TSTP Solution File: MGT023+2 by Princess---230619

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Princess---230619
% Problem  : MGT023+2 : TPTP v8.1.2. Released v2.0.0.
% Transfm  : none
% Format   : tptp
% Command  : princess -inputFormat=tptp +threads -portfolio=casc +printProof -timeoutSec=%d %s

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 09:16:15 EDT 2023

% Result   : Theorem 6.40s 1.63s
% Output   : Proof 8.80s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : MGT023+2 : TPTP v8.1.2. Released v2.0.0.
% 0.07/0.13  % Command  : princess -inputFormat=tptp +threads -portfolio=casc +printProof -timeoutSec=%d %s
% 0.13/0.34  % Computer : n007.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Mon Aug 28 06:12:42 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.19/0.61  ________       _____
% 0.19/0.62  ___  __ \_________(_)________________________________
% 0.19/0.62  __  /_/ /_  ___/_  /__  __ \  ___/  _ \_  ___/_  ___/
% 0.19/0.62  _  ____/_  /   _  / _  / / / /__ /  __/(__  )_(__  )
% 0.19/0.62  /_/     /_/    /_/  /_/ /_/\___/ \___//____/ /____/
% 0.19/0.62  
% 0.19/0.62  A Theorem Prover for First-Order Logic modulo Linear Integer Arithmetic
% 0.19/0.62  (2023-06-19)
% 0.19/0.62  
% 0.19/0.62  (c) Philipp Rümmer, 2009-2023
% 0.19/0.62  Contributors: Peter Backeman, Peter Baumgartner, Angelo Brillout, Zafer Esen,
% 0.19/0.62                Amanda Stjerna.
% 0.19/0.62  Free software under BSD-3-Clause.
% 0.19/0.62  
% 0.19/0.62  For more information, visit http://www.philipp.ruemmer.org/princess.shtml
% 0.19/0.62  
% 0.19/0.62  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.19/0.63  Running up to 7 provers in parallel.
% 0.19/0.64  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-1571432423
% 0.19/0.64  Prover 3: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1922548996
% 0.19/0.64  Prover 2: Options:  +triggersInConjecture +genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMinimalAndEmpty -realRatSaturationRounds=1 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=-1065072994
% 0.19/0.64  Prover 0: Options:  +triggersInConjecture +genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=0 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1042961893
% 0.19/0.64  Prover 4: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=1868514696
% 0.19/0.64  Prover 5: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=none +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -realRatSaturationRounds=1 -ignoreQuantifiers -constructProofs=never -generateTriggers=complete -randomSeed=1259561288
% 0.19/0.64  Prover 6: Options:  -triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=none +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximalOutermost -realRatSaturationRounds=0 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=-1399714365
% 2.26/1.05  Prover 1: Preprocessing ...
% 2.26/1.05  Prover 4: Preprocessing ...
% 2.61/1.10  Prover 2: Preprocessing ...
% 2.61/1.10  Prover 3: Preprocessing ...
% 2.61/1.10  Prover 5: Preprocessing ...
% 2.61/1.10  Prover 6: Preprocessing ...
% 2.61/1.10  Prover 0: Preprocessing ...
% 4.24/1.35  Prover 5: Constructing countermodel ...
% 4.24/1.36  Prover 3: Constructing countermodel ...
% 4.24/1.37  Prover 6: Proving ...
% 4.24/1.37  Prover 2: Proving ...
% 4.24/1.37  Prover 1: Constructing countermodel ...
% 4.75/1.42  Prover 4: Constructing countermodel ...
% 4.75/1.44  Prover 0: Proving ...
% 6.40/1.62  Prover 3: proved (976ms)
% 6.40/1.62  
% 6.40/1.63  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 6.40/1.63  
% 6.40/1.63  Prover 0: stopped
% 6.40/1.64  Prover 6: stopped
% 6.40/1.64  Prover 5: stopped
% 6.40/1.65  Prover 2: stopped
% 6.40/1.65  Prover 7: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-236303470
% 6.40/1.65  Prover 8: Options:  +triggersInConjecture +genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-200781089
% 6.40/1.65  Prover 10: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=919308125
% 6.40/1.65  Prover 11: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-1509710984
% 6.40/1.66  Prover 7: Preprocessing ...
% 6.40/1.66  Prover 13: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=complete -randomSeed=1138197443
% 6.40/1.67  Prover 8: Preprocessing ...
% 6.40/1.67  Prover 10: Preprocessing ...
% 6.88/1.69  Prover 11: Preprocessing ...
% 6.88/1.70  Prover 13: Preprocessing ...
% 6.88/1.72  Prover 10: Constructing countermodel ...
% 6.88/1.72  Prover 7: Constructing countermodel ...
% 6.88/1.75  Prover 8: Warning: ignoring some quantifiers
% 6.88/1.76  Prover 13: Constructing countermodel ...
