TSTP Solution File: MGT020+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : MGT020+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n028.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:06:01 EDT 2022

% Result   : Theorem 1.74s 1.96s
% Output   : Refutation 1.74s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    8
%            Number of leaves      :   12
% Syntax   : Number of clauses     :   23 (  11 unt;   5 nHn;  23 RR)
%            Number of literals    :   48 (   4 equ;  22 neg)
%            Maximal clause size   :    7 (   2 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    8 (   6 usr;   1 prp; 0-4 aty)
%            Number of functors    :    8 (   8 usr;   4 con; 0-2 aty)
%            Number of variables   :   18 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | ~ decreases(difference(disbanding_rate(first_movers,B),disbanding_rate(efficient_producers,B))) ),
    file('MGT020+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( ~ environment(A)
    | ~ in_environment(A,initial_FM_EP(A))
    | subpopulations(first_movers,efficient_producers,A,initial_FM_EP(A)) ),
    file('MGT020+1.p',unknown),
    [] ).

cnf(3,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | greater_or_e_qual(B,initial_FM_EP(A)) ),
    file('MGT020+1.p',unknown),
    [] ).

cnf(4,axiom,
    ( ~ environment(A)
    | ~ greater_or_e_qual(B,C)
    | ~ greater_or_e_qual(D,B)
    | ~ subpopulations(first_movers,efficient_producers,A,D)
    | ~ greater(disbanding_rate(first_movers,C),disbanding_rate(efficient_producers,C))
    | decreases(difference(disbanding_rate(first_movers,B),disbanding_rate(efficient_producers,B)))
    | greater(disbanding_rate(first_movers,D),disbanding_rate(efficient_producers,D)) ),
    file('MGT020+1.p',unknown),
    [] ).

cnf(5,axiom,
    ( ~ environment(A)
    | ~ subpopulations(first_movers,efficient_producers,A,B)
    | in_environment(A,B) ),
    file('MGT020+1.p',unknown),
    [] ).

cnf(6,axiom,
    ( ~ environment(A)
    | greater_or_e_qual(initial_FM_EP(A),start_time(A)) ),
    file('MGT020+1.p',unknown),
    [] ).

cnf(7,axiom,
    ( ~ environment(A)
    | ~ greater_or_e_qual(B,start_time(A))
    | ~ greater(C,B)
    | ~ in_environment(A,C)
    | in_environment(A,B) ),
    file('MGT020+1.p',unknown),
    [] ).

cnf(9,axiom,
    ( ~ greater_or_e_qual(A,B)
    | greater(A,B)
    | A = B ),
    file('MGT020+1.p',unknown),
    [] ).

cnf(10,axiom,
    ( ~ environment(A)
    | greater(disbanding_rate(first_movers,initial_FM_EP(A)),disbanding_rate(efficient_producers,initial_FM_EP(A))) ),
    file('MGT020+1.p',unknown),
    [] ).

cnf(12,axiom,
    ~ greater(disbanding_rate(first_movers,dollar_c1),disbanding_rate(efficient_producers,dollar_c1)),
    file('MGT020+1.p',unknown),
    [] ).

cnf(15,axiom,
    environment(dollar_c2),
    file('MGT020+1.p',unknown),
    [] ).

cnf(16,axiom,
    subpopulations(first_movers,efficient_producers,dollar_c2,dollar_c1),
    file('MGT020+1.p',unknown),
    [] ).

cnf(17,plain,
    greater(disbanding_rate(first_movers,initial_FM_EP(dollar_c2)),disbanding_rate(efficient_producers,initial_FM_EP(dollar_c2))),
    inference(hyper,[status(thm)],[15,10]),
    [iquote('hyper,15,10')] ).

cnf(18,plain,
    greater_or_e_qual(initial_FM_EP(dollar_c2),start_time(dollar_c2)),
    inference(hyper,[status(thm)],[15,6]),
    [iquote('hyper,15,6')] ).

cnf(20,plain,
    in_environment(dollar_c2,dollar_c1),
    inference(hyper,[status(thm)],[16,5,15]),
    [iquote('hyper,16,5,15')] ).

cnf(21,plain,
    greater_or_e_qual(dollar_c1,initial_FM_EP(dollar_c2)),
    inference(hyper,[status(thm)],[16,3,15]),
    [iquote('hyper,16,3,15')] ).

cnf(28,plain,
    ( greater(dollar_c1,initial_FM_EP(dollar_c2))
    | initial_FM_EP(dollar_c2) = dollar_c1 ),
    inference(flip,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[21,9])]),
    [iquote('hyper,21,9,flip.2')] ).

