TSTP Solution File: MGT022-2 by CARINE---0.734

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CARINE---0.734
% Problem  : MGT022-2 : TPTP v5.0.0. Released v2.4.0.
% Transfm  : add_equality
% Format   : carine
% Command  : carine %s t=%d xo=off uct=32000

% Computer : art01.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Nov 28 01:54:28 EST 2010

% Result   : Unsatisfiable 120.98s
% Output   : Refutation 120.98s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Command entered:
% /home/graph/tptp/Systems/CARINE---0.734/carine /tmp/SystemOnTPTP23764/MGT/MGT022-2+noeq.car t=300 xo=off uct=32000
% CARINE version 0.734 (Dec 2003)
% Initializing tables ... done.
% Parsing .......... done.
% Calculating time slices ... done.
% Building Lookup Tables ... done.
% Looking for a proof at depth = 1 ...
% 	t = 1 secs [nr = 4] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 2 ...
% 	t = 1 secs [nr = 16] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 3 ...
% 	t = 1 secs [nr = 44] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 4 ...
% 	t = 1 secs [nr = 104] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 5 ...
% 	t = 1 secs [nr = 228] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 6 ...
% 	t = 1 secs [nr = 480] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 7 ...
% 	t = 1 secs [nr = 988] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 8 ...
% 	t = 1 secs [nr = 2008] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 9 ...
% 	t = 1 secs [nr = 4052] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 10 ...
% 	t = 1 secs [nr = 8144] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 11 ...
% 	t = 1 secs [nr = 16332] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 12 ...
% 	t = 1 secs [nr = 32712] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 13 ...
% 	t = 1 secs [nr = 65476] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 14 ...
% 	t = 1 secs [nr = 131008] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 15 ...
% 	t = 1 secs [nr = 262076] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 16 ...
% 	t = 1 secs [nr = 524216] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 17 ...
% 	t = 2 secs [nr = 1048500] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 18 ...
% 	t = 4 secs [nr = 2097072] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 19 ...
% 	t = 8 secs [nr = 4194220] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 20 ...
% 	t = 15 secs [nr = 8388520] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 21 ...
% 	t = 29 secs [nr = 16777124] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 22 ...
% 	t = 57 secs [nr = 33554336] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 23 ...
% 	t = 115 secs [nr = 67108764] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 24 ...
% Entering time slice 2
% Updating parameters ... done.
% Looking for a proof at depth = 1 ...
% 	t = 123 secs [nr = 71926805] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 2 ...
% 	t = 123 secs [nr = 71926823] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 3 ...
% 	t = 123 secs [nr = 71926871] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 4 ...
% 	t = 123 secs [nr = 71927109] [nf = 0] [nu = 0] [ut = 3]
% Looking for a proof at depth = 5 ...
% 	t = 123 secs [nr = 71928364] [nf = 104] [nu = 0] [ut = 3]
% Looking for a proof at depth = 6 ...