% 6.88/1.76  Prover 8: Constructing countermodel ...
% 7.59/1.83  Prover 11: Constructing countermodel ...
% 7.94/1.88  Prover 10: Found proof (size 43)
% 7.94/1.88  Prover 10: proved (241ms)
% 7.94/1.88  Prover 1: Found proof (size 80)
% 7.94/1.88  Prover 1: proved (1246ms)
% 7.94/1.88  Prover 8: stopped
% 7.94/1.88  Prover 11: stopped
% 7.94/1.88  Prover 7: stopped
% 7.94/1.88  Prover 4: stopped
% 7.94/1.88  Prover 13: stopped
% 7.94/1.88  
% 7.94/1.88  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 7.94/1.88  
% 8.35/1.89  % SZS output start Proof for theBenchmark
% 8.35/1.89  Assumptions after simplification:
% 8.35/1.89  ---------------------------------
% 8.35/1.89  
% 8.35/1.89    (d1)
% 8.35/1.92    $i(efficient_producers) & $i(first_movers) &  ! [v0: $i] :  ! [v1: $i] :  !
% 8.35/1.92    [v2: $i] :  ! [v3: $i] : (v3 = v1 |  ~ (critical_point(v0) = v3) |  ~
% 8.35/1.92      (growth_rate(first_movers, v1) = v2) |  ~ $i(v1) |  ~ $i(v0) |  ~
% 8.35/1.92      in_environment(v0, v1) |  ~ environment(v0) |  ? [v4: $i] :  ? [v5: $i] :  ?
% 8.35/1.92      [v6: $i] :  ? [v7: $i] : ($i(v5) & ((growth_rate(efficient_producers, v5) =
% 8.35/1.92            v6 & growth_rate(first_movers, v5) = v7 & $i(v7) & $i(v6) &
% 8.35/1.92            greater(v5, v1) & subpopulations(first_movers, efficient_producers,
% 8.35/1.92              v0, v5) &  ~ greater(v6, v7)) | (growth_rate(efficient_producers,
% 8.35/1.92              v1) = v4 & $i(v4) & greater(v4, v2)))))
% 8.35/1.92  
% 8.35/1.92    (l1)
% 8.35/1.92    $i(efficient_producers) & $i(first_movers) &  ! [v0: $i] : ( ~ $i(v0) |  ~
% 8.35/1.92      stable(v0) |  ~ environment(v0) |  ? [v1: $i] : ($i(v1) & in_environment(v0,
% 8.35/1.92          v1) &  ! [v2: $i] :  ! [v3: $i] : ( ~ (growth_rate(first_movers, v2) =
% 8.35/1.92            v3) |  ~ $i(v2) |  ~ greater_or_equal(v2, v1) |  ~
% 8.35/1.92          subpopulations(first_movers, efficient_producers, v0, v2) |  ? [v4: $i]
% 8.35/1.92          : (growth_rate(efficient_producers, v2) = v4 & $i(v4) & greater(v4,
% 8.35/1.92              v3)))))
% 8.35/1.92  
% 8.35/1.92    (mp_earliest_time_growth_rate_exceeds)
% 8.35/1.92    $i(efficient_producers) & $i(first_movers) &  ! [v0: $i] :  ! [v1: $i] : ( ~
% 8.35/1.92      $i(v1) |  ~ $i(v0) |  ~ in_environment(v0, v1) |  ~ environment(v0) |  ?
