TSTP Solution File: MGT023+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : MGT023+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:06:02 EDT 2022

% Result   : Theorem 1.80s 2.02s
% Output   : Refutation 1.80s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :    9
% Syntax   : Number of clauses     :   21 (  10 unt;   8 nHn;  21 RR)
%            Number of literals    :   48 (   9 equ;  18 neg)
%            Maximal clause size   :    5 (   2 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    7 (   5 usr;   1 prp; 0-4 aty)
%            Number of functors    :    7 (   7 usr;   3 con; 0-2 aty)
%            Number of variables   :   10 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ environment(A)
    | greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B))
    | ~ in_environment(A,B)
    | subpopulations(first_movers,efficient_producers,A,dollar_f1(A,B))
    | B = critical_point(A) ),
    file('MGT023+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( ~ environment(A)
    | greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B))
    | ~ in_environment(A,B)
    | greater(dollar_f1(A,B),B)
    | B = critical_point(A) ),
    file('MGT023+1.p',unknown),
    [] ).

cnf(3,axiom,
    ( ~ environment(A)
    | greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B))
    | ~ in_environment(A,B)
    | ~ greater(growth_rate(efficient_producers,dollar_f1(A,B)),growth_rate(first_movers,dollar_f1(A,B)))
    | B = critical_point(A) ),
    file('MGT023+1.p',unknown),
    [] ).

cnf(4,axiom,
    ( ~ environment(A)
    | ~ stable(A)
    | in_environment(A,dollar_f2(A)) ),
    file('MGT023+1.p',unknown),
    [] ).

cnf(5,axiom,
    ( ~ environment(A)
    | ~ stable(A)
    | ~ greater(growth_rate(efficient_producers,dollar_f2(A)),growth_rate(first_movers,dollar_f2(A))) ),
    file('MGT023+1.p',unknown),
    [] ).

cnf(6,axiom,
    ( ~ environment(A)
    | ~ stable(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ greater(B,dollar_f2(A))
    | greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B)) ),
    file('MGT023+1.p',unknown),
    [] ).

cnf(7,axiom,
    ~ in_environment(dollar_c1,critical_point(dollar_c1)),
    file('MGT023+1.p',unknown),
    [] ).

cnf(9,axiom,
    environment(dollar_c1),
    file('MGT023+1.p',unknown),
    [] ).

cnf(10,axiom,
    stable(dollar_c1),
    file('MGT023+1.p',unknown),
    [] ).

cnf(14,plain,
    in_environment(dollar_c1,dollar_f2(dollar_c1)),
    inference(hyper,[status(thm)],[10,4,9]),
    [iquote('hyper,10,4,9')] ).

cnf(18,plain,
    ( greater(growth_rate(efficient_producers,dollar_f2(dollar_c1)),growth_rate(first_movers,dollar_f2(dollar_c1)))
    | greater(dollar_f1(dollar_c1,dollar_f2(dollar_c1)),dollar_f2(dollar_c1))
    | critical_point(dollar_c1) = dollar_f2(dollar_c1) ),
    inference(flip,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[14,2,9])]),
    [iquote('hyper,14,2,9,flip.3')] ).

cnf(19,plain,
    ( greater(growth_rate(efficient_producers,dollar_f2(dollar_c1)),growth_rate(first_movers,dollar_f2(dollar_c1)))
    | subpopulations(first_movers,efficient_producers,dollar_c1,dollar_f1(dollar_c1,dollar_f2(dollar_c1)))
    | critical_point(dollar_c1) = dollar_f2(dollar_c1) ),
    inference(flip,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[14,1,9])]),
    [iquote('hyper,14,1,9,flip.3')] ).

cnf(185,plain,
    ( greater(dollar_f1(dollar_c1,dollar_f2(dollar_c1)),dollar_f2(dollar_c1))
    | critical_point(dollar_c1) = dollar_f2(dollar_c1) ),
    inference(hyper,[status(thm)],[18,5,9,10]),
    [iquote('hyper,18,5,9,10')] ).

cnf(213,plain,
    greater(dollar_f1(dollar_c1,dollar_f2(dollar_c1)),dollar_f2(dollar_c1)),
    inference(unit_del,[status(thm)],[inference(para_from,[status(thm),theory(equality)],[185,7]),14]),
    [iquote('para_from,185.2.1,7.1.2,unit_del,14')] ).

cnf(334,plain,
    ( subpopulations(first_movers,efficient_producers,dollar_c1,dollar_f1(dollar_c1,dollar_f2(dollar_c1)))
    | critical_point(dollar_c1) = dollar_f2(dollar_c1) ),
    inference(hyper,[status(thm)],[19,5,9,10]),
    [iquote('hyper,19,5,9,10')] ).

cnf(367,plain,
    subpopulations(first_movers,efficient_producers,dollar_c1,dollar_f1(dollar_c1,dollar_f2(dollar_c1))),
    inference(unit_del,[status(thm)],[inference(para_from,[status(thm),theory(equality)],[334,7]),14]),
    [iquote('para_from,334.2.1,7.1.2,unit_del,14')] ).

