TSTP Solution File: MGT024+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : MGT024+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:06:03 EDT 2022

% Result   : Theorem 1.62s 1.84s
% Output   : Refutation 1.62s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   16
%            Number of leaves      :   18
% Syntax   : Number of clauses     :   46 (  11 unt;  24 nHn;  45 RR)
%            Number of literals    :  132 (  24 equ;  49 neg)
%            Maximal clause size   :    6 (   2 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    8 (   6 usr;   1 prp; 0-4 aty)
%            Number of functors    :    9 (   9 usr;   5 con; 0-2 aty)
%            Number of variables   :   25 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | in_environment(A,B) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | greater(number_of_organizations(A,B),zero) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(3,axiom,
    ( ~ environment(A)
    | ~ greater_or_e_qual(B,e_quilibrium(A))
    | ~ greater(e_quilibrium(A),B) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(5,axiom,
    ( ~ environment(A)
    | ~ in_environment(A,B)
    | ~ greater(number_of_organizations(A,B),zero)
    | greater(e_quilibrium(A),B)
    | constant(resources(A,B)) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(7,axiom,
    ( ~ environment(A)
    | ~ in_environment(A,B)
    | ~ constant(resources(A,B))
    | constant(number_of_organizations(A,B)) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(9,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ constant(number_of_organizations(A,B))
    | growth_rate(first_movers,B) = zero
    | greater(growth_rate(first_movers,B),zero)
    | greater(zero,growth_rate(first_movers,B)) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(10,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ constant(number_of_organizations(A,B))
    | growth_rate(first_movers,B) = zero
    | greater(zero,growth_rate(efficient_producers,B))
    | greater(growth_rate(efficient_producers,B),zero) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(12,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ constant(number_of_organizations(A,B))
    | growth_rate(efficient_producers,B) = zero
    | greater(growth_rate(first_movers,B),zero)
    | greater(growth_rate(efficient_producers,B),zero) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(13,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ constant(number_of_organizations(A,B))
    | growth_rate(efficient_producers,B) = zero
    | greater(growth_rate(first_movers,B),zero)
    | greater(zero,growth_rate(first_movers,B)) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(14,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ constant(number_of_organizations(A,B))
    | growth_rate(efficient_producers,B) = zero
    | greater(zero,growth_rate(efficient_producers,B))
    | greater(growth_rate(efficient_producers,B),zero) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(15,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ constant(number_of_organizations(A,B))
    | growth_rate(efficient_producers,B) = zero
    | greater(zero,growth_rate(efficient_producers,B))
    | greater(zero,growth_rate(first_movers,B)) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(16,axiom,
    ( growth_rate(first_movers,dollar_c1) != zero
    | growth_rate(efficient_producers,dollar_c1) != zero ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(17,axiom,
    ( ~ greater(growth_rate(first_movers,dollar_c1),zero)
    | ~ greater(zero,growth_rate(efficient_producers,dollar_c1)) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(18,axiom,
    ( ~ greater(growth_rate(efficient_producers,dollar_c1),zero)
    | ~ greater(zero,growth_rate(first_movers,dollar_c1)) ),
    file('MGT024+1.p',unknown),
    [] ).

cnf(19,axiom,
    A = A,
    file('MGT024+1.p',unknown),
    [] ).

cnf(20,axiom,
    environment(dollar_c2),
    file('MGT024+1.p',unknown),
    [] ).

cnf(21,axiom,
    subpopulations(first_movers,efficient_producers,dollar_c2,dollar_c1),
    file('MGT024+1.p',unknown),
    [] ).

cnf(22,axiom,
    greater_or_e_qual(dollar_c1,e_quilibrium(dollar_c2)),
    file('MGT024+1.p',unknown),
    [] ).

cnf(23,plain,
    greater(number_of_organizations(dollar_c2,dollar_c1),zero),
    inference(hyper,[status(thm)],[21,2,20]),
    [iquote('hyper,21,2,20')] ).

cnf(24,plain,
    in_environment(dollar_c2,dollar_c1),
    inference(hyper,[status(thm)],[21,1,20]),
    [iquote('hyper,21,1,20')] ).