% 8.35/1.92      [v2: $i] :  ? [v3: $i] :  ? [v4: $i] :  ? [v5: $i] :  ? [v6: $i] :  ? [v7:
% 8.35/1.92        $i] : ($i(v5) & $i(v2) & ((growth_rate(efficient_producers, v5) = v6 &
% 8.35/1.92            growth_rate(first_movers, v5) = v7 & $i(v7) & $i(v6) &
% 8.35/1.92            greater_or_equal(v5, v1) & subpopulations(first_movers,
% 8.35/1.92              efficient_producers, v0, v5) &  ~ greater(v6, v7)) |
% 8.35/1.92          (growth_rate(efficient_producers, v2) = v3 & growth_rate(first_movers,
% 8.35/1.92              v2) = v4 & $i(v4) & $i(v3) & in_environment(v0, v2) &  ~ greater(v3,
% 8.35/1.93              v4) &  ! [v8: $i] :  ! [v9: $i] : ( ~ (growth_rate(first_movers, v8)
% 8.35/1.93                = v9) |  ~ $i(v8) |  ~ greater(v8, v2) |  ~
% 8.35/1.93              subpopulations(first_movers, efficient_producers, v0, v8) |  ? [v10:
% 8.35/1.93                $i] : (growth_rate(efficient_producers, v8) = v10 & $i(v10) &
% 8.35/1.93                greater(v10, v9)))))))
% 8.35/1.93  
% 8.35/1.93    (prove_l5)
% 8.35/1.93     ? [v0: $i] :  ? [v1: $i] : (critical_point(v0) = v1 & $i(v1) & $i(v0) &
% 8.35/1.93      stable(v0) & environment(v0) &  ~ in_environment(v0, v1))
% 8.35/1.93  
% 8.35/1.93    (function-axioms)
% 8.35/1.93     ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 8.35/1.93      (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0)) &  ! [v0: $i] : 
% 8.35/1.93    ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (critical_point(v2) = v1) |  ~
% 8.35/1.93      (critical_point(v2) = v0))
% 8.35/1.93  
% 8.35/1.93  Those formulas are unsatisfiable:
% 8.35/1.93  ---------------------------------
% 8.35/1.93  
% 8.35/1.93  Begin of proof
% 8.35/1.93  | 
% 8.35/1.93  | ALPHA: (mp_earliest_time_growth_rate_exceeds) implies:
% 8.35/1.93  |   (1)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~
% 8.35/1.93  |          in_environment(v0, v1) |  ~ environment(v0) |  ? [v2: $i] :  ? [v3:
% 8.35/1.93  |            $i] :  ? [v4: $i] :  ? [v5: $i] :  ? [v6: $i] :  ? [v7: $i] :
% 8.35/1.93  |          ($i(v5) & $i(v2) & ((growth_rate(efficient_producers, v5) = v6 &
% 8.35/1.93  |                growth_rate(first_movers, v5) = v7 & $i(v7) & $i(v6) &
% 8.35/1.93  |                greater_or_equal(v5, v1) & subpopulations(first_movers,
% 8.35/1.93  |                  efficient_producers, v0, v5) &  ~ greater(v6, v7)) |
% 8.35/1.93  |              (growth_rate(efficient_producers, v2) = v3 &
% 8.35/1.93  |                growth_rate(first_movers, v2) = v4 & $i(v4) & $i(v3) &
% 8.35/1.93  |                in_environment(v0, v2) &  ~ greater(v3, v4) &  ! [v8: $i] :  !
% 8.35/1.93  |                [v9: $i] : ( ~ (growth_rate(first_movers, v8) = v9) |  ~ $i(v8)
% 8.35/1.93  |                  |  ~ greater(v8, v2) |  ~ subpopulations(first_movers,
% 8.35/1.93  |                    efficient_producers, v0, v8) |  ? [v10: $i] :
% 8.35/1.93  |                  (growth_rate(efficient_producers, v8) = v10 & $i(v10) &
% 8.35/1.93  |                    greater(v10, v9)))))))
% 8.35/1.93  | 
% 8.35/1.93  | ALPHA: (d1) implies:
% 8.35/1.94  |   (2)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v3 = v1 |  ~
% 8.35/1.94  |          (critical_point(v0) = v3) |  ~ (growth_rate(first_movers, v1) = v2) |
% 8.35/1.94  |           ~ $i(v1) |  ~ $i(v0) |  ~ in_environment(v0, v1) |  ~
% 8.35/1.94  |          environment(v0) |  ? [v4: $i] :  ? [v5: $i] :  ? [v6: $i] :  ? [v7:
% 8.35/1.94  |            $i] : ($i(v5) & ((growth_rate(efficient_producers, v5) = v6 &
% 8.35/1.94  |                growth_rate(first_movers, v5) = v7 & $i(v7) & $i(v6) &
% 8.35/1.94  |                greater(v5, v1) & subpopulations(first_movers,
% 8.35/1.94  |                  efficient_producers, v0, v5) &  ~ greater(v6, v7)) |
% 8.35/1.94  |              (growth_rate(efficient_producers, v1) = v4 & $i(v4) & greater(v4,
% 8.35/1.94  |                  v2)))))
% 8.35/1.94  | 
% 8.35/1.94  | ALPHA: (l1) implies:
% 8.35/1.94  |   (3)   ! [v0: $i] : ( ~ $i(v0) |  ~ stable(v0) |  ~ environment(v0) |  ? [v1:
% 8.35/1.94  |            $i] : ($i(v1) & in_environment(v0, v1) &  ! [v2: $i] :  ! [v3: $i]
% 8.35/1.94  |            : ( ~ (growth_rate(first_movers, v2) = v3) |  ~ $i(v2) |  ~
% 8.35/1.94  |              greater_or_equal(v2, v1) |  ~ subpopulations(first_movers,
% 8.35/1.94  |                efficient_producers, v0, v2) |  ? [v4: $i] :
% 8.35/1.94  |              (growth_rate(efficient_producers, v2) = v4 & $i(v4) & greater(v4,
% 8.35/1.94  |                  v3)))))
% 8.35/1.94  | 
% 8.35/1.94  | ALPHA: (function-axioms) implies:
% 8.35/1.94  |   (4)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 8.35/1.94  |          (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 8.35/1.94  | 
% 8.35/1.94  | DELTA: instantiating (prove_l5) with fresh symbols all_7_0, all_7_1 gives:
% 8.35/1.94  |   (5)  critical_point(all_7_1) = all_7_0 & $i(all_7_0) & $i(all_7_1) &
% 8.35/1.94  |        stable(all_7_1) & environment(all_7_1) &  ~ in_environment(all_7_1,
% 8.35/1.94  |          all_7_0)
% 8.35/1.94  | 
% 8.35/1.94  | ALPHA: (5) implies:
% 8.35/1.94  |   (6)   ~ in_environment(all_7_1, all_7_0)
% 8.35/1.94  |   (7)  environment(all_7_1)
% 8.35/1.94  |   (8)  stable(all_7_1)
% 8.35/1.94  |   (9)  $i(all_7_1)
% 8.35/1.94  |   (10)  critical_point(all_7_1) = all_7_0
% 8.35/1.94  | 
% 8.35/1.94  | GROUND_INST: instantiating (3) with all_7_1, simplifying with (7), (8), (9)
% 8.35/1.94  |              gives:
% 8.35/1.95  |   (11)   ? [v0: $i] : ($i(v0) & in_environment(all_7_1, v0) &  ! [v1: $i] :  !
