_environment(A,B)| -constant(resources(A,B))|constant(number_of_organizations(A,B)).
% 0.21/0.54  9 [] {+} -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(first_movers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(zero,growth_rate(first_movers,B)).
% 0.21/0.54  10 [] {+} -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(first_movers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(growth_rate(efficient_producers,B),zero).
% 0.21/0.54  11 [] {+} -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(first_movers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(zero,growth_rate(first_movers,B)).
% 0.21/0.54  12 [] {+} -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(efficient_producers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(growth_rate(efficient_producers,B),zero).
% 0.21/0.54  13 [] {+} -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(efficient_producers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(zero,growth_rate(first_movers,B)).
% 0.21/0.54  14 [] {+} -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(efficient_producers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(growth_rate(efficient_producers,B),zero).
% 0.21/0.54  15 [] {+} -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(efficient_producers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(zero,growth_rate(first_movers,B)).
% 0.21/0.54  16 [] {+} growth_rate(first_movers,$c1)!=zero|growth_rate(efficient_producers,$c1)!=zero.
% 0.21/0.54  17 [] {+} -greater(growth_rate(first_movers,$c1),zero)| -greater(zero,growth_rate(efficient_producers,$c1)).
% 0.21/0.54  18 [] {+} -greater(growth_rate(efficient_producers,$c1),zero)| -greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  19 [] {+} environment($c2).
% 0.21/0.54  20 [] {-} subpopulations(first_movers,efficient_producers,$c2,$c1).
% 0.21/0.54  21 [] {-} greater_or_equal($c1,equilibrium($c2)).
% 0.21/0.54  22 [] {+} A=A.
% 0.21/0.54  23 [hyper,20,2,19] {-} greater(number_of_organizations($c2,$c1),zero).
% 0.21/0.54  24 [hyper,20,1,19] {+} in_environment($c2,$c1).
% 0.21/0.54  25 [hyper,23,5,19,24] {-} greater(equilibrium($c2),$c1)|constant(resources($c2,$c1)).
% 0.21/0.54  26 [hyper,25,7,19,24] {+} greater(equilibrium($c2),$c1)|constant(number_of_organizations($c2,$c1)).
% 0.21/0.54  27 [hyper,26,15,19,20] {-} greater(equilibrium($c2),$c1)|growth_rate(efficient_producers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1))|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  28 [hyper,26,14,19,20] {+} greater(equilibrium($c2),$c1)|growth_rate(efficient_producers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1))|greater(growth_rate(efficient_producers,$c1),zero).
% 0.21/0.54  29 [hyper,26,13,19,20] {+} greater(equilibrium($c2),$c1)|growth_rate(efficient_producers,$c1)=zero|greater(growth_rate(first_movers,$c1),zero)|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  30 [hyper,26,12,19,20] {+} greater(equilibrium($c2),$c1)|growth_rate(efficient_producers,$c1)=zero|greater(growth_rate(first_movers,$c1),zero)|greater(growth_rate(efficient_producers,$c1),zero).
% 0.21/0.54  31 [hyper,26,11,19,20] {-} greater(equilibrium($c2),$c1)|growth_rate(first_movers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1))|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  32 [hyper,26,10,19,20] {+} greater(equilibrium($c2),$c1)|growth_rate(first_movers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1))|greater(growth_rate(efficient_producers,$c1),zero).
% 0.21/0.54  33 [hyper,26,9,19,20] {+} greater(equilibrium($c2),$c1)|growth_rate(first_movers,$c1)=zero|greater(growth_rate(first_movers,$c1),zero)|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  36 [hyper,27,3,19,21] {-} growth_rate(efficient_producers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1))|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  41 [hyper,28,18,36,factor_simp,factor_simp] {-} greater(equilibrium($c2),$c1)|growth_rate(efficient_producers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1)).
% 0.21/0.54  43 [hyper,41,3,19,21] {-} growth_rate(efficient_producers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1)).