cnf(25,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | constant(resources(dollar_c2,dollar_c1)) ),
    inference(hyper,[status(thm)],[23,5,20,24]),
    [iquote('hyper,23,5,20,24')] ).

cnf(26,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | constant(number_of_organizations(dollar_c2,dollar_c1)) ),
    inference(hyper,[status(thm)],[25,7,20,24]),
    [iquote('hyper,25,7,20,24')] ).

cnf(27,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | growth_rate(efficient_producers,dollar_c1) = zero
    | greater(zero,growth_rate(efficient_producers,dollar_c1))
    | greater(zero,growth_rate(first_movers,dollar_c1)) ),
    inference(hyper,[status(thm)],[26,15,20,21]),
    [iquote('hyper,26,15,20,21')] ).

cnf(28,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | growth_rate(efficient_producers,dollar_c1) = zero
    | greater(zero,growth_rate(efficient_producers,dollar_c1))
    | greater(growth_rate(efficient_producers,dollar_c1),zero) ),
    inference(hyper,[status(thm)],[26,14,20,21]),
    [iquote('hyper,26,14,20,21')] ).

cnf(29,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | growth_rate(efficient_producers,dollar_c1) = zero
    | greater(growth_rate(first_movers,dollar_c1),zero)
    | greater(zero,growth_rate(first_movers,dollar_c1)) ),
    inference(hyper,[status(thm)],[26,13,20,21]),
    [iquote('hyper,26,13,20,21')] ).

cnf(30,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | growth_rate(efficient_producers,dollar_c1) = zero
    | greater(growth_rate(first_movers,dollar_c1),zero)
    | greater(growth_rate(efficient_producers,dollar_c1),zero) ),
    inference(hyper,[status(thm)],[26,12,20,21]),
    [iquote('hyper,26,12,20,21')] ).

cnf(33,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | growth_rate(first_movers,dollar_c1) = zero
    | greater(growth_rate(first_movers,dollar_c1),zero)
    | greater(zero,growth_rate(first_movers,dollar_c1)) ),
    inference(hyper,[status(thm)],[26,9,20,21]),
    [iquote('hyper,26,9,20,21')] ).

cnf(36,plain,
    ( growth_rate(efficient_producers,dollar_c1) = zero
    | greater(zero,growth_rate(efficient_producers,dollar_c1))
    | greater(zero,growth_rate(first_movers,dollar_c1)) ),
    inference(hyper,[status(thm)],[27,3,20,22]),
    [iquote('hyper,27,3,20,22')] ).

cnf(41,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | growth_rate(efficient_producers,dollar_c1) = zero
    | greater(zero,growth_rate(efficient_producers,dollar_c1)) ),
    inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[28,18,36])])]),
    [iquote('hyper,28,18,36,factor_simp,factor_simp')] ).

cnf(43,plain,
    ( growth_rate(efficient_producers,dollar_c1) = zero
    | greater(zero,growth_rate(efficient_producers,dollar_c1)) ),
    inference(hyper,[status(thm)],[41,3,20,22]),
    [iquote('hyper,41,3,20,22')] ).

cnf(46,plain,
    ( growth_rate(first_movers,dollar_c1) != zero
    | greater(zero,growth_rate(efficient_producers,dollar_c1)) ),
    inference(unit_del,[status(thm)],[inference(para_from,[status(thm),theory(equality)],[43,16]),19]),
    [iquote('para_from,43.1.1,16.2.1,unit_del,19')] ).

cnf(49,plain,
    ( greater(zero,growth_rate(efficient_producers,dollar_c1))
    | ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,dollar_c1)
    | ~ constant(number_of_organizations(A,dollar_c1))
    | greater(growth_rate(efficient_producers,dollar_c1),zero) ),
    inference(factor_simp,[status(thm)],[inference(unit_del,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[46,10]),19])]),
    [iquote('para_into,46.1.1,10.4.1,unit_del,19,factor_simp')] ).

cnf(54,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | growth_rate(efficient_producers,dollar_c1) = zero
    | greater(zero,growth_rate(first_movers,dollar_c1)) ),
    inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[29,17,43])]),
    [iquote('hyper,29,17,43,factor_simp')] ).