% 8.35/1.95  |           [v2: $i] : ( ~ (growth_rate(first_movers, v1) = v2) |  ~ $i(v1) |  ~
% 8.35/1.95  |             greater_or_equal(v1, v0) |  ~ subpopulations(first_movers,
% 8.35/1.95  |               efficient_producers, all_7_1, v1) |  ? [v3: $i] :
% 8.35/1.95  |             (growth_rate(efficient_producers, v1) = v3 & $i(v3) & greater(v3,
% 8.35/1.95  |                 v2))))
% 8.35/1.95  | 
% 8.35/1.95  | DELTA: instantiating (11) with fresh symbol all_14_0 gives:
% 8.35/1.95  |   (12)  $i(all_14_0) & in_environment(all_7_1, all_14_0) &  ! [v0: $i] :  !
% 8.35/1.95  |         [v1: $i] : ( ~ (growth_rate(first_movers, v0) = v1) |  ~ $i(v0) |  ~
% 8.35/1.95  |           greater_or_equal(v0, all_14_0) |  ~ subpopulations(first_movers,
% 8.35/1.95  |             efficient_producers, all_7_1, v0) |  ? [v2: $i] :
% 8.35/1.95  |           (growth_rate(efficient_producers, v0) = v2 & $i(v2) & greater(v2,
% 8.35/1.95  |               v1)))
% 8.35/1.95  | 
% 8.35/1.95  | ALPHA: (12) implies:
% 8.35/1.95  |   (13)  in_environment(all_7_1, all_14_0)
% 8.35/1.95  |   (14)  $i(all_14_0)
% 8.35/1.95  |   (15)   ! [v0: $i] :  ! [v1: $i] : ( ~ (growth_rate(first_movers, v0) = v1) |
% 8.35/1.95  |            ~ $i(v0) |  ~ greater_or_equal(v0, all_14_0) |  ~
% 8.35/1.95  |           subpopulations(first_movers, efficient_producers, all_7_1, v0) |  ?
% 8.35/1.95  |           [v2: $i] : (growth_rate(efficient_producers, v0) = v2 & $i(v2) &
% 8.35/1.95  |             greater(v2, v1)))
% 8.35/1.95  | 
% 8.35/1.95  | GROUND_INST: instantiating (1) with all_7_1, all_14_0, simplifying with (7),
% 8.35/1.95  |              (9), (13), (14) gives:
% 8.35/1.95  |   (16)   ? [v0: $i] :  ? [v1: $i] :  ? [v2: $i] :  ? [v3: $i] :  ? [v4: $i] : 
% 8.35/1.95  |         ? [v5: $i] : ($i(v3) & $i(v0) & ((growth_rate(efficient_producers, v3)
% 8.35/1.95  |               = v4 & growth_rate(first_movers, v3) = v5 & $i(v5) & $i(v4) &
% 8.35/1.95  |               greater_or_equal(v3, all_14_0) & subpopulations(first_movers,
% 8.35/1.95  |                 efficient_producers, all_7_1, v3) &  ~ greater(v4, v5)) |
% 8.35/1.95  |             (growth_rate(efficient_producers, v0) = v1 &
% 8.35/1.95  |               growth_rate(first_movers, v0) = v2 & $i(v2) & $i(v1) &
% 8.35/1.95  |               in_environment(all_7_1, v0) &  ~ greater(v1, v2) &  ! [v6: $i] :
% 8.35/1.95  |                ! [v7: $i] : ( ~ (growth_rate(first_movers, v6) = v7) |  ~
% 8.35/1.95  |                 $i(v6) |  ~ greater(v6, v0) |  ~ subpopulations(first_movers,
% 8.35/1.95  |                   efficient_producers, all_7_1, v6) |  ? [v8: $i] :
% 8.35/1.95  |                 (growth_rate(efficient_producers, v6) = v8 & $i(v8) &
% 8.35/1.95  |                   greater(v8, v7))))))
% 8.35/1.95  | 
% 8.35/1.95  | DELTA: instantiating (16) with fresh symbols all_22_0, all_22_1, all_22_2,
% 8.35/1.95  |        all_22_3, all_22_4, all_22_5 gives:
% 8.35/1.95  |   (17)  $i(all_22_2) & $i(all_22_5) & ((growth_rate(efficient_producers,
% 8.35/1.95  |               all_22_2) = all_22_1 & growth_rate(first_movers, all_22_2) =
