TSTP Solution File: MGT009-1 by CARINE---0.734

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CARINE---0.734
% Problem  : MGT009-1 : TPTP v5.0.0. Released v2.4.0.
% Transfm  : add_equality
% Format   : carine
% Command  : carine %s t=%d xo=off uct=32000

% Computer : art11.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 3.00GHz @ 3000MHz
% Memory   : 2006MB
% OS       : Linux 2.6.31.5-127.fc12.i686.PAE
% CPULimit : 300s
% DateTime : Sun Nov 28 01:54:35 EST 2010

% Result   : Unsatisfiable 2.14s
% Output   : Refutation 2.14s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Command entered:
% /home/graph/tptp/Systems/CARINE---0.734/carine /tmp/SystemOnTPTP14192/MGT/MGT009-1+noeq.car t=300 xo=off uct=32000
% CARINE version 0.734 (Dec 2003)
% Initializing tables ... done.
% Parsing ................ done.
% Calculating time slices ... done.
% Building Lookup Tables ... done.
% Looking for a proof at depth = 1 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 2 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 3 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 4 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 5 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 6 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 7 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 8 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 9 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 10 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 11 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 12 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 13 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 14 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 15 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 16 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 17 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 18 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 19 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 20 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 21 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 22 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 23 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 24 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 25 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 26 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 27 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 28 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 29 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Looking for a proof at depth = 30 ...
% 	t = 0 secs [nr = 0] [nf = 0] [nu = 0] [ut = 12]
% Restarting search with different parameters.
% Looking for a proof at depth = 1 ...
% 	t = 0 secs [nr = 4] [nf = 0] [nu = 4] [ut = 14]
% Looking for a proof at depth = 2 ...
% 	t = 0 secs [nr = 8] [nf = 0] [nu = 8] [ut = 14]
% Looking for a proof at depth = 3 ...
% 	t = 0 secs [nr = 12] [nf = 0] [nu = 12] [ut = 14]
% Looking for a proof at depth = 4 ...
% 	t = 0 secs [nr = 16] [nf = 0] [nu = 16] [ut = 14]
% Looking for a proof at depth = 5 ...
% 	t = 0 secs [nr = 20] [nf = 0] [nu = 20] [ut = 14]