cnf(56,plain,
    ( growth_rate(efficient_producers,dollar_c1) = zero
    | greater(zero,growth_rate(first_movers,dollar_c1)) ),
    inference(hyper,[status(thm)],[54,3,20,22]),
    [iquote('hyper,54,3,20,22')] ).

cnf(64,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | growth_rate(efficient_producers,dollar_c1) = zero
    | greater(growth_rate(efficient_producers,dollar_c1),zero) ),
    inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[30,17,43])]),
    [iquote('hyper,30,17,43,factor_simp')] ).

cnf(68,plain,
    ( greater(e_quilibrium(dollar_c2),dollar_c1)
    | growth_rate(efficient_producers,dollar_c1) = zero ),
    inference(factor_simp,[status(thm)],[inference(hyper,[status(thm)],[64,18,56])]),
    [iquote('hyper,64,18,56,factor_simp')] ).

cnf(71,plain,
    growth_rate(efficient_producers,dollar_c1) = zero,
    inference(hyper,[status(thm)],[68,3,20,22]),
    [iquote('hyper,68,3,20,22')] ).

cnf(73,plain,
    ( greater(zero,zero)
    | ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,dollar_c1)
    | ~ constant(number_of_organizations(A,dollar_c1)) ),
    inference(factor_simp,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[49]),71,71])]),
    [iquote('back_demod,49,demod,71,71,factor_simp')] ).

cnf(77,plain,
    ( ~ greater(zero,zero)
    | ~ greater(zero,growth_rate(first_movers,dollar_c1)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[18]),71]),
    [iquote('back_demod,18,demod,71')] ).

cnf(78,plain,
    ( ~ greater(growth_rate(first_movers,dollar_c1),zero)
    | ~ greater(zero,zero) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[17]),71]),
    [iquote('back_demod,17,demod,71')] ).

cnf(79,plain,
    growth_rate(first_movers,dollar_c1) != zero,
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[16]),71]),19]),
    [iquote('back_demod,16,demod,71,unit_del,19')] ).

cnf(81,plain,
    ( greater(growth_rate(first_movers,dollar_c1),zero)
    | greater(zero,growth_rate(first_movers,dollar_c1)) ),
    inference(unit_del,[status(thm)],[inference(hyper,[status(thm)],[33,3,20,22]),79]),
    [iquote('hyper,33,3,20,22,unit_del,79')] ).

cnf(82,plain,
    ( greater(zero,zero)
    | greater(e_quilibrium(dollar_c2),dollar_c1) ),
    inference(hyper,[status(thm)],[73,20,21,26]),
    [iquote('hyper,73,20,21,26')] ).

cnf(86,plain,
    greater(zero,zero),
    inference(hyper,[status(thm)],[82,3,20,22]),
    [iquote('hyper,82,3,20,22')] ).

cnf(87,plain,
    greater(zero,growth_rate(first_movers,dollar_c1)),
    inference(hyper,[status(thm)],[86,78,81]),
    [iquote('hyper,86,78,81')] ).