% 8.35/1.95  |             all_22_0 & $i(all_22_0) & $i(all_22_1) &
% 8.35/1.95  |             greater_or_equal(all_22_2, all_14_0) &
% 8.35/1.95  |             subpopulations(first_movers, efficient_producers, all_7_1,
% 8.35/1.95  |               all_22_2) &  ~ greater(all_22_1, all_22_0)) |
% 8.35/1.95  |           (growth_rate(efficient_producers, all_22_5) = all_22_4 &
% 8.35/1.95  |             growth_rate(first_movers, all_22_5) = all_22_3 & $i(all_22_3) &
% 8.35/1.95  |             $i(all_22_4) & in_environment(all_7_1, all_22_5) &  ~
% 8.35/1.95  |             greater(all_22_4, all_22_3) &  ! [v0: $i] :  ! [v1: $i] : ( ~
% 8.35/1.95  |               (growth_rate(first_movers, v0) = v1) |  ~ $i(v0) |  ~
% 8.35/1.95  |               greater(v0, all_22_5) |  ~ subpopulations(first_movers,
% 8.35/1.95  |                 efficient_producers, all_7_1, v0) |  ? [v2: $i] :
% 8.35/1.95  |               (growth_rate(efficient_producers, v0) = v2 & $i(v2) &
% 8.35/1.95  |                 greater(v2, v1)))))
% 8.35/1.95  | 
% 8.35/1.95  | ALPHA: (17) implies:
% 8.35/1.95  |   (18)  $i(all_22_5)
% 8.35/1.95  |   (19)  $i(all_22_2)
% 8.35/1.96  |   (20)  (growth_rate(efficient_producers, all_22_2) = all_22_1 &
% 8.35/1.96  |           growth_rate(first_movers, all_22_2) = all_22_0 & $i(all_22_0) &
% 8.35/1.96  |           $i(all_22_1) & greater_or_equal(all_22_2, all_14_0) &
% 8.35/1.96  |           subpopulations(first_movers, efficient_producers, all_7_1, all_22_2)
% 8.35/1.96  |           &  ~ greater(all_22_1, all_22_0)) |
% 8.35/1.96  |         (growth_rate(efficient_producers, all_22_5) = all_22_4 &
% 8.35/1.96  |           growth_rate(first_movers, all_22_5) = all_22_3 & $i(all_22_3) &
% 8.35/1.96  |           $i(all_22_4) & in_environment(all_7_1, all_22_5) &  ~
% 8.35/1.96  |           greater(all_22_4, all_22_3) &  ! [v0: $i] :  ! [v1: $i] : ( ~
% 8.35/1.96  |             (growth_rate(first_movers, v0) = v1) |  ~ $i(v0) |  ~ greater(v0,
% 8.35/1.96  |               all_22_5) |  ~ subpopulations(first_movers, efficient_producers,
% 8.35/1.96  |               all_7_1, v0) |  ? [v2: $i] : (growth_rate(efficient_producers,
% 8.35/1.96  |                 v0) = v2 & $i(v2) & greater(v2, v1))))
% 8.35/1.96  | 
% 8.35/1.96  | BETA: splitting (20) gives:
% 8.35/1.96  | 
% 8.35/1.96  | Case 1:
% 8.35/1.96  | | 
% 8.35/1.96  | |   (21)  growth_rate(efficient_producers, all_22_2) = all_22_1 &
% 8.35/1.96  | |         growth_rate(first_movers, all_22_2) = all_22_0 & $i(all_22_0) &
% 8.35/1.96  | |         $i(all_22_1) & greater_or_equal(all_22_2, all_14_0) &
% 8.35/1.96  | |         subpopulations(first_movers, efficient_producers, all_7_1, all_22_2)
% 8.35/1.96  | |         &  ~ greater(all_22_1, all_22_0)
% 8.35/1.96  | | 
% 8.35/1.96  | | ALPHA: (21) implies:
% 8.35/1.96  | |   (22)   ~ greater(all_22_1, all_22_0)
% 8.35/1.96  | |   (23)  subpopulations(first_movers, efficient_producers, all_7_1, all_22_2)
% 8.35/1.96  | |   (24)  greater_or_equal(all_22_2, all_14_0)
% 8.35/1.96  | |   (25)  growth_rate(first_movers, all_22_2) = all_22_0
