TSTP Solution File: MGT022+1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : MGT022+1 : TPTP v8.1.2. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 09:07:22 EDT 2023

% Result   : Theorem 0.50s 0.59s
% Output   : CNFRefutation 0.50s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :   18
% Syntax   : Number of formulae    :   40 (   8 unt;  14 typ;   0 def)
%            Number of atoms       :   83 (   0 equ)
%            Maximal formula atoms :   10 (   3 avg)
%            Number of connectives :   94 (  37   ~;  33   |;  13   &)
%                                         (   0 <=>;  11  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   11 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   17 (  10   >;   7   *;   0   +;   0  <<)
%            Number of predicates  :    7 (   6 usr;   1 prp; 0-4 aty)
%            Number of functors    :    8 (   8 usr;   4 con; 0-2 aty)
%            Number of variables   :   28 (   0 sgn;  15   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    constant: $i > $o ).

tff(decl_23,type,
    decreases: $i > $o ).

tff(decl_24,type,
    environment: $i > $o ).

tff(decl_25,type,
    subpopulations: ( $i * $i * $i * $i ) > $o ).

tff(decl_26,type,
    resilience: $i > $i ).

tff(decl_27,type,
    greater: ( $i * $i ) > $o ).

tff(decl_28,type,
    resources: ( $i * $i ) > $i ).

tff(decl_29,type,
    disbanding_rate: ( $i * $i ) > $i ).

tff(decl_30,type,
    difference: ( $i * $i ) > $i ).

tff(decl_31,type,
    increases: $i > $o ).

tff(decl_32,type,
    efficient_producers: $i ).

tff(decl_33,type,
    first_movers: $i ).

tff(decl_34,type,
    esk1_0: $i ).

tff(decl_35,type,
    esk2_0: $i ).

fof(a5,hypothesis,
    ! [X2,X3,X4,X5] :
      ( ( environment(X2)
        & subpopulations(X3,X4,X2,X5)
        & greater(resilience(X4),resilience(X3)) )
     => ( ( decreases(resources(X2,X5))
         => increases(difference(disbanding_rate(X3,X5),disbanding_rate(X4,X5))) )
        & ( constant(resources(X2,X5))
         => constant(difference(disbanding_rate(X3,X5),disbanding_rate(X4,X5))) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',a5) ).

fof(prove_l4,conjecture,
    ! [X2,X5] :
      ( ( environment(X2)
        & subpopulations(first_movers,efficient_producers,X2,X5) )
     => ( ( decreases(resources(X2,X5))
         => increases(difference(disbanding_rate(first_movers,X5),disbanding_rate(efficient_producers,X5))) )
        & ( constant(resources(X2,X5))
         => ~ decreases(difference(disbanding_rate(first_movers,X5),disbanding_rate(efficient_producers,X5))) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',prove_l4) ).

fof(mp_constant_not_decrease,axiom,
    ! [X1] :
      ( constant(X1)
     => ~ decreases(X1) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',mp_constant_not_decrease) ).

fof(a2,hypothesis,
    greater(resilience(efficient_producers),resilience(first_movers)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',a2) ).

fof(c_0_4,hypothesis,
    ! [X7,X8,X9,X10] :
      ( ( ~ decreases(resources(X7,X10))
        | increases(difference(disbanding_rate(X8,X10),disbanding_rate(X9,X10)))
        | ~ environment(X7)
        | ~ subpopulations(X8,X9,X7,X10)
        | ~ greater(resilience(X9),resilience(X8)) )
      & ( ~ constant(resources(X7,X10))
        | constant(difference(disbanding_rate(X8,X10),disbanding_rate(X9,X10)))
        | ~ environment(X7)
        | ~ subpopulations(X8,X9,X7,X10)
        | ~ greater(resilience(X9),resilience(X8)) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[a5])])]) ).

fof(c_0_5,negated_conjecture,
    ~ ! [X2,X5] :
        ( ( environment(X2)
          & subpopulations(first_movers,efficient_producers,X2,X5) )
       => ( ( decreases(resources(X2,X5))
           => increases(difference(disbanding_rate(first_movers,X5),disbanding_rate(efficient_producers,X5))) )
          & ( constant(resources(X2,X5))
           => ~ decreases(difference(disbanding_rate(first_movers,X5),disbanding_rate(efficient_producers,X5))) ) ) ),
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[prove_l4])]) ).

fof(c_0_6,plain,
    ! [X1] :
      ( constant(X1)
     => ~ decreases(X1) ),
    inference(fof_simplification,[status(thm)],[mp_constant_not_decrease]) ).

cnf(c_0_7,hypothesis,
    ( constant(difference(disbanding_rate(X3,X2),disbanding_rate(X4,X2)))
    | ~ constant(resources(X1,X2))
    | ~ environment(X1)
    | ~ subpopulations(X3,X4,X1,X2)
    | ~ greater(resilience(X4),resilience(X3)) ),
    inference(split_conjunct,[status(thm)],[c_0_4]) ).

cnf(c_0_8,hypothesis,
    greater(resilience(efficient_producers),resilience(first_movers)),
    inference(split_conjunct,[status(thm)],[a2]) ).