cnf(89,plain,
    $false,
    inference(hyper,[status(thm)],[87,77,86]),
    [iquote('hyper,87,77,86')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : MGT024+1 : TPTP v8.1.0. Released v2.0.0.
% 0.13/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n016.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 04:21:07 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 1.62/1.83  ----- Otter 3.3f, August 2004 -----
% 1.62/1.83  The process was started by sandbox on n016.cluster.edu,
% 1.62/1.83  Wed Jul 27 04:21:07 2022
% 1.62/1.83  The command was "./otter".  The process ID is 20761.
% 1.62/1.83  
% 1.62/1.83  set(prolog_style_variables).
% 1.62/1.83  set(auto).
% 1.62/1.83     dependent: set(auto1).
% 1.62/1.83     dependent: set(process_input).
% 1.62/1.83     dependent: clear(print_kept).
% 1.62/1.83     dependent: clear(print_new_demod).
% 1.62/1.83     dependent: clear(print_back_demod).
% 1.62/1.83     dependent: clear(print_back_sub).
% 1.62/1.83     dependent: set(control_memory).
% 1.62/1.83     dependent: assign(max_mem, 12000).
% 1.62/1.83     dependent: assign(pick_given_ratio, 4).
% 1.62/1.83     dependent: assign(stats_level, 1).
% 1.62/1.83     dependent: assign(max_seconds, 10800).
% 1.62/1.83  clear(print_given).
% 1.62/1.83  
% 1.62/1.83  formula_list(usable).
% 1.62/1.83  all A (A=A).
% 1.62/1.83  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)->in_environment(E,T)).
% 1.62/1.83  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)->greater(number_of_organizations(E,T),zero)).
% 1.62/1.83  all E T (environment(E)&greater_or_e_qual(T,e_quilibrium(E))-> -greater(e_quilibrium(E),T)).
% 1.62/1.83  all E T (environment(E)&in_environment(E,T)&greater(number_of_organizations(E,T),zero)-> (greater(e_quilibrium(E),T)->decreases(resources(E,T)))& (-greater(e_quilibrium(E),T)->constant(resources(E,T)))).
% 1.62/1.84  all E T (environment(E)&in_environment(E,T)-> (decreases(resources(E,T))-> -decreases(number_of_organizations(E,T)))& (constant(resources(E,T))->constant(number_of_organizations(E,T)))).
% 1.62/1.84  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)&constant(number_of_organizations(E,T))->growth_rate(first_movers,T)=zero&growth_rate(efficient_producers,T)=zero|greater(growth_rate(first_movers,T),zero)&greater(zero,growth_rate(efficient_producers,T))|greater(growth_rate(efficient_producers,T),zero)&greater(zero,growth_rate(first_movers,T))).
% 1.62/1.84  -(all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)&greater_or_e_qual(T,e_quilibrium(E))->growth_rate(first_movers,T)=zero&growth_rate(efficient_producers,T)=zero|greater(growth_rate(first_movers,T),zero)&greater(zero,growth_rate(efficient_producers,T))|greater(growth_rate(efficient_producers,T),zero)&greater(zero,growth_rate(first_movers,T)))).
% 1.62/1.84  end_of_list.
% 1.62/1.84  
% 1.62/1.84  -------> usable clausifies to:
% 1.62/1.84  
% 1.62/1.84  list(usable).
% 1.62/1.84  0 [] A=A.
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|in_environment(E,T).
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|greater(number_of_organizations(E,T),zero).
% 1.62/1.84  0 [] -environment(E)| -greater_or_e_qual(T,e_quilibrium(E))| -greater(e_quilibrium(E),T).
% 1.62/1.84  0 [] -environment(E)| -in_environment(E,T)| -greater(number_of_organizations(E,T),zero)| -greater(e_quilibrium(E),T)|decreases(resources(E,T)).
% 1.62/1.84  0 [] -environment(E)| -in_environment(E,T)| -greater(number_of_organizations(E,T),zero)|greater(e_quilibrium(E),T)|constant(resources(E,T)).
% 1.62/1.84  0 [] -environment(E)| -in_environment(E,T)| -decreases(resources(E,T))| -decreases(number_of_organizations(E,T)).
% 1.62/1.84  0 [] -environment(E)| -in_environment(E,T)| -constant(resources(E,T))|constant(number_of_organizations(E,T)).
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -constant(number_of_organizations(E,T))|growth_rate(first_movers,T)=zero|greater(growth_rate(first_movers,T),zero)|greater(growth_rate(efficient_producers,T),zero).
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -constant(number_of_organizations(E,T))|growth_rate(first_movers,T)=zero|greater(growth_rate(first_movers,T),zero)|greater(zero,growth_rate(first_movers,T)).