% 8.35/1.96  | |   (26)  growth_rate(efficient_producers, all_22_2) = all_22_1
% 8.35/1.96  | | 
% 8.35/1.96  | | GROUND_INST: instantiating (15) with all_22_2, all_22_0, simplifying with
% 8.35/1.96  | |              (19), (23), (24), (25) gives:
% 8.35/1.96  | |   (27)   ? [v0: $i] : (growth_rate(efficient_producers, all_22_2) = v0 &
% 8.35/1.96  | |           $i(v0) & greater(v0, all_22_0))
% 8.35/1.96  | | 
% 8.35/1.96  | | DELTA: instantiating (27) with fresh symbol all_36_0 gives:
% 8.35/1.96  | |   (28)  growth_rate(efficient_producers, all_22_2) = all_36_0 & $i(all_36_0)
% 8.35/1.96  | |         & greater(all_36_0, all_22_0)
% 8.35/1.96  | | 
% 8.35/1.96  | | ALPHA: (28) implies:
% 8.35/1.96  | |   (29)  greater(all_36_0, all_22_0)
% 8.35/1.96  | |   (30)  growth_rate(efficient_producers, all_22_2) = all_36_0
% 8.35/1.96  | | 
% 8.35/1.96  | | GROUND_INST: instantiating (4) with all_22_1, all_36_0, all_22_2,
% 8.35/1.96  | |              efficient_producers, simplifying with (26), (30) gives:
% 8.35/1.96  | |   (31)  all_36_0 = all_22_1
% 8.35/1.96  | | 
% 8.35/1.96  | | REDUCE: (29), (31) imply:
% 8.35/1.96  | |   (32)  greater(all_22_1, all_22_0)
% 8.35/1.96  | | 
% 8.35/1.96  | | PRED_UNIFY: (22), (32) imply:
% 8.35/1.96  | |   (33)  $false
% 8.35/1.96  | | 
% 8.35/1.96  | | CLOSE: (33) is inconsistent.
% 8.35/1.96  | | 
% 8.35/1.96  | Case 2:
% 8.35/1.96  | | 
% 8.35/1.96  | |   (34)  growth_rate(efficient_producers, all_22_5) = all_22_4 &
% 8.35/1.96  | |         growth_rate(first_movers, all_22_5) = all_22_3 & $i(all_22_3) &
% 8.35/1.96  | |         $i(all_22_4) & in_environment(all_7_1, all_22_5) &  ~
% 8.35/1.96  | |         greater(all_22_4, all_22_3) &  ! [v0: $i] :  ! [v1: $i] : ( ~
% 8.35/1.96  | |           (growth_rate(first_movers, v0) = v1) |  ~ $i(v0) |  ~ greater(v0,
% 8.35/1.96  | |             all_22_5) |  ~ subpopulations(first_movers, efficient_producers,
% 8.35/1.96  | |             all_7_1, v0) |  ? [v2: $i] : (growth_rate(efficient_producers,
% 8.35/1.96  | |               v0) = v2 & $i(v2) & greater(v2, v1)))
% 8.35/1.96  | | 
% 8.35/1.96  | | ALPHA: (34) implies:
% 8.35/1.96  | |   (35)   ~ greater(all_22_4, all_22_3)
% 8.35/1.96  | |   (36)  in_environment(all_7_1, all_22_5)
% 8.35/1.96  | |   (37)  growth_rate(first_movers, all_22_5) = all_22_3
% 8.35/1.96  | |   (38)  growth_rate(efficient_producers, all_22_5) = all_22_4
% 8.35/1.97  | |   (39)   ! [v0: $i] :  ! [v1: $i] : ( ~ (growth_rate(first_movers, v0) = v1)
% 8.35/1.97  | |           |  ~ $i(v0) |  ~ greater(v0, all_22_5) |  ~
% 8.35/1.97  | |           subpopulations(first_movers, efficient_producers, all_7_1, v0) | 
% 8.35/1.97  | |           ? [v2: $i] : (growth_rate(efficient_producers, v0) = v2 & $i(v2) &
% 8.35/1.97  | |             greater(v2, v1)))
% 8.35/1.97  | | 
% 8.35/1.97  | | GROUND_INST: instantiating (2) with all_7_1, all_22_5, all_22_3, all_7_0,
% 8.35/1.97  | |              simplifying with (7), (9), (10), (18), (36), (37) gives:
% 8.35/1.97  | |   (40)  all_22_5 = all_7_0 |  ? [v0: $i] :  ? [v1: $i] :  ? [v2: $i] :  ?
