TSTP Solution File: LCL893+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : LCL893+1 : TPTP v8.1.2. Released v5.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n010.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 08:21:05 EDT 2023

% Result   : Theorem 0.22s 0.41s
% Output   : Proof 0.22s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : LCL893+1 : TPTP v8.1.2. Released v5.5.0.
% 0.00/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.15/0.35  % Computer : n010.cluster.edu
% 0.15/0.35  % Model    : x86_64 x86_64
% 0.15/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.35  % Memory   : 8042.1875MB
% 0.15/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.35  % CPULimit : 300
% 0.15/0.35  % WCLimit  : 300
% 0.15/0.35  % DateTime : Thu Aug 24 19:04:20 EDT 2023
% 0.15/0.35  % CPUTime  : 
% 0.22/0.41  Command-line arguments: --ground-connectedness --complete-subsets
% 0.22/0.41  
% 0.22/0.41  % SZS status Theorem
% 0.22/0.41  
% 0.22/0.41  % SZS output start Proof
% 0.22/0.41  Take the following subset of the input axioms:
% 0.22/0.41    fof(goals_15, conjecture, ![X17]: (h(X17)=X17 => X17='0')).
% 0.22/0.41    fof(sos_02, axiom, ![A, B]: '+'(A, B)='+'(B, A)).
% 0.22/0.41    fof(sos_03, axiom, ![A2]: '+'(A2, '0')=A2).
% 0.22/0.41    fof(sos_07, axiom, ![X3, X4]: (('>='(X3, X4) & '>='(X4, X3)) => X3=X4)).
% 0.22/0.41    fof(sos_08, axiom, ![X5, X6, X7]: ('>='('+'(X5, X6), X7) <=> '>='(X6, '==>'(X5, X7)))).
% 0.22/0.41    fof(sos_09, axiom, ![A2]: '>='(A2, '0')).
% 0.22/0.41    fof(sos_10, axiom, ![X8, X9, X10]: ('>='(X8, X9) => '>='('+'(X8, X10), '+'(X9, X10)))).
% 0.22/0.41    fof(sos_14, axiom, ![A2]: h(A2)='==>'(h(A2), A2)).
% 0.22/0.41  
% 0.22/0.41  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.22/0.41  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.22/0.41  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.22/0.41    fresh(y, y, x1...xn) = u
% 0.22/0.41    C => fresh(s, t, x1...xn) = v
% 0.22/0.41  where fresh is a fresh function symbol and x1..xn are the free
% 0.22/0.41  variables of u and v.
% 0.22/0.41  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.22/0.41  input problem has no model of domain size 1).
% 0.22/0.41  
% 0.22/0.41  The encoding turns the above axioms into the following unit equations and goals:
% 0.22/0.41  
% 0.22/0.41  Axiom 1 (goals_15): h(x17) = x17.
% 0.22/0.41  Axiom 2 (sos_02): X + Y = Y + X.
% 0.22/0.41  Axiom 3 (sos_03): X + 0 = X.
% 0.22/0.41  Axiom 4 (sos_09): X >= 0 = true.
% 0.22/0.41  Axiom 5 (sos_14): h(X) = h(X) ==> X.
% 0.22/0.41  Axiom 6 (sos_07): fresh(X, X, Y, Z) = Z.
% 0.22/0.41  Axiom 7 (sos_07): fresh2(X, X, Y, Z) = Y.
% 0.22/0.42  Axiom 8 (sos_08_1): fresh6(X, X, Y, Z, W) = true.
% 0.22/0.42  Axiom 9 (sos_10): fresh5(X, X, Y, Z, W) = true.
% 0.22/0.42  Axiom 10 (sos_07): fresh2(X >= Y, true, Y, X) = fresh(Y >= X, true, Y, X).
% 0.22/0.42  Axiom 11 (sos_10): fresh5(X >= Y, true, X, Y, Z) = (X + Z) >= (Y + Z).
% 0.22/0.42  Axiom 12 (sos_08_1): fresh6((X + Y) >= Z, true, X, Y, Z) = Y >= (X ==> Z).
% 0.22/0.42  
% 0.22/0.42  Goal 1 (goals_15_1): x17 = 0.
% 0.22/0.42  Proof:
% 0.22/0.42    x17
% 0.22/0.42  = { by axiom 6 (sos_07) R->L }
% 0.22/0.42    fresh(true, true, 0, x17)
% 0.22/0.42  = { by axiom 8 (sos_08_1) R->L }
% 0.22/0.42    fresh(fresh6(true, true, x17, 0, x17), true, 0, x17)
% 0.22/0.42  = { by axiom 9 (sos_10) R->L }
% 0.22/0.42    fresh(fresh6(fresh5(true, true, 0, 0, x17), true, x17, 0, x17), true, 0, x17)
% 0.22/0.42  = { by axiom 4 (sos_09) R->L }
% 0.22/0.42    fresh(fresh6(fresh5(0 >= 0, true, 0, 0, x17), true, x17, 0, x17), true, 0, x17)
% 0.22/0.42  = { by axiom 11 (sos_10) }
% 0.22/0.42    fresh(fresh6((0 + x17) >= (0 + x17), true, x17, 0, x17), true, 0, x17)
% 0.22/0.42  = { by axiom 2 (sos_02) R->L }
% 0.22/0.42    fresh(fresh6((0 + x17) >= (x17 + 0), true, x17, 0, x17), true, 0, x17)
% 0.22/0.42  = { by axiom 3 (sos_03) }
% 0.22/0.42    fresh(fresh6((0 + x17) >= x17, true, x17, 0, x17), true, 0, x17)
% 0.22/0.42  = { by axiom 2 (sos_02) }
% 0.22/0.42    fresh(fresh6((x17 + 0) >= x17, true, x17, 0, x17), true, 0, x17)
% 0.22/0.42  = { by axiom 12 (sos_08_1) }
% 0.22/0.42    fresh(0 >= (x17 ==> x17), true, 0, x17)
% 0.22/0.42  = { by axiom 1 (goals_15) R->L }
% 0.22/0.42    fresh(0 >= (h(x17) ==> x17), true, 0, x17)
% 0.22/0.42  = { by axiom 5 (sos_14) R->L }
% 0.22/0.42    fresh(0 >= h(x17), true, 0, x17)
% 0.22/0.42  = { by axiom 1 (goals_15) }
% 0.22/0.42    fresh(0 >= x17, true, 0, x17)
% 0.22/0.42  = { by axiom 10 (sos_07) R->L }
% 0.22/0.42    fresh2(x17 >= 0, true, 0, x17)
% 0.22/0.42  = { by axiom 4 (sos_09) }
% 0.22/0.42    fresh2(true, true, 0, x17)
% 0.22/0.42  = { by axiom 7 (sos_07) }
% 0.22/0.42    0
% 0.22/0.42  % SZS output end Proof
% 0.22/0.42  
% 0.22/0.42  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------