cnf(368,plain,
    greater(growth_rate(efficient_producers,dollar_f1(dollar_c1,dollar_f2(dollar_c1))),growth_rate(first_movers,dollar_f1(dollar_c1,dollar_f2(dollar_c1)))),
    inference(hyper,[status(thm)],[367,6,9,10,213]),
    [iquote('hyper,367,6,9,10,213')] ).

cnf(459,plain,
    ( greater(growth_rate(efficient_producers,dollar_f2(dollar_c1)),growth_rate(first_movers,dollar_f2(dollar_c1)))
    | critical_point(dollar_c1) = dollar_f2(dollar_c1) ),
    inference(flip,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[368,3,9,14])]),
    [iquote('hyper,368,3,9,14,flip.2')] ).

cnf(491,plain,
    critical_point(dollar_c1) = dollar_f2(dollar_c1),
    inference(hyper,[status(thm)],[459,5,9,10]),
    [iquote('hyper,459,5,9,10')] ).

cnf(492,plain,
    ~ in_environment(dollar_c1,dollar_f2(dollar_c1)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[7]),491]),
    [iquote('back_demod,7,demod,491')] ).

cnf(493,plain,
    $false,
    inference(binary,[status(thm)],[492,14]),
    [iquote('binary,492.1,14.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : MGT023+1 : TPTP v8.1.0. Released v2.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.13/0.34  % Computer : n012.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Jul 27 04:00:50 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 1.69/1.89  ----- Otter 3.3f, August 2004 -----
% 1.69/1.89  The process was started by sandbox2 on n012.cluster.edu,
% 1.69/1.89  Wed Jul 27 04:00:50 2022
% 1.69/1.89  The command was "./otter".  The process ID is 25776.
% 1.69/1.89  
% 1.69/1.89  set(prolog_style_variables).
% 1.69/1.89  set(auto).
% 1.69/1.89     dependent: set(auto1).
% 1.69/1.89     dependent: set(process_input).
% 1.69/1.89     dependent: clear(print_kept).
% 1.69/1.89     dependent: clear(print_new_demod).
% 1.69/1.89     dependent: clear(print_back_demod).
% 1.69/1.89     dependent: clear(print_back_sub).
% 1.69/1.89     dependent: set(control_memory).
% 1.69/1.89     dependent: assign(max_mem, 12000).
% 1.69/1.89     dependent: assign(pick_given_ratio, 4).
% 1.69/1.89     dependent: assign(stats_level, 1).
% 1.69/1.89     dependent: assign(max_seconds, 10800).
% 1.69/1.89  clear(print_given).
% 1.69/1.89  
% 1.69/1.89  formula_list(usable).
% 1.69/1.89  all A (A=A).
% 1.69/1.89  all E To (environment(E)& -greater(growth_rate(efficient_producers,To),growth_rate(first_movers,To))&in_environment(E,To)& (all T (subpopulations(first_movers,efficient_producers,E,T)&greater(T,To)->greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T))))->To=critical_point(E)).
% 1.69/1.89  all E (environment(E)&stable(E)-> (exists To (in_environment(E,To)& -greater(growth_rate(efficient_producers,To),growth_rate(first_movers,To))& (all T (subpopulations(first_movers,efficient_producers,E,T)&greater(T,To)->greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T))))))).
% 1.69/1.89  -(all E (environment(E)&stable(E)->in_environment(E,critical_point(E)))).
% 1.69/1.89  end_of_list.
% 1.69/1.89  
% 1.69/1.89  -------> usable clausifies to:
% 1.69/1.89  
% 1.69/1.89  list(usable).
% 1.69/1.89  0 [] A=A.
% 1.69/1.89  0 [] -environment(E)|greater(growth_rate(efficient_producers,To),growth_rate(first_movers,To))| -in_environment(E,To)|subpopulations(first_movers,efficient_producers,E,$f1(E,To))|To=critical_point(E).
% 1.69/1.89  0 [] -environment(E)|greater(growth_rate(efficient_producers,To),growth_rate(first_movers,To))| -in_environment(E,To)|greater($f1(E,To),To)|To=critical_point(E).
% 1.69/1.89  0 [] -environment(E)|greater(growth_rate(efficient_producers,To),growth_rate(first_movers,To))| -in_environment(E,To)| -greater(growth_rate(efficient_producers,$f1(E,To)),growth_rate(first_movers,$f1(E,To)))|To=critical_point(E).
% 1.69/1.89  0 [] -environment(E)| -stable(E)|in_environment(E,$f2(E)).
% 1.69/1.89  0 [] -environment(E)| -stable(E)| -greater(growth_rate(efficient_producers,$f2(E)),growth_rate(first_movers,$f2(E))).
% 1.69/1.89  0 [] -environment(E)| -stable(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater(T,$f2(E))|greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)).
% 1.69/1.89  0 [] environment($c1).
% 1.69/1.89  0 [] stable($c1).
% 1.69/1.89  0 [] -in_environment($c1,critical_point($c1)).
% 1.69/1.89  end_of_list.
% 1.69/1.89  