% 8.35/1.97  | |         [v3: $i] : ($i(v1) & ((growth_rate(efficient_producers, v1) = v2 &
% 8.35/1.97  | |               growth_rate(first_movers, v1) = v3 & $i(v3) & $i(v2) &
% 8.35/1.97  | |               greater(v1, all_22_5) & subpopulations(first_movers,
% 8.35/1.97  | |                 efficient_producers, all_7_1, v1) &  ~ greater(v2, v3)) |
% 8.35/1.97  | |             (growth_rate(efficient_producers, all_22_5) = v0 & $i(v0) &
% 8.35/1.97  | |               greater(v0, all_22_3))))
% 8.35/1.97  | | 
% 8.35/1.97  | | BETA: splitting (40) gives:
% 8.35/1.97  | | 
% 8.35/1.97  | | Case 1:
% 8.35/1.97  | | | 
% 8.35/1.97  | | |   (41)  all_22_5 = all_7_0
% 8.35/1.97  | | | 
% 8.35/1.97  | | | REDUCE: (36), (41) imply:
% 8.35/1.97  | | |   (42)  in_environment(all_7_1, all_7_0)
% 8.35/1.97  | | | 
% 8.35/1.97  | | | PRED_UNIFY: (6), (42) imply:
% 8.35/1.97  | | |   (43)  $false
% 8.35/1.97  | | | 
% 8.35/1.97  | | | CLOSE: (43) is inconsistent.
% 8.35/1.97  | | | 
% 8.35/1.97  | | Case 2:
% 8.35/1.97  | | | 
% 8.35/1.97  | | |   (44)   ? [v0: $i] :  ? [v1: $i] :  ? [v2: $i] :  ? [v3: $i] : ($i(v1) &
% 8.35/1.97  | | |           ((growth_rate(efficient_producers, v1) = v2 &
% 8.35/1.97  | | |               growth_rate(first_movers, v1) = v3 & $i(v3) & $i(v2) &
% 8.35/1.97  | | |               greater(v1, all_22_5) & subpopulations(first_movers,
% 8.35/1.97  | | |                 efficient_producers, all_7_1, v1) &  ~ greater(v2, v3)) |
% 8.35/1.97  | | |             (growth_rate(efficient_producers, all_22_5) = v0 & $i(v0) &
% 8.35/1.97  | | |               greater(v0, all_22_3))))
% 8.35/1.97  | | | 
% 8.35/1.97  | | | DELTA: instantiating (44) with fresh symbols all_46_0, all_46_1, all_46_2,
% 8.35/1.97  | | |        all_46_3 gives:
% 8.35/1.97  | | |   (45)  $i(all_46_2) & ((growth_rate(efficient_producers, all_46_2) =
% 8.35/1.97  | | |             all_46_1 & growth_rate(first_movers, all_46_2) = all_46_0 &
% 8.35/1.97  | | |             $i(all_46_0) & $i(all_46_1) & greater(all_46_2, all_22_5) &
% 8.35/1.97  | | |             subpopulations(first_movers, efficient_producers, all_7_1,
% 8.35/1.97  | | |               all_46_2) &  ~ greater(all_46_1, all_46_0)) |
% 8.35/1.97  | | |           (growth_rate(efficient_producers, all_22_5) = all_46_3 &
% 8.35/1.97  | | |             $i(all_46_3) & greater(all_46_3, all_22_3)))
% 8.35/1.97  | | | 
% 8.35/1.97  | | | ALPHA: (45) implies:
% 8.35/1.97  | | |   (46)  $i(all_46_2)
% 8.35/1.97  | | |   (47)  (growth_rate(efficient_producers, all_46_2) = all_46_1 &
% 8.35/1.97  | | |           growth_rate(first_movers, all_46_2) = all_46_0 & $i(all_46_0) &
% 8.35/1.97  | | |           $i(all_46_1) & greater(all_46_2, all_22_5) &
% 8.35/1.97  | | |           subpopulations(first_movers, efficient_producers, all_7_1,
% 8.35/1.97  | | |             all_46_2) &  ~ greater(all_46_1, all_46_0)) |
% 8.35/1.97  | | |         (growth_rate(efficient_producers, all_22_5) = all_46_3 &
% 8.35/1.97  | | |           $i(all_46_3) & greater(all_46_3, all_22_3))
% 8.35/1.97  | | | 
% 8.35/1.97  | | | BETA: splitting (47) gives:
% 8.35/1.97  | | | 
% 8.35/1.97  | | | Case 1:
% 8.35/1.97  | | | | 
% 8.35/1.97  | | | |   (48)  growth_rate(efficient_producers, all_46_2) = all_46_1 &
% 8.35/1.97  | | | |         growth_rate(first_movers, all_46_2) = all_46_0 & $i(all_46_0) &