cnf(47,plain,
    ( initial_FM_EP(dollar_c2) = dollar_c1
    | in_environment(dollar_c2,initial_FM_EP(dollar_c2)) ),
    inference(hyper,[status(thm)],[28,7,15,18,20]),
    [iquote('hyper,28,7,15,18,20')] ).

cnf(70,plain,
    ( initial_FM_EP(dollar_c2) = dollar_c1
    | subpopulations(first_movers,efficient_producers,dollar_c2,initial_FM_EP(dollar_c2)) ),
    inference(hyper,[status(thm)],[47,2,15]),
    [iquote('hyper,47,2,15')] ).

cnf(217,plain,
    subpopulations(first_movers,efficient_producers,dollar_c2,initial_FM_EP(dollar_c2)),
    inference(factor_simp,[status(thm)],[inference(unit_del,[status(thm)],[inference(para_from,[status(thm),theory(equality)],[70,2]),15,20])]),
    [iquote('para_from,70.1.1,2.2.2,unit_del,15,20,factor_simp')] ).

cnf(219,plain,
    greater_or_e_qual(initial_FM_EP(dollar_c2),initial_FM_EP(dollar_c2)),
    inference(hyper,[status(thm)],[217,3,15]),
    [iquote('hyper,217,3,15')] ).

cnf(242,plain,
    decreases(difference(disbanding_rate(first_movers,initial_FM_EP(dollar_c2)),disbanding_rate(efficient_producers,initial_FM_EP(dollar_c2)))),
    inference(unit_del,[status(thm)],[inference(hyper,[status(thm)],[219,4,15,21,16,17]),12]),
    [iquote('hyper,219,4,15,21,16,17,unit_del,12')] ).