% Looking for a proof at depth = 6 ...
% 	t = 0 secs [nr = 24] [nf = 0] [nu = 24] [ut = 14]
% Looking for a proof at depth = 7 ...
% 	t = 0 secs [nr = 28] [nf = 0] [nu = 28] [ut = 14]
% Looking for a proof at depth = 8 ...
% 	t = 0 secs [nr = 74] [nf = 252] [nu = 32] [ut = 14]
% Looking for a proof at depth = 9 ...
% +================================================+
% |                                                |
% | Congratulations!!! ........ A proof was found. |
% |                                                |
% +================================================+
% Base Clauses and Unit Clauses used in proof:
% ============================================
% Base Clauses:
% -------------
% B0: greater_2(sk8_0(),sk7_0())
% B1: organization_2(sk2_0(),sk9_0())
% B2: organization_2(sk3_0(),sk10_0())
% B12: ~organization_2(x0,x1) | inertia_3(x0,sk1_2(x1,x0),x1)
% B13: ~greater_2(x6,x5) | ~organization_2(x2,x3) | ~organization_2(x0,x1) | ~class_3(x2,x4,x3) | ~class_3(x0,x4,x1) | ~inertia_3(x2,x8,x3) | ~inertia_3(x0,x7,x1) | ~size_3(x2,x6,x3) | ~size_3(x0,x5,x1) | greater_2(x8,x7)
% B15: ~greater_2(x7,x6) | ~organization_2(x2,x3) | ~organization_2(x0,x1) | ~inertia_3(x2,x7,x3) | ~inertia_3(x0,x6,x1) | ~reorganization_free_3(x2,x3,x3) | ~reorganization_free_3(x0,x1,x1) | ~reproducibility_3(x2,x5,x3) | ~reproducibility_3(x0,x4,x1) | greater_2(x5,x4)
% Unit Clauses:
% --------------
% U1: < d0 v0 dv0 f0 c2 t2 td1 b nc > organization_2(sk2_0(),sk9_0())
% U2: < d0 v0 dv0 f0 c2 t2 td1 b nc > organization_2(sk3_0(),sk10_0())
% U3: < d0 v0 dv0 f0 c3 t3 td1 b nc > class_3(sk2_0(),sk4_0(),sk9_0())
% U4: < d0 v0 dv0 f0 c3 t3 td1 b nc > class_3(sk3_0(),sk4_0(),sk10_0())
% U5: < d0 v0 dv0 f0 c3 t3 td1 b nc > reorganization_free_3(sk2_0(),sk9_0(),sk9_0())
% U6: < d0 v0 dv0 f0 c3 t3 td1 b nc > reorganization_free_3(sk3_0(),sk10_0(),sk10_0())
% U7: < d0 v0 dv0 f0 c3 t3 td1 b nc > reproducibility_3(sk2_0(),sk5_0(),sk9_0())
% U8: < d0 v0 dv0 f0 c3 t3 td1 b nc > reproducibility_3(sk3_0(),sk6_0(),sk10_0())
% U9: < d0 v0 dv0 f0 c3 t3 td1 b nc > size_3(sk2_0(),sk7_0(),sk9_0())
% U10: < d0 v0 dv0 f0 c3 t3 td1 b nc > size_3(sk3_0(),sk8_0(),sk10_0())
% U11: < d0 v0 dv0 f0 c2 t2 td1 b nc > ~greater_2(sk6_0(),sk5_0())
% U12: < d1 v0 dv0 f1 c4 t5 td2 > inertia_3(sk2_0(),sk1_2(sk9_0(),sk2_0()),sk9_0())
% U13: < d1 v0 dv0 f1 c4 t5 td2 > inertia_3(sk3_0(),sk1_2(sk10_0(),sk3_0()),sk10_0())
% U14: < d9 v0 dv0 f2 c4 t6 td2 > greater_2(sk1_2(sk10_0(),sk3_0()),sk1_2(sk9_0(),sk2_0()))
% U15: < d9 v0 dv0 f0 c2 t2 td1 > greater_2(sk6_0(),sk5_0())
% --------------- Start of Proof ---------------
% Derivation of unit clause U1:
% organization_2(sk2_0(),sk9_0()) ....... U1
% Derivation of unit clause U2:
% organization_2(sk3_0(),sk10_0()) ....... U2
% Derivation of unit clause U3:
% class_3(sk2_0(),sk4_0(),sk9_0()) ....... U3
% Derivation of unit clause U4:
% class_3(sk3_0(),sk4_0(),sk10_0()) ....... U4
% Derivation of unit clause U5:
% reorganization_free_3(sk2_0(),sk9_0(),sk9_0()) ....... U5
% Derivation of unit clause U6:
% reorganization_free_3(sk3_0(),sk10_0(),sk10_0()) ....... U6
% Derivation of unit clause U7:
% reproducibility_3(sk2_0(),sk5_0(),sk9_0()) ....... U7
% Derivation of unit clause U8:
% reproducibility_3(sk3_0(),sk6_0(),sk10_0()) ....... U8
% Derivation of unit clause U9:
% size_3(sk2_0(),sk7_0(),sk9_0()) ....... U9
% Derivation of unit clause U10:
% size_3(sk3_0(),sk8_0(),sk10_0()) ....... U10
% Derivation of unit clause U11:
% ~greater_2(sk6_0(),sk5_0()) ....... U11
% Derivation of unit clause U12:
% organization_2(sk2_0(),sk9_0()) ....... B1
% ~organization_2(x0,x1) | inertia_3(x0,sk1_2(x1,x0),x1) ....... B12
%  inertia_3(sk2_0(), sk1_2(sk9_0(), sk2_0()), sk9_0()) ....... R1 [B1:L0, B12:L0]
% Derivation of unit clause U13:
% organization_2(sk3_0(),sk10_0()) ....... B2
% ~organization_2(x0,x1) | inertia_3(x0,sk1_2(x1,x0),x1) ....... B12
%  inertia_3(sk3_0(), sk1_2(sk10_0(), sk3_0()), sk10_0()) ....... R1 [B2:L0, B12:L0]
% Derivation of unit clause U14:
% greater_2(sk8_0(),sk7_0()) ....... B0
% ~greater_2(x6,x5) | ~organization_2(x2,x3) | ~organization_2(x0,x1) | ~class_3(x2,x4,x3) | ~class_3(x0,x4,x1) | ~inertia_3(x2,x8,x3) | ~inertia_3(x0,x7,x1) | ~size_3(x2,x6,x3) | ~size_3(x0,x5,x1) | greater_2(x8,x7) ....... B13
%  ~organization_2(x0, x1) | ~organization_2(x2, x3) | ~class_3(x0, x4, x1) | ~class_3(x2, x4, x3) | ~inertia_3(x0, x5, x1) | ~inertia_3(x2, x6, x3) | ~size_3(x0, sk8_0(), x1) | ~size_3(x2, sk7_0(), x3) | greater_2(x5, x6) ....... R1 [B0:L0, B13:L0]
%  organization_2(sk3_0(),sk10_0()) ....... U2
%   ~organization_2(x0, x1) | ~class_3(sk3_0(), x2, sk10_0()) | ~class_3(x0, x2, x1) | ~inertia_3(sk3_0(), x3, sk10_0()) | ~inertia_3(x0, x4, x1) | ~size_3(sk3_0(), sk8_0(), sk10_0()) | ~size_3(x0, sk7_0(), x1) | greater_2(x3, x4) ....... R2 [R1:L0, U2:L0]
%   organization_2(sk2_0(),sk9_0()) ....... U1
%    ~class_3(sk3_0(), x0, sk10_0()) | ~class_3(sk2_0(), x0, sk9_0()) | ~inertia_3(sk3_0(), x1, sk10_0()) | ~inertia_3(sk2_0(), x2, sk9_0()) | ~size_3(sk3_0(), sk8_0(), sk10_0()) | ~size_3(sk2_0(), sk7_0(), sk9_0()) | greater_2(x1, x2) ....... R3 [R2:L0, U1:L0]
%    class_3(sk3_0(),sk4_0(),sk10_0()) ....... U4
%     ~class_3(sk2_0(), sk4_0(), sk9_0()) | ~inertia_3(sk3_0(), x0, sk10_0()) | ~inertia_3(sk2_0(), x1, sk9_0()) | ~size_3(sk3_0(), sk8_0(), sk10_0()) | ~size_3(sk2_0(), sk7_0(), sk9_0()) | greater_2(x0, x1) ....... R4 [R3:L0, U4:L0]
%     class_3(sk2_0(),sk4_0(),sk9_0()) ....... U3
%      ~inertia_3(sk3_0(), x0, sk10_0()) | ~inertia_3(sk2_0(), x1, sk9_0()) | ~size_3(sk3_0(), sk8_0(), sk10_0()) | ~size_3(sk2_0(), sk7_0(), sk9_0()) | greater_2(x0, x1) ....... R5 [R4:L0, U3:L0]
%      inertia_3(sk3_0(),sk1_2(sk10_0(),sk3_0()),sk10_0()) ....... U13
%       ~inertia_3(sk2_0(), x0, sk9_0()) | ~size_3(sk3_0(), sk8_0(), sk10_0()) | ~size_3(sk2_0(), sk7_0(), sk9_0()) | greater_2(sk1_2(sk10_0(), sk3_0()), x0) ....... R6 [R5:L0, U13:L0]
%       inertia_3(sk2_0(),sk1_2(sk9_0(),sk2_0()),sk9_0()) ....... U12
%        ~size_3(sk3_0(), sk8_0(), sk10_0()) | ~size_3(sk2_0(), sk7_0(), sk9_0()) | greater_2(sk1_2(sk10_0(), sk3_0()), sk1_2(sk9_0(), sk2_0())) ....... R7 [R6:L0, U12:L0]
%        size_3(sk3_0(),sk8_0(),sk10_0()) ....... U10