% 8.35/1.97  | | | |         $i(all_46_1) & greater(all_46_2, all_22_5) &
% 8.35/1.97  | | | |         subpopulations(first_movers, efficient_producers, all_7_1,
% 8.35/1.97  | | | |           all_46_2) &  ~ greater(all_46_1, all_46_0)
% 8.35/1.97  | | | | 
% 8.35/1.97  | | | | ALPHA: (48) implies:
% 8.35/1.97  | | | |   (49)   ~ greater(all_46_1, all_46_0)
% 8.35/1.97  | | | |   (50)  subpopulations(first_movers, efficient_producers, all_7_1,
% 8.35/1.97  | | | |           all_46_2)
% 8.35/1.97  | | | |   (51)  greater(all_46_2, all_22_5)
% 8.35/1.97  | | | |   (52)  growth_rate(first_movers, all_46_2) = all_46_0
% 8.35/1.97  | | | |   (53)  growth_rate(efficient_producers, all_46_2) = all_46_1
% 8.35/1.97  | | | | 
% 8.35/1.97  | | | | GROUND_INST: instantiating (39) with all_46_2, all_46_0, simplifying
% 8.35/1.97  | | | |              with (46), (50), (51), (52) gives:
% 8.35/1.97  | | | |   (54)   ? [v0: $i] : (growth_rate(efficient_producers, all_46_2) = v0 &
% 8.35/1.97  | | | |           $i(v0) & greater(v0, all_46_0))
% 8.35/1.97  | | | | 
% 8.35/1.97  | | | | DELTA: instantiating (54) with fresh symbol all_57_0 gives:
% 8.35/1.98  | | | |   (55)  growth_rate(efficient_producers, all_46_2) = all_57_0 &
% 8.35/1.98  | | | |         $i(all_57_0) & greater(all_57_0, all_46_0)
% 8.35/1.98  | | | | 
% 8.35/1.98  | | | | ALPHA: (55) implies:
% 8.35/1.98  | | | |   (56)  greater(all_57_0, all_46_0)
% 8.35/1.98  | | | |   (57)  growth_rate(efficient_producers, all_46_2) = all_57_0
% 8.35/1.98  | | | | 
% 8.35/1.98  | | | | GROUND_INST: instantiating (4) with all_46_1, all_57_0, all_46_2,
% 8.35/1.98  | | | |              efficient_producers, simplifying with (53), (57) gives:
% 8.35/1.98  | | | |   (58)  all_57_0 = all_46_1
% 8.35/1.98  | | | | 
% 8.35/1.98  | | | | REDUCE: (56), (58) imply:
% 8.35/1.98  | | | |   (59)  greater(all_46_1, all_46_0)
% 8.35/1.98  | | | | 
% 8.35/1.98  | | | | PRED_UNIFY: (49), (59) imply:
% 8.35/1.98  | | | |   (60)  $false
% 8.35/1.98  | | | | 
% 8.80/1.98  | | | | CLOSE: (60) is inconsistent.
% 8.80/1.98  | | | | 
% 8.80/1.98  | | | Case 2:
% 8.80/1.98  | | | | 
% 8.80/1.98  | | | |   (61)  growth_rate(efficient_producers, all_22_5) = all_46_3 &
% 8.80/1.98  | | | |         $i(all_46_3) & greater(all_46_3, all_22_3)
% 8.80/1.98  | | | | 
% 8.80/1.98  | | | | ALPHA: (61) implies:
% 8.80/1.98  | | | |   (62)  greater(all_46_3, all_22_3)
% 8.80/1.98  | | | |   (63)  growth_rate(efficient_producers, all_22_5) = all_46_3
% 8.80/1.98  | | | | 
% 8.80/1.98  | | | | GROUND_INST: instantiating (4) with all_22_4, all_46_3, all_22_5,
% 8.80/1.98  | | | |              efficient_producers, simplifying with (38), (63) gives:
% 8.80/1.98  | | | |   (64)  all_46_3 = all_22_4
% 8.80/1.98  | | | | 
% 8.80/1.98  | | | | REDUCE: (62), (64) imply:
% 8.80/1.98  | | | |   (65)  greater(all_22_4, all_22_3)
% 8.80/1.98  | | | | 
% 8.80/1.98  | | | | PRED_UNIFY: (35), (65) imply:
% 8.80/1.98  | | | |   (66)  $false
% 8.80/1.98  | | | | 
% 8.80/1.98  | | | | CLOSE: (66) is inconsistent.
% 8.80/1.98  | | | | 
% 8.80/1.98  | | | End of split
% 8.80/1.98  | | | 
% 8.80/1.98  | | End of split
% 8.80/1.98  | | 
% 8.80/1.98  | End of split
% 8.80/1.98  | 
% 8.80/1.98  End of proof
% 8.80/1.98  % SZS output end Proof for theBenchmark
% 8.80/1.98  
% 8.80/1.98  1363ms
%------------------------------------------------------------------------------