cnf(254,plain,
    $false,
    inference(hyper,[status(thm)],[242,1,15,217]),
    [iquote('hyper,242,1,15,217')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : MGT020+1 : TPTP v8.1.0. Released v2.0.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n028.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 04:11:33 EDT 2022
% 0.18/0.33  % CPUTime  : 
% 1.74/1.95  ----- Otter 3.3f, August 2004 -----
% 1.74/1.95  The process was started by sandbox on n028.cluster.edu,
% 1.74/1.95  Wed Jul 27 04:11:33 2022
% 1.74/1.95  The command was "./otter".  The process ID is 15483.
% 1.74/1.95  
% 1.74/1.95  set(prolog_style_variables).
% 1.74/1.95  set(auto).
% 1.74/1.95     dependent: set(auto1).
% 1.74/1.95     dependent: set(process_input).
% 1.74/1.95     dependent: clear(print_kept).
% 1.74/1.95     dependent: clear(print_new_demod).
% 1.74/1.95     dependent: clear(print_back_demod).
% 1.74/1.95     dependent: clear(print_back_sub).
% 1.74/1.95     dependent: set(control_memory).
% 1.74/1.95     dependent: assign(max_mem, 12000).
% 1.74/1.95     dependent: assign(pick_given_ratio, 4).
% 1.74/1.95     dependent: assign(stats_level, 1).
% 1.74/1.95     dependent: assign(max_seconds, 10800).
% 1.74/1.95  clear(print_given).
% 1.74/1.95  
% 1.74/1.95  formula_list(usable).
% 1.74/1.95  all A (A=A).
% 1.74/1.95  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)-> -decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))).
% 1.74/1.95  all E T (environment(E)-> (in_environment(E,initial_FM_EP(E))->subpopulations(first_movers,efficient_producers,E,initial_FM_EP(E)))& (subpopulations(first_movers,efficient_producers,E,T)->greater_or_e_qual(T,initial_FM_EP(E)))).
% 1.74/1.95  all E T T1 T2 (environment(E)&greater_or_e_qual(T,T1)&greater_or_e_qual(T2,T)&subpopulations(first_movers,efficient_producers,E,T2)&greater(disbanding_rate(first_movers,T1),disbanding_rate(efficient_producers,T1))-> (-decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))->greater(disbanding_rate(first_movers,T2),disbanding_rate(efficient_producers,T2)))).
% 1.74/1.95  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)->in_environment(E,T)).
% 1.74/1.95  all E (environment(E)->greater_or_e_qual(initial_FM_EP(E),start_time(E))).
% 1.74/1.95  all E T1 T2 (environment(E)&greater_or_e_qual(T1,start_time(E))&greater(T2,T1)&in_environment(E,T2)->in_environment(E,T1)).
% 1.74/1.95  all X Y Z (greater(X,Y)&greater(Y,Z)->greater(X,Z)).
% 1.74/1.95  all X Y (greater_or_e_qual(X,Y)->greater(X,Y)|X=Y).
% 1.74/1.95  all E (environment(E)->greater(disbanding_rate(first_movers,initial_FM_EP(E)),disbanding_rate(efficient_producers,initial_FM_EP(E)))).
% 1.74/1.95  all E T1 T2 T (environment(E)&subpopulations(first_movers,efficient_producers,E,T1)&subpopulations(first_movers,efficient_producers,E,T2)&greater_or_e_qual(T,T1)&greater_or_e_qual(T2,T)->subpopulations(first_movers,efficient_producers,E,T)).
% 1.74/1.95  -(all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)->greater(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))).
% 1.74/1.95  end_of_list.
% 1.74/1.95  
% 1.74/1.95  -------> usable clausifies to:
% 1.74/1.95  
% 1.74/1.95  list(usable).
% 1.74/1.95  0 [] A=A.
% 1.74/1.95  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))).
% 1.74/1.95  0 [] -environment(E)| -in_environment(E,initial_FM_EP(E))|subpopulations(first_movers,efficient_producers,E,initial_FM_EP(E)).
% 1.74/1.95  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|greater_or_e_qual(T,initial_FM_EP(E)).
% 1.74/1.95  0 [] -environment(E)| -greater_or_e_qual(T,T1)| -greater_or_e_qual(T2,T)| -subpopulations(first_movers,efficient_producers,E,T2)| -greater(disbanding_rate(first_movers,T1),disbanding_rate(efficient_producers,T1))|decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))|greater(disbanding_rate(first_movers,T2),disbanding_rate(efficient_producers,T2)).
% 1.74/1.95  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)|in_environment(E,T).
% 1.74/1.95  0 [] -environment(E)|greater_or_e_qual(initial_FM_EP(E),start_time(E)).
% 1.74/1.95  0 [] -environment(E)| -greater_or_e_qual(T1,start_time(E))| -greater(T2,T1)| -in_environment(E,T2)|in_environment(E,T1).
% 1.74/1.95  0 [] -greater(X,Y)| -greater(Y,Z)|greater(X,Z).
% 1.74/1.95  0 [] -greater_or_e_qual(X,Y)|greater(X,Y)|X=Y.
% 1.74/1.95  0 [] -environment(E)|greater(disbanding_rate(first_movers,initial_FM_EP(E)),disbanding_rate(efficient_producers,initial_FM_EP(E))).
% 1.74/1.95  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T1)| -subpopulations(first_movers,efficient_producers,E,T2)| -greater_or_e_qual(T,T1)| -greater_or_e_qual(T2,T)|subpopulations(first_movers,efficient_producers,E,T).
% 1.74/1.95  0 [] environment($c2).
% 1.74/1.95  0 [] subpopulations(first_movers,efficient_producers,$c2,$c1).
% 1.74/1.96  0 [] -greater(disbanding_rate(first_movers,$c1),disbanding_rate(efficient_producers,$c1)).
% 1.74/1.96  end_of_list.
% 1.74/1.96  
% 1.74/1.96  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=7.
% 1.74/1.96  