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -constant(number_of_organizations(E,T))|growth_rate(first_movers,T)=zero|greater(zero,growth_rate(efficient_producers,T))|greater(growth_rate(efficient_producers,T),zero).
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -constant(number_of_organizations(E,T))|growth_rate(first_movers,T)=zero|greater(zero,growth_rate(efficient_producers,T))|greater(zero,growth_rate(first_movers,T)).
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -constant(number_of_organizations(E,T))|growth_rate(efficient_producers,T)=zero|greater(growth_rate(first_movers,T),zero)|greater(growth_rate(efficient_producers,T),zero).
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -constant(number_of_organizations(E,T))|growth_rate(efficient_producers,T)=zero|greater(growth_rate(first_movers,T),zero)|greater(zero,growth_rate(first_movers,T)).
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -constant(number_of_organizations(E,T))|growth_rate(efficient_producers,T)=zero|greater(zero,growth_rate(efficient_producers,T))|greater(growth_rate(efficient_producers,T),zero).
% 1.62/1.84  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -constant(number_of_organizations(E,T))|growth_rate(efficient_producers,T)=zero|greater(zero,growth_rate(efficient_producers,T))|greater(zero,growth_rate(first_movers,T)).
% 1.62/1.84  0 [] environment($c2).
% 1.62/1.84  0 [] subpopulations(first_movers,efficient_producers,$c2,$c1).
% 1.62/1.84  0 [] greater_or_e_qual($c1,e_quilibrium($c2)).
% 1.62/1.84  0 [] growth_rate(first_movers,$c1)!=zero|growth_rate(efficient_producers,$c1)!=zero.
% 1.62/1.84  0 [] -greater(growth_rate(first_movers,$c1),zero)| -greater(zero,growth_rate(efficient_producers,$c1)).
% 1.62/1.84  0 [] -greater(growth_rate(efficient_producers,$c1),zero)| -greater(zero,growth_rate(first_movers,$c1)).
% 1.62/1.84  end_of_list.
% 1.62/1.84  
% 1.62/1.84  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=6.
% 1.62/1.84  
% 1.62/1.84  This ia a non-Horn set with equality.  The strategy will be
% 1.62/1.84  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.62/1.84  deletion, with positive clauses in sos and nonpositive
% 1.62/1.84  clauses in usable.
% 1.62/1.84  
% 1.62/1.84     dependent: set(knuth_bendix).
% 1.62/1.84     dependent: set(anl_eq).
% 1.62/1.84     dependent: set(para_from).
% 1.62/1.84     dependent: set(para_into).
% 1.62/1.84     dependent: clear(para_from_right).
% 1.62/1.84     dependent: clear(para_into_right).
% 1.62/1.84     dependent: set(para_from_vars).
% 1.62/1.84     dependent: set(eq_units_both_ways).
% 1.62/1.84     dependent: set(dynamic_demod_all).
% 1.62/1.84     dependent: set(dynamic_demod).
% 1.62/1.84     dependent: set(order_eq).
% 1.62/1.84     dependent: set(back_demod).
% 1.62/1.84     dependent: set(lrpo).
% 1.62/1.84     dependent: set(hyper_res).
% 1.62/1.84     dependent: set(unit_deletion).
% 1.62/1.84     dependent: set(factor).
% 1.62/1.84  
% 1.62/1.84  ------------> process usable:
% 1.62/1.84  ** KEPT (pick-wt=10): 1 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|in_environment(A,B).
% 1.62/1.84  ** KEPT (pick-wt=12): 2 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|greater(number_of_organizations(A,B),zero).
% 1.62/1.84  ** KEPT (pick-wt=10): 3 [] -environment(A)| -greater_or_e_qual(B,e_quilibrium(A))| -greater(e_quilibrium(A),B).
% 1.62/1.84  ** KEPT (pick-wt=18): 4 [] -environment(A)| -in_environment(A,B)| -greater(number_of_organizations(A,B),zero)| -greater(e_quilibrium(A),B)|decreases(resources(A,B)).
% 1.62/1.84  ** KEPT (pick-wt=18): 5 [] -environment(A)| -in_environment(A,B)| -greater(number_of_organizations(A,B),zero)|greater(e_quilibrium(A),B)|constant(resources(A,B)).
% 1.62/1.84  ** KEPT (pick-wt=13): 6 [] -environment(A)| -in_environment(A,B)| -decreases(resources(A,B))| -decreases(number_of_organizations(A,B)).
% 1.62/1.84  ** KEPT (pick-wt=13): 7 [] -environment(A)| -in_environment(A,B)| -constant(resources(A,B))|constant(number_of_organizations(A,B)).