% 1.69/1.89  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=5.
% 1.69/1.89  
% 1.69/1.89  This ia a non-Horn set with equality.  The strategy will be
% 1.69/1.89  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.69/1.89  deletion, with positive clauses in sos and nonpositive
% 1.69/1.89  clauses in usable.
% 1.69/1.89  
% 1.69/1.89     dependent: set(knuth_bendix).
% 1.69/1.89     dependent: set(anl_eq).
% 1.69/1.89     dependent: set(para_from).
% 1.69/1.89     dependent: set(para_into).
% 1.69/1.89     dependent: clear(para_from_right).
% 1.69/1.89     dependent: clear(para_into_right).
% 1.69/1.89     dependent: set(para_from_vars).
% 1.69/1.89     dependent: set(eq_units_both_ways).
% 1.69/1.89     dependent: set(dynamic_demod_all).
% 1.69/1.89     dependent: set(dynamic_demod).
% 1.69/1.89     dependent: set(order_eq).
% 1.69/1.89     dependent: set(back_demod).
% 1.69/1.89     dependent: set(lrpo).
% 1.69/1.89     dependent: set(hyper_res).
% 1.69/1.89     dependent: set(unit_deletion).
% 1.69/1.89     dependent: set(factor).
% 1.69/1.89  
% 1.69/1.89  ------------> process usable:
% 1.69/1.89  ** KEPT (pick-wt=23): 1 [] -environment(A)|greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B))| -in_environment(A,B)|subpopulations(first_movers,efficient_producers,A,$f1(A,B))|B=critical_point(A).
% 1.69/1.89  ** KEPT (pick-wt=21): 2 [] -environment(A)|greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B))| -in_environment(A,B)|greater($f1(A,B),B)|B=critical_point(A).
% 1.69/1.89  ** KEPT (pick-wt=27): 3 [] -environment(A)|greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B))| -in_environment(A,B)| -greater(growth_rate(efficient_producers,$f1(A,B)),growth_rate(first_movers,$f1(A,B)))|B=critical_point(A).
% 1.69/1.89  ** KEPT (pick-wt=8): 4 [] -environment(A)| -stable(A)|in_environment(A,$f2(A)).
% 1.69/1.89  ** KEPT (pick-wt=13): 5 [] -environment(A)| -stable(A)| -greater(growth_rate(efficient_producers,$f2(A)),growth_rate(first_movers,$f2(A))).
% 1.80/2.02  ** KEPT (pick-wt=20): 6 [] -environment(A)| -stable(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater(B,$f2(A))|greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B)).
% 1.80/2.02  ** KEPT (pick-wt=4): 7 [] -in_environment($c1,critical_point($c1)).
% 1.80/2.02  
% 1.80/2.02  ------------> process sos:
% 1.80/2.02  ** KEPT (pick-wt=3): 8 [] A=A.
% 1.80/2.02  ** KEPT (pick-wt=2): 9 [] environment($c1).
% 1.80/2.02  ** KEPT (pick-wt=2): 10 [] stable($c1).
% 1.80/2.02    Following clause subsumed by 8 during input processing: 0 [copy,8,flip.1] A=A.
% 1.80/2.02  
% 1.80/2.02  ======= end of input processing =======
% 1.80/2.02  
% 1.80/2.02  =========== start of search ===========
% 1.80/2.02  
% 1.80/2.02  -------- PROOF -------- 
% 1.80/2.02  
% 1.80/2.02  ----> UNIT CONFLICT at   0.13 sec ----> 493 [binary,492.1,14.1] $F.
% 1.80/2.02  
% 1.80/2.02  Length of proof is 11.  Level of proof is 8.
% 1.80/2.02  
% 1.80/2.02  ---------------- PROOF ----------------
% 1.80/2.02  % SZS status Theorem
% 1.80/2.02  % SZS output start Refutation
% See solution above
% 1.80/2.02  ------------ end of proof -------------
% 1.80/2.02  
% 1.80/2.02  
% 1.80/2.02  Search stopped by max_proofs option.
% 1.80/2.02  
% 1.80/2.02  
% 1.80/2.02  Search stopped by max_proofs option.
% 1.80/2.02  
% 1.80/2.02  ============ end of search ============
% 1.80/2.02  
% 1.80/2.02  -------------- statistics -------------
% 1.80/2.02  clauses given                 18
% 1.80/2.02  clauses generated            631
% 1.80/2.02  clauses kept                 491
% 1.80/2.02  clauses forward subsumed     153
% 1.80/2.02  clauses back subsumed         66
% 1.80/2.02  Kbytes malloced             1953
% 1.80/2.02  
% 1.80/2.02  ----------- times (seconds) -----------
% 1.80/2.02  user CPU time          0.13          (0 hr, 0 min, 0 sec)
% 1.80/2.02  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.80/2.02  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.80/2.02  
% 1.80/2.02  That finishes the proof of the theorem.
% 1.80/2.02  
% 1.80/2.02  Process 25776 finished Wed Jul 27 04:00:52 2022
% 1.80/2.02  Otter interrupted
% 1.80/2.02  PROOF FOUND
%------------------------------------------------------------------------------