% +================================================+
% |                                                |
% | Congratulations!!! ........ A proof was found. |
% |                                                |
% +================================================+
% Base Clauses and Unit Clauses used in proof:
% ============================================
% Base Clauses:
% -------------
% B0: environment_1(sk1_0())
% B1: subpopulations_4(first_movers_0(),efficient_producers_0(),sk1_0(),sk2_0())
% B8: ~constant_1(resources_2(x0,x3)) | ~environment_1(x0) | ~greater_2(resilience_1(x2),resilience_1(x1)) | ~subpopulations_4(x1,x2,x0,x3) | constant_1(difference_2(disbanding_rate_2(x1,x3),disbanding_rate_2(x2,x3)))
% B9: ~decreases_1(resources_2(x0,x3)) | ~environment_1(x0) | ~greater_2(resilience_1(x2),resilience_1(x1)) | ~subpopulations_4(x1,x2,x0,x3) | increases_1(difference_2(disbanding_rate_2(x1,x3),disbanding_rate_2(x2,x3)))
% Unit Clauses:
% --------------
% U0: < d0 v0 dv0 f0 c1 t1 td1 b nc > environment_1(sk1_0())
% U1: < d0 v0 dv0 f0 c4 t4 td1 b nc > subpopulations_4(first_movers_0(),efficient_producers_0(),sk1_0(),sk2_0())
% U2: < d0 v0 dv0 f2 c2 t4 td2 b > greater_2(resilience_1(efficient_producers_0()),resilience_1(first_movers_0()))
% U3: < d6 v0 dv0 f1 c2 t3 td2 > constant_1(resources_2(sk1_0(),sk2_0()))
% U5: < d6 v0 dv0 f1 c2 t3 td2 > ~decreases_1(resources_2(sk1_0(),sk2_0()))
% U6: < d6 v0 dv0 f1 c2 t3 td2 > decreases_1(resources_2(sk1_0(),sk2_0()))
% --------------- Start of Proof ---------------
% Derivation of unit clause U0:
% environment_1(sk1_0()) ....... U0
% Derivation of unit clause U1:
% subpopulations_4(first_movers_0(),efficient_producers_0(),sk1_0(),sk2_0()) ....... U1
% Derivation of unit clause U2:
% greater_2(resilience_1(efficient_producers_0()),resilience_1(first_movers_0())) ....... U2
% Derivation of unit clause U3:
% environment_1(sk1_0()) ....... B0
% ~decreases_1(resources_2(x0,x3)) | ~environment_1(x0) | ~greater_2(resilience_1(x2),resilience_1(x1)) | ~subpopulations_4(x1,x2,x0,x3) | increases_1(difference_2(disbanding_rate_2(x1,x3),disbanding_rate_2(x2,x3))) ....... B9
%  ~decreases_1(resources_2(sk1_0(), x0)) | ~greater_2(resilience_1(x1), resilience_1(x2)) | ~subpopulations_4(x2, x1, sk1_0(), x0) | increases_1(difference_2(disbanding_rate_2(x2, x0), disbanding_rate_2(x1, x0))) ....... R1 [B0:L0, B9:L1]
%  greater_2(resilience_1(efficient_producers_0()),resilience_1(first_movers_0())) ....... U2
%   ~decreases_1(resources_2(sk1_0(), x0)) | ~subpopulations_4(first_movers_0(), efficient_producers_0(), sk1_0(), x0) | increases_1(difference_2(disbanding_rate_2(first_movers_0(), x0), disbanding_rate_2(efficient_producers_0(), x0))) ....... R2 [R1:L1, U2:L0]
%   subpopulations_4(first_movers_0(),efficient_producers_0(),sk1_0(),sk2_0()) ....... U1
%    ~decreases_1(resources_2(sk1_0(), sk2_0())) | increases_1(difference_2(disbanding_rate_2(first_movers_0(), sk2_0()), disbanding_rate_2(efficient_producers_0(), sk2_0()))) ....... R3 [R2:L1, U1:L0]
%    constant_1(resources_2(sk1_0(),sk2_0())) | decreases_1(resources_2(sk1_0(),sk2_0())) ....... B2
%     increases_1(difference_2(disbanding_rate_2(first_movers_0(), sk2_0()), disbanding_rate_2(efficient_producers_0(), sk2_0()))) | constant_1(resources_2(sk1_0(), sk2_0())) ....... R4 [R3:L0, B2:L1]
%     ~increases_1(difference_2(disbanding_rate_2(first_movers_0(),sk2_0()),disbanding_rate_2(efficient_producers_0(),sk2_0()))) | constant_1(resources_2(sk1_0(),sk2_0())) ....... B4
%      constant_1(resources_2(sk1_0(), sk2_0())) | constant_1(resources_2(sk1_0(), sk2_0())) ....... R5 [R4:L0, B4:L0]