% 1.62/1.84  ** KEPT (pick-wt=26): 8 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(first_movers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(growth_rate(efficient_producers,B),zero).
% 1.62/1.84  ** KEPT (pick-wt=26): 9 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(first_movers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(zero,growth_rate(first_movers,B)).
% 1.62/1.84  ** KEPT (pick-wt=26): 10 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(first_movers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(growth_rate(efficient_producers,B),zero).
% 1.62/1.84  ** KEPT (pick-wt=26): 11 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(first_movers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(zero,growth_rate(first_movers,B)).
% 1.62/1.84  ** KEPT (pick-wt=26): 12 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(efficient_producers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(growth_rate(efficient_producers,B),zero).
% 1.62/1.84  ** KEPT (pick-wt=26): 13 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(efficient_producers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(zero,growth_rate(first_movers,B)).
% 1.62/1.84  ** KEPT (pick-wt=26): 14 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(efficient_producers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(growth_rate(efficient_producers,B),zero).
% 1.62/1.84  ** KEPT (pick-wt=26): 15 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -constant(number_of_organizations(A,B))|growth_rate(efficient_producers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(zero,growth_rate(first_movers,B)).
% 1.62/1.84  ** KEPT (pick-wt=10): 16 [] growth_rate(first_movers,$c1)!=zero|growth_rate(efficient_producers,$c1)!=zero.
% 1.62/1.84  ** KEPT (pick-wt=10): 17 [] -greater(growth_rate(first_movers,$c1),zero)| -greater(zero,growth_rate(efficient_producers,$c1)).
% 1.62/1.84  ** KEPT (pick-wt=10): 18 [] -greater(growth_rate(efficient_producers,$c1),zero)| -greater(zero,growth_rate(first_movers,$c1)).
% 1.62/1.84  
% 1.62/1.84  ------------> process sos:
% 1.62/1.84  ** KEPT (pick-wt=3): 19 [] A=A.
% 1.62/1.84  ** KEPT (pick-wt=2): 20 [] environment($c2).
% 1.62/1.84  ** KEPT (pick-wt=5): 21 [] subpopulations(first_movers,efficient_producers,$c2,$c1).
% 1.62/1.84  ** KEPT (pick-wt=4): 22 [] greater_or_e_qual($c1,e_quilibrium($c2)).
% 1.62/1.84    Following clause subsumed by 19 during input processing: 0 [copy,19,flip.1] A=A.
% 1.62/1.84  
% 1.62/1.84  ======= end of input processing =======
% 1.62/1.84  
% 1.62/1.84  =========== start of search ===========
% 1.62/1.84  
% 1.62/1.84  -------- PROOF -------- 
% 1.62/1.84  
% 1.62/1.84  -----> EMPTY CLAUSE at   0.01 sec ----> 89 [hyper,87,77,86] $F.
% 1.62/1.84  
% 1.62/1.84  Length of proof is 27.  Level of proof is 15.
% 1.62/1.84  
% 1.62/1.84  ---------------- PROOF ----------------
% 1.62/1.84  % SZS status Theorem
% 1.62/1.84  % SZS output start Refutation
% See solution above
% 1.62/1.84  ------------ end of proof -------------
% 1.62/1.84  
% 1.62/1.84  
% 1.62/1.84  Search stopped by max_proofs option.
% 1.62/1.84  
% 1.62/1.84  
% 1.62/1.84  Search stopped by max_proofs option.
% 1.62/1.84  
% 1.62/1.84  ============ end of search ============
% 1.62/1.84  
% 1.62/1.84  -------------- statistics -------------
% 1.62/1.84  clauses given                 34
% 1.62/1.84  clauses generated            213
% 1.62/1.84  clauses kept                  87
% 1.62/1.84  clauses forward subsumed     140
% 1.62/1.84  clauses back subsumed         39
% 1.62/1.84  Kbytes malloced              976
% 1.62/1.84  
% 1.62/1.84  ----------- times (seconds) -----------
% 1.62/1.84  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.62/1.84  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.62/1.84  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.62/1.84  
% 1.62/1.84  That finishes the proof of the theorem.
% 1.62/1.84  
% 1.62/1.84  Process 20761 finished Wed Jul 27 04:21:08 2022
% 1.62/1.84  Otter interrupted
% 1.62/1.84  PROOF FOUND
%------------------------------------------------------------------------------