% 0.21/0.54  46 [para_from,43.1.1,16.2.1,unit_del,22] {+} growth_rate(first_movers,$c1)!=zero|greater(zero,growth_rate(efficient_producers,$c1)).
% 0.21/0.54  49 [hyper,31,3,19,21] {-} growth_rate(first_movers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1))|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  55 [hyper,29,17,43,factor_simp] {-} greater(equilibrium($c2),$c1)|growth_rate(efficient_producers,$c1)=zero|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  56 [para_into,46.1.1,49.1.1,unit_del,22,factor_simp] {-} greater(zero,growth_rate(efficient_producers,$c1))|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  62 [hyper,55,3,19,21] {-} growth_rate(efficient_producers,$c1)=zero|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  63 [para_from,62.1.1,56.1.2,factor_simp] {-} greater(zero,zero)|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  64 [para_from,62.1.1,17.2.2] {+} -greater(growth_rate(first_movers,$c1),zero)| -greater(zero,zero)|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  65 [para_from,62.1.1,16.2.1,unit_del,22] {+} growth_rate(first_movers,$c1)!=zero|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  68 [hyper,30,17,43,factor_simp] {+} greater(equilibrium($c2),$c1)|growth_rate(efficient_producers,$c1)=zero|greater(growth_rate(efficient_producers,$c1),zero).
% 0.21/0.54  75 [hyper,32,18,56,factor_simp] {-} greater(equilibrium($c2),$c1)|growth_rate(first_movers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1)).
% 0.21/0.54  77 [hyper,75,3,19,21] {-} growth_rate(first_movers,$c1)=zero|greater(zero,growth_rate(efficient_producers,$c1)).
% 0.21/0.54  79 [para_from,77.1.1,46.1.1,unit_del,22,factor_simp] {-} greater(zero,growth_rate(efficient_producers,$c1)).
% 0.21/0.54  82 [hyper,33,64,63,factor_simp,factor_simp] {-} greater(equilibrium($c2),$c1)|growth_rate(first_movers,$c1)=zero|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  84 [hyper,82,3,19,21] {-} growth_rate(first_movers,$c1)=zero|greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  85 [para_from,84.1.1,65.1.1,unit_del,22,factor_simp] {-} greater(zero,growth_rate(first_movers,$c1)).
% 0.21/0.54  88 [hyper,68,18,85] {-} greater(equilibrium($c2),$c1)|growth_rate(efficient_producers,$c1)=zero.
% 0.21/0.54  95,94 [hyper,88,3,19,21] {-} growth_rate(efficient_producers,$c1)=zero.
% 0.21/0.54  98 [back_demod,79,demod,95] {-} greater(zero,zero).
% 0.21/0.54  99 [back_demod,18,demod,95,unit_del,98,85] {-} $F.
% 0.21/0.54  
% 0.21/0.54  % SZS output end Refutation
% 0.21/0.54  ------------ end of proof -------------
% 0.21/0.54  
% 0.21/0.54  
% 0.21/0.54  Search stopped by max_proofs option.
% 0.21/0.54  
% 0.21/0.54  
% 0.21/0.54  Search stopped by max_proofs option.
% 0.21/0.54  
% 0.21/0.54  ============ end of search ============
% 0.21/0.54  
% 0.21/0.54  ----------- soft-scott stats ----------
% 0.21/0.54  
% 0.21/0.54  true clauses given          15      (40.5%)
% 0.21/0.54  false clauses given         22
% 0.21/0.54  
% 0.21/0.54        FALSE     TRUE
% 0.21/0.54    10  0         1
% 0.21/0.54    14  0         2
% 0.21/0.54    15  0         1
% 0.21/0.54    24  0         1
% 0.21/0.54  tot:  0         5      (100.0% true)
% 0.21/0.54  
% 0.21/0.54  
% 0.21/0.54  Model 2 (0.00 seconds, 0 Inserts)
% 0.21/0.54  
% 0.21/0.54  That finishes the proof of the theorem.
% 0.21/0.54  
% 0.21/0.54  Process 26557 finished Thu Jun  9 07:09:49 2022
%------------------------------------------------------------------------------