%       constant_1(resources_2(sk1_0(), sk2_0())) ....... R6 [R5:L0, R5:L1]
% Derivation of unit clause U5:
% environment_1(sk1_0()) ....... B0
% ~decreases_1(resources_2(x0,x3)) | ~environment_1(x0) | ~greater_2(resilience_1(x2),resilience_1(x1)) | ~subpopulations_4(x1,x2,x0,x3) | increases_1(difference_2(disbanding_rate_2(x1,x3),disbanding_rate_2(x2,x3))) ....... B9
%  ~decreases_1(resources_2(sk1_0(), x0)) | ~greater_2(resilience_1(x1), resilience_1(x2)) | ~subpopulations_4(x2, x1, sk1_0(), x0) | increases_1(difference_2(disbanding_rate_2(x2, x0), disbanding_rate_2(x1, x0))) ....... R1 [B0:L0, B9:L1]
%  ~increases_1(difference_2(disbanding_rate_2(first_movers_0(),sk2_0()),disbanding_rate_2(efficient_producers_0(),sk2_0()))) | constant_1(resources_2(sk1_0(),sk2_0())) ....... B4
%   ~decreases_1(resources_2(sk1_0(), sk2_0())) | ~greater_2(resilience_1(efficient_producers_0()), resilience_1(first_movers_0())) | ~subpopulations_4(first_movers_0(), efficient_producers_0(), sk1_0(), sk2_0()) | constant_1(resources_2(sk1_0(), sk2_0())) ....... R2 [R1:L3, B4:L0]
%   ~constant_1(x0) | ~decreases_1(x0) ....... B7
%    ~decreases_1(resources_2(sk1_0(), sk2_0())) | ~greater_2(resilience_1(efficient_producers_0()), resilience_1(first_movers_0())) | ~subpopulations_4(first_movers_0(), efficient_producers_0(), sk1_0(), sk2_0()) | ~decreases_1(resources_2(sk1_0(), sk2_0())) ....... R3 [R2:L3, B7:L0]
%     ~greater_2(resilience_1(efficient_producers_0()), resilience_1(first_movers_0())) | ~subpopulations_4(first_movers_0(), efficient_producers_0(), sk1_0(), sk2_0()) | ~decreases_1(resources_2(sk1_0(), sk2_0())) ....... R4 [R3:L0, R3:L3]
%     greater_2(resilience_1(efficient_producers_0()),resilience_1(first_movers_0())) ....... U2
%      ~subpopulations_4(first_movers_0(), efficient_producers_0(), sk1_0(), sk2_0()) | ~decreases_1(resources_2(sk1_0(), sk2_0())) ....... R5 [R4:L0, U2:L0]
%      subpopulations_4(first_movers_0(),efficient_producers_0(),sk1_0(),sk2_0()) ....... U1
%       ~decreases_1(resources_2(sk1_0(), sk2_0())) ....... R6 [R5:L0, U1:L0]
% Derivation of unit clause U6:
% subpopulations_4(first_movers_0(),efficient_producers_0(),sk1_0(),sk2_0()) ....... B1
% ~constant_1(resources_2(x0,x3)) | ~environment_1(x0) | ~greater_2(resilience_1(x2),resilience_1(x1)) | ~subpopulations_4(x1,x2,x0,x3) | constant_1(difference_2(disbanding_rate_2(x1,x3),disbanding_rate_2(x2,x3))) ....... B8
%  ~constant_1(resources_2(sk1_0(), sk2_0())) | ~environment_1(sk1_0()) | ~greater_2(resilience_1(efficient_producers_0()), resilience_1(first_movers_0())) | constant_1(difference_2(disbanding_rate_2(first_movers_0(), sk2_0()), disbanding_rate_2(efficient_producers_0(), sk2_0()))) ....... R1 [B1:L0, B8:L3]
%  constant_1(resources_2(sk1_0(),sk2_0())) ....... U3
%   ~environment_1(sk1_0()) | ~greater_2(resilience_1(efficient_producers_0()), resilience_1(first_movers_0())) | constant_1(difference_2(disbanding_rate_2(first_movers_0(), sk2_0()), disbanding_rate_2(efficient_producers_0(), sk2_0()))) ....... R2 [R1:L0, U3:L0]
%   environment_1(sk1_0()) ....... U0
%    ~greater_2(resilience_1(efficient_producers_0()), resilience_1(first_movers_0())) | constant_1(difference_2(disbanding_rate_2(first_movers_0(), sk2_0()), disbanding_rate_2(efficient_producers_0(), sk2_0()))) ....... R3 [R2:L0, U0:L0]
%    ~constant_1(x0) | ~decreases_1(x0) ....... B7
%     ~greater_2(resilience_1(efficient_producers_0()), resilience_1(first_movers_0())) | ~decreases_1(difference_2(disbanding_rate_2(first_movers_0(), sk2_0()), disbanding_rate_2(efficient_producers_0(), sk2_0()))) ....... R4 [R3:L1, B7:L0]