% 1.74/1.96  This ia a non-Horn set with equality.  The strategy will be
% 1.74/1.96  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.74/1.96  deletion, with positive clauses in sos and nonpositive
% 1.74/1.96  clauses in usable.
% 1.74/1.96  
% 1.74/1.96     dependent: set(knuth_bendix).
% 1.74/1.96     dependent: set(anl_eq).
% 1.74/1.96     dependent: set(para_from).
% 1.74/1.96     dependent: set(para_into).
% 1.74/1.96     dependent: clear(para_from_right).
% 1.74/1.96     dependent: clear(para_into_right).
% 1.74/1.96     dependent: set(para_from_vars).
% 1.74/1.96     dependent: set(eq_units_both_ways).
% 1.74/1.96     dependent: set(dynamic_demod_all).
% 1.74/1.96     dependent: set(dynamic_demod).
% 1.74/1.96     dependent: set(order_eq).
% 1.74/1.96     dependent: set(back_demod).
% 1.74/1.96     dependent: set(lrpo).
% 1.74/1.96     dependent: set(hyper_res).
% 1.74/1.96     dependent: set(unit_deletion).
% 1.74/1.96     dependent: set(factor).
% 1.74/1.96  
% 1.74/1.96  ------------> process usable:
% 1.74/1.96  ** KEPT (pick-wt=15): 1 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -decreases(difference(disbanding_rate(first_movers,B),disbanding_rate(efficient_producers,B))).
% 1.74/1.96  ** KEPT (pick-wt=12): 2 [] -environment(A)| -in_environment(A,initial_FM_EP(A))|subpopulations(first_movers,efficient_producers,A,initial_FM_EP(A)).
% 1.74/1.96  ** KEPT (pick-wt=11): 3 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|greater_or_e_qual(B,initial_FM_EP(A)).
% 1.74/1.96  ** KEPT (pick-wt=35): 4 [] -environment(A)| -greater_or_e_qual(B,C)| -greater_or_e_qual(D,B)| -subpopulations(first_movers,efficient_producers,A,D)| -greater(disbanding_rate(first_movers,C),disbanding_rate(efficient_producers,C))|decreases(difference(disbanding_rate(first_movers,B),disbanding_rate(efficient_producers,B)))|greater(disbanding_rate(first_movers,D),disbanding_rate(efficient_producers,D)).
% 1.74/1.96  ** KEPT (pick-wt=10): 5 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)|in_environment(A,B).
% 1.74/1.96  ** KEPT (pick-wt=7): 6 [] -environment(A)|greater_or_e_qual(initial_FM_EP(A),start_time(A)).
% 1.74/1.96  ** KEPT (pick-wt=15): 7 [] -environment(A)| -greater_or_e_qual(B,start_time(A))| -greater(C,B)| -in_environment(A,C)|in_environment(A,B).
% 1.74/1.96  ** KEPT (pick-wt=9): 8 [] -greater(A,B)| -greater(B,C)|greater(A,C).
% 1.74/1.96  ** KEPT (pick-wt=9): 9 [] -greater_or_e_qual(A,B)|greater(A,B)|A=B.
% 1.74/1.96  ** KEPT (pick-wt=11): 10 [] -environment(A)|greater(disbanding_rate(first_movers,initial_FM_EP(A)),disbanding_rate(efficient_producers,initial_FM_EP(A))).
% 1.74/1.96  ** KEPT (pick-wt=23): 11 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -subpopulations(first_movers,efficient_producers,A,C)| -greater_or_e_qual(D,B)| -greater_or_e_qual(C,D)|subpopulations(first_movers,efficient_producers,A,D).
% 1.74/1.96  ** KEPT (pick-wt=7): 12 [] -greater(disbanding_rate(first_movers,$c1),disbanding_rate(efficient_producers,$c1)).
% 1.74/1.96  
% 1.74/1.96  ------------> process sos:
% 1.74/1.96  ** KEPT (pick-wt=3): 14 [] A=A.
% 1.74/1.96  ** KEPT (pick-wt=2): 15 [] environment($c2).
% 1.74/1.96  ** KEPT (pick-wt=5): 16 [] subpopulations(first_movers,efficient_producers,$c2,$c1).
% 1.74/1.96    Following clause subsumed by 14 during input processing: 0 [copy,14,flip.1] A=A.
% 1.74/1.96  
% 1.74/1.96  ======= end of input processing =======
% 1.74/1.96  
% 1.74/1.96  =========== start of search ===========
% 1.74/1.96  
% 1.74/1.96  -------- PROOF -------- 
% 1.74/1.96  
% 1.74/1.96  -----> EMPTY CLAUSE at   0.01 sec ----> 254 [hyper,242,1,15,217] $F.
% 1.74/1.96  
% 1.74/1.96  Length of proof is 10.  Level of proof is 7.
% 1.74/1.96  
% 1.74/1.96  ---------------- PROOF ----------------
% 1.74/1.96  % SZS status Theorem
% 1.74/1.96  % SZS output start Refutation
% See solution above
% 1.74/1.96  ------------ end of proof -------------
% 1.74/1.96  
% 1.74/1.96  
% 1.74/1.96  Search stopped by max_proofs option.
% 1.74/1.96  
% 1.74/1.96  
% 1.74/1.96  Search stopped by max_proofs option.
% 1.74/1.96  
% 1.74/1.96  ============ end of search ============
% 1.74/1.96  
% 1.74/1.96  -------------- statistics -------------
% 1.74/1.96  clauses given                 40
% 1.74/1.96  clauses generated            487
% 1.74/1.96  clauses kept                 253
% 1.74/1.96  clauses forward subsumed     236
% 1.74/1.96  clauses back subsumed         86
% 1.74/1.96  Kbytes malloced              976
% 1.74/1.96  
% 1.74/1.96  ----------- times (seconds) -----------
% 1.74/1.96  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.74/1.96  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.74/1.96  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.74/1.96  
% 1.74/1.96  That finishes the proof of the theorem.
% 1.74/1.96  
% 1.74/1.96  Process 15483 finished Wed Jul 27 04:11:35 2022
% 1.74/1.96  Otter interrupted
% 1.74/1.96  PROOF FOUND
%------------------------------------------------------------------------------