%         ~size_3(sk2_0(), sk7_0(), sk9_0()) | greater_2(sk1_2(sk10_0(), sk3_0()), sk1_2(sk9_0(), sk2_0())) ....... R8 [R7:L0, U10:L0]
%         size_3(sk2_0(),sk7_0(),sk9_0()) ....... U9
%          greater_2(sk1_2(sk10_0(), sk3_0()), sk1_2(sk9_0(), sk2_0())) ....... R9 [R8:L0, U9:L0]
% Derivation of unit clause U15:
% organization_2(sk2_0(),sk9_0()) ....... B1
% ~greater_2(x7,x6) | ~organization_2(x2,x3) | ~organization_2(x0,x1) | ~inertia_3(x2,x7,x3) | ~inertia_3(x0,x6,x1) | ~reorganization_free_3(x2,x3,x3) | ~reorganization_free_3(x0,x1,x1) | ~reproducibility_3(x2,x5,x3) | ~reproducibility_3(x0,x4,x1) | greater_2(x5,x4) ....... B15
%  ~greater_2(x0, x1) | ~organization_2(x2, x3) | ~inertia_3(x2, x0, x3) | ~inertia_3(sk2_0(), x1, sk9_0()) | ~reorganization_free_3(x2, x3, x3) | ~reorganization_free_3(sk2_0(), sk9_0(), sk9_0()) | ~reproducibility_3(x2, x4, x3) | ~reproducibility_3(sk2_0(), x5, sk9_0()) | greater_2(x4, x5) ....... R1 [B1:L0, B15:L2]
%  greater_2(sk1_2(sk10_0(),sk3_0()),sk1_2(sk9_0(),sk2_0())) ....... U14
%   ~organization_2(x0, x1) | ~inertia_3(x0, sk1_2(sk10_0(), sk3_0()), x1) | ~inertia_3(sk2_0(), sk1_2(sk9_0(), sk2_0()), sk9_0()) | ~reorganization_free_3(x0, x1, x1) | ~reorganization_free_3(sk2_0(), sk9_0(), sk9_0()) | ~reproducibility_3(x0, x2, x1) | ~reproducibility_3(sk2_0(), x3, sk9_0()) | greater_2(x2, x3) ....... R2 [R1:L0, U14:L0]
%   organization_2(sk3_0(),sk10_0()) ....... U2
%    ~inertia_3(sk3_0(), sk1_2(sk10_0(), sk3_0()), sk10_0()) | ~inertia_3(sk2_0(), sk1_2(sk9_0(), sk2_0()), sk9_0()) | ~reorganization_free_3(sk3_0(), sk10_0(), sk10_0()) | ~reorganization_free_3(sk2_0(), sk9_0(), sk9_0()) | ~reproducibility_3(sk3_0(), x0, sk10_0()) | ~reproducibility_3(sk2_0(), x1, sk9_0()) | greater_2(x0, x1) ....... R3 [R2:L0, U2:L0]
%    inertia_3(sk3_0(),sk1_2(sk10_0(),sk3_0()),sk10_0()) ....... U13
%     ~inertia_3(sk2_0(), sk1_2(sk9_0(), sk2_0()), sk9_0()) | ~reorganization_free_3(sk3_0(), sk10_0(), sk10_0()) | ~reorganization_free_3(sk2_0(), sk9_0(), sk9_0()) | ~reproducibility_3(sk3_0(), x0, sk10_0()) | ~reproducibility_3(sk2_0(), x1, sk9_0()) | greater_2(x0, x1) ....... R4 [R3:L0, U13:L0]
%     inertia_3(sk2_0(),sk1_2(sk9_0(),sk2_0()),sk9_0()) ....... U12
%      ~reorganization_free_3(sk3_0(), sk10_0(), sk10_0()) | ~reorganization_free_3(sk2_0(), sk9_0(), sk9_0()) | ~reproducibility_3(sk3_0(), x0, sk10_0()) | ~reproducibility_3(sk2_0(), x1, sk9_0()) | greater_2(x0, x1) ....... R5 [R4:L0, U12:L0]
%      reorganization_free_3(sk3_0(),sk10_0(),sk10_0()) ....... U6
%       ~reorganization_free_3(sk2_0(), sk9_0(), sk9_0()) | ~reproducibility_3(sk3_0(), x0, sk10_0()) | ~reproducibility_3(sk2_0(), x1, sk9_0()) | greater_2(x0, x1) ....... R6 [R5:L0, U6:L0]
%       reorganization_free_3(sk2_0(),sk9_0(),sk9_0()) ....... U5
%        ~reproducibility_3(sk3_0(), x0, sk10_0()) | ~reproducibility_3(sk2_0(), x1, sk9_0()) | greater_2(x0, x1) ....... R7 [R6:L0, U5:L0]
%        reproducibility_3(sk3_0(),sk6_0(),sk10_0()) ....... U8
%         ~reproducibility_3(sk2_0(), x0, sk9_0()) | greater_2(sk6_0(), x0) ....... R8 [R7:L0, U8:L0]
%         reproducibility_3(sk2_0(),sk5_0(),sk9_0()) ....... U7
%          greater_2(sk6_0(), sk5_0()) ....... R9 [R8:L0, U7:L0]