%     decreases_1(resources_2(sk1_0(),sk2_0())) | decreases_1(difference_2(disbanding_rate_2(first_movers_0(),sk2_0()),disbanding_rate_2(efficient_producers_0(),sk2_0()))) ....... B3
%      ~greater_2(resilience_1(efficient_producers_0()), resilience_1(first_movers_0())) | decreases_1(resources_2(sk1_0(), sk2_0())) ....... R5 [R4:L1, B3:L1]
%      greater_2(resilience_1(efficient_producers_0()),resilience_1(first_movers_0())) ....... U2
%       decreases_1(resources_2(sk1_0(), sk2_0())) ....... R6 [R5:L0, U2:L0]
% Derivation of the empty clause:
% decreases_1(resources_2(sk1_0(),sk2_0())) ....... U6
% ~decreases_1(resources_2(sk1_0(),sk2_0())) ....... U5
%  [] ....... R1 [U6:L0, U5:L0]
% --------------- End of Proof ---------------
% PROOF FOUND!
% ---------------------------------------------
% |                Statistics                 |
% ---------------------------------------------
% Profile 3: Performance Statistics:
% ==================================
% Total number of generated clauses: 71929354
% 	resolvents: 71929181	factors: 173
% Number of unit clauses generated: 50
% % unit clauses generated to total clauses generated: 0.00
% Number of unit clauses constructed and retained at depth [x]:
% =============================================================
% [0] = 3		[6] = 4		
% Total = 7
% Number of generated clauses having [x] literals:
% ------------------------------------------------
% [1] = 50	[2] = 71928390	[3] = 625	[4] = 255	[5] = 34	
% Average size of a generated clause: 3.0
% Number of unit clauses per predicate list:
% ==========================================
% [0] constant_1		(+)1	(-)0
% [1] decreases_1		(+)2	(-)1
% [2] environment_1	(+)1	(-)0
% [3] increases_1		(+)0	(-)0
% [4] greater_2		(+)1	(-)0
% [5] subpopulations_4	(+)1	(-)0
% 			------------------
% 		Total:	(+)6	(-)1
% Total number of unit clauses retained: 7
% Number of clauses skipped because of their length: 756
% N base clauses skippped in resolve-with-all-base-clauses
% 	because of the shortest resolvents table: 398
% Number of successful unifications: 71929372
% Number of unification failures: 22842665
% Number of unit to unit unification failures: 1
% N literal unification failure due to lookup root_id table: 130739611
% N base clause resolution failure due to lookup table: 107894182
% N UC-BCL resolution dropped due to lookup table: 0
% Max entries in substitution set: 13
% N unit clauses dropped because they exceeded max values: 43
% N unit clauses dropped because too much nesting: 0
% N unit clauses not constrcuted because table was full: 0
% N unit clauses dropped because UCFA table was full: 0
% Max number of terms in a unit clause: 7
% Max term depth in a unit clause: 3
% Number of states in UCFA table: 27
% Total number of terms of all unit clauses in table: 25
% Max allowed number of states in UCFA: 104000
% Ratio n states used/total allowed states: 0.00
% Ratio n states used/total unit clauses terms: 1.08
% Number of symbols (columns) in UCFA: 48
% Profile 2: Number of calls to:
% ==============================
% PTUnify() = 94772037
% ConstructUnitClause() = 47
% Profile 1: Time spent in:
% =========================
% ConstructUnitClause() : 0.00 secs
% --------------------------------------------------------
% |                                                      |
%   Inferences per sec: 594457
% |                                                      |
% --------------------------------------------------------
% Elapsed time: 123 secs
% CPU time: 121.00 secs
% 
%------------------------------------------------------------------------------