fof(c_0_9,negated_conjecture,
    ( environment(esk1_0)
    & subpopulations(first_movers,efficient_producers,esk1_0,esk2_0)
    & ( constant(resources(esk1_0,esk2_0))
      | decreases(resources(esk1_0,esk2_0)) )
    & ( decreases(difference(disbanding_rate(first_movers,esk2_0),disbanding_rate(efficient_producers,esk2_0)))
      | decreases(resources(esk1_0,esk2_0)) )
    & ( constant(resources(esk1_0,esk2_0))
      | ~ increases(difference(disbanding_rate(first_movers,esk2_0),disbanding_rate(efficient_producers,esk2_0))) )
    & ( decreases(difference(disbanding_rate(first_movers,esk2_0),disbanding_rate(efficient_producers,esk2_0)))
      | ~ increases(difference(disbanding_rate(first_movers,esk2_0),disbanding_rate(efficient_producers,esk2_0))) ) ),
    inference(distribute,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_5])])])]) ).

fof(c_0_10,plain,
    ! [X6] :
      ( ~ constant(X6)
      | ~ decreases(X6) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_6])]) ).

cnf(c_0_11,hypothesis,
    ( constant(difference(disbanding_rate(first_movers,X1),disbanding_rate(efficient_producers,X1)))
    | ~ subpopulations(first_movers,efficient_producers,X2,X1)
    | ~ environment(X2)
    | ~ constant(resources(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_7,c_0_8]) ).

cnf(c_0_12,negated_conjecture,
    subpopulations(first_movers,efficient_producers,esk1_0,esk2_0),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_13,negated_conjecture,
    environment(esk1_0),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_14,plain,
    ( ~ constant(X1)
    | ~ decreases(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_10]) ).

cnf(c_0_15,negated_conjecture,
    ( constant(difference(disbanding_rate(first_movers,esk2_0),disbanding_rate(efficient_producers,esk2_0)))
    | ~ constant(resources(esk1_0,esk2_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_11,c_0_12]),c_0_13])]) ).

cnf(c_0_16,hypothesis,
    ( increases(difference(disbanding_rate(X3,X2),disbanding_rate(X4,X2)))
    | ~ decreases(resources(X1,X2))
    | ~ environment(X1)
    | ~ subpopulations(X3,X4,X1,X2)
    | ~ greater(resilience(X4),resilience(X3)) ),
    inference(split_conjunct,[status(thm)],[c_0_4]) ).

cnf(c_0_17,negated_conjecture,
    ( ~ decreases(difference(disbanding_rate(first_movers,esk2_0),disbanding_rate(efficient_producers,esk2_0)))
    | ~ constant(resources(esk1_0,esk2_0)) ),
    inference(spm,[status(thm)],[c_0_14,c_0_15]) ).

cnf(c_0_18,negated_conjecture,
    ( decreases(difference(disbanding_rate(first_movers,esk2_0),disbanding_rate(efficient_producers,esk2_0)))
    | decreases(resources(esk1_0,esk2_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_19,negated_conjecture,
    ( constant(resources(esk1_0,esk2_0))
    | decreases(resources(esk1_0,esk2_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_20,hypothesis,
    ( increases(difference(disbanding_rate(first_movers,X1),disbanding_rate(efficient_producers,X1)))
    | ~ subpopulations(first_movers,efficient_producers,X2,X1)
    | ~ environment(X2)
    | ~ decreases(resources(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_16,c_0_8]) ).

cnf(c_0_21,negated_conjecture,
    decreases(resources(esk1_0,esk2_0)),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_18]),c_0_19]) ).

cnf(c_0_22,negated_conjecture,
    ( constant(resources(esk1_0,esk2_0))
    | ~ increases(difference(disbanding_rate(first_movers,esk2_0),disbanding_rate(efficient_producers,esk2_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_23,negated_conjecture,
    increases(difference(disbanding_rate(first_movers,esk2_0),disbanding_rate(efficient_producers,esk2_0))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_20,c_0_12]),c_0_13])]),c_0_21])]) ).

cnf(c_0_24,negated_conjecture,
    constant(resources(esk1_0,esk2_0)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_22,c_0_23])]) ).

cnf(c_0_25,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_14,c_0_24]),c_0_21])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem    : MGT022+1 : TPTP v8.1.2. Released v2.0.0.
% 0.03/0.12  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.12/0.33  % Computer : n009.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit   : 300
% 0.12/0.33  % WCLimit    : 300
% 0.12/0.33  % DateTime   : Mon Aug 28 06:27:35 EDT 2023
% 0.12/0.33  % CPUTime  : 
% 0.50/0.58  start to proof: theBenchmark
% 0.50/0.59  % Version  : CSE_E---1.5
% 0.50/0.59  % Problem  : theBenchmark.p
% 0.50/0.59  % Proof found
% 0.50/0.59  % SZS status Theorem for theBenchmark.p
% 0.50/0.59  % SZS output start Proof
% See solution above
% 0.50/0.60  % Total time : 0.006000 s
% 0.50/0.60  % SZS output end Proof
% 0.50/0.60  % Total time : 0.009000 s
%------------------------------------------------------------------------------