% Derivation of the empty clause:
% greater_2(sk6_0(),sk5_0()) ....... U15
% ~greater_2(sk6_0(),sk5_0()) ....... U11
%  [] ....... R1 [U15:L0, U11:L0]
% --------------- End of Proof ---------------
% PROOF FOUND!
% ---------------------------------------------
% |                Statistics                 |
% ---------------------------------------------
% Profile 3: Performance Statistics:
% ==================================
% Total number of generated clauses: 886613
% 	resolvents: 861224	factors: 25389
% Number of unit clauses generated: 80674
% % unit clauses generated to total clauses generated: 9.10
% Number of unit clauses constructed and retained at depth [x]:
% =============================================================
% [0] = 12	[1] = 2		[9] = 2		
% Total = 16
% Number of generated clauses having [x] literals:
% ------------------------------------------------
% [1] = 80674	[2] = 254401	[3] = 286537	[4] = 174523	[5] = 67963	[6] = 18296	
% [7] = 3479	[8] = 675	[9] = 65	
% Average size of a generated clause: 3.0
% Number of unit clauses per predicate list:
% ==========================================
% [0] greater_2		(+)3	(-)1
% [1] organization_2	(+)2	(-)0
% [2] class_3		(+)2	(-)0
% [3] inertia_3		(+)2	(-)0
% [4] reorganization_free_3	(+)2	(-)0
% [5] reproducibility_3	(+)2	(-)0
% [6] size_3		(+)2	(-)0
% 			------------------
% 		Total:	(+)15	(-)1
% Total number of unit clauses retained: 16
% Number of clauses skipped because of their length: 162419
% N base clauses skippped in resolve-with-all-base-clauses
% 	because of the shortest resolvents table: 0
% Number of successful unifications: 886633
% Number of unification failures: 2756262
% Number of unit to unit unification failures: 2
% N literal unification failure due to lookup root_id table: 3340053
% N base clause resolution failure due to lookup table: 101
% N UC-BCL resolution dropped due to lookup table: 0
% Max entries in substitution set: 11
% N unit clauses dropped because they exceeded max values: 80641
% N unit clauses dropped because too much nesting: 0
% N unit clauses not constrcuted because table was full: 0
% N unit clauses dropped because UCFA table was full: 0
% Max number of terms in a unit clause: 6
% Max term depth in a unit clause: 2
% Number of states in UCFA table: 45
% Total number of terms of all unit clauses in table: 50
% Max allowed number of states in UCFA: 80000
% Ratio n states used/total allowed states: 0.00
% Ratio n states used/total unit clauses terms: 0.90
% Number of symbols (columns) in UCFA: 51
% Profile 2: Number of calls to:
% ==============================
% PTUnify() = 3642895
% ConstructUnitClause() = 80645
% Profile 1: Time spent in:
% =========================
% ConstructUnitClause() : 0.10 secs
% --------------------------------------------------------
% |                                                      |
%   Inferences per sec: 443306
% |                                                      |
% --------------------------------------------------------
% Elapsed time: 2 secs
% CPU time: 2.14 secs
% 
%------------------------------